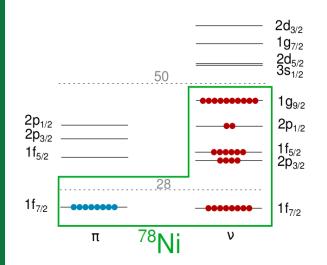


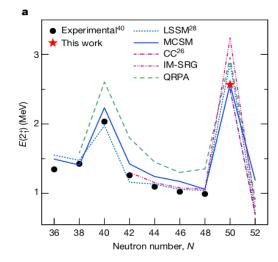
Investigating the deformation of the intruder isomeric 1/2+ state in ⁷⁹Zn (N=49) via Coulomb excitation

Filippo Angelini

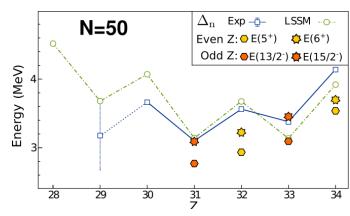

Università degli Studi di Padova, Italy

INFN - LNL, Legnaro (PD), Italy

INPC 2025

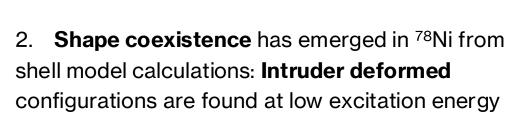

Daejeon, Korea

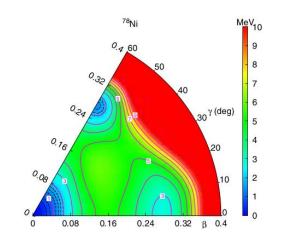
Nuclear shell evolution in the region of ⁷⁸Ni

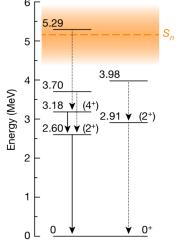


⁷⁸Ni is the **most exotic neutron-rich doubly-magic** nucleus that can be approached experimentally

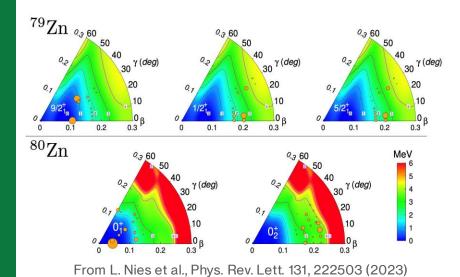
Magicity has been confirmed from spectroscopy But there are some questions:




R. Taniuchi et al., Nature 569, 53-58 (2019)



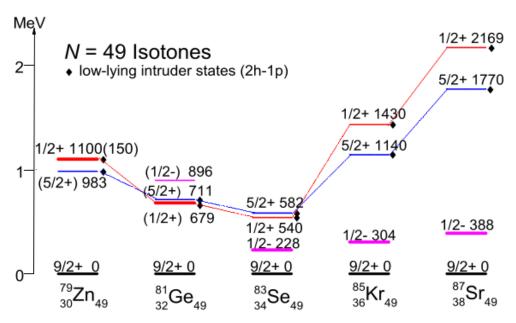
J. Dudouet et al, Phys. Rev. C 100, 011301(R) (2019)


1. The **N = 50 shell gap** follows a **parabolic behaviour** along the isotonic line

Shape coexistence in the region

Studies have shown **shape coexistence** in other two nuclei in the region:

- 80Ge intruder 0⁺₂
 (later not confirmed)
- ⁷⁹Zn intruder isomer 1/2+


From A. Gottardo et al., Phys. Rev. Lett. 116, 182502 (2016)

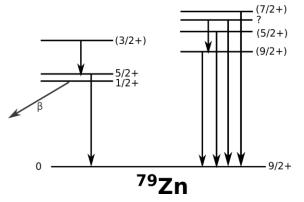
From F. H. Garcia et al., Phys. Rev. Lett. 125, 172501 (2020)

From X. Yang et al., Phys. Rev. Lett. 116, 182502 (2016)

⁷⁹Zn interesting case along N=49 isotonic chain:

- $9/2^+$ ground states (n-hole in $g_{9/2}$)
- $1/2^+$ and $5/2^+$ intruder states from **neutron 2h-1p** excitations to the $\mathbf{s_{1/2}}$, $\mathbf{d_{5/2}}$ shells beyond N=50
- **Deformation** in intruder band (e.g. ⁸³Se)

⁷⁹**Zn** studied with **radioactive beams**:


⁷⁸Zn(d,p) at ISOLDE

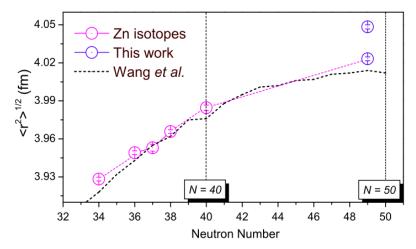
From R. Orlandi et al., Phys. Lett. B 740, 298-302 (2015)

First spectroscopy, single particle character of 5/2+ state

Laser spectroscopy at ISOLDE

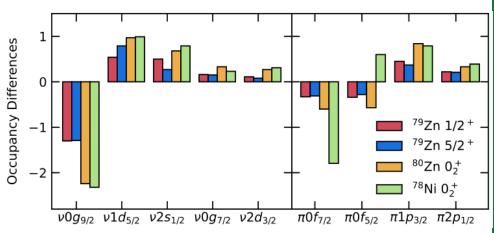
Spin assignments for 9/2+ g.s. (β ~ 0.14) and 1/2+ isomer Large $\langle r^2 \rangle$ for isomer, $\beta \sim 0.22$

Beta decay at RIKEN


Wide **exploration of level scheme** and spin assignments

Mass spectroscopy at ISOLDE, JYFL + PFSDG-U shell model calculations

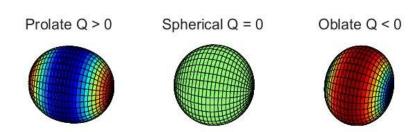
Ordering of intruder states 1/2+ and 5/2+, Intruder band of ⁷⁹Zn matches the occupancy of ⁷⁸Ni O⁺₂


> How to probe **deformation** of intruder band? **Coulomb excitation measurement**

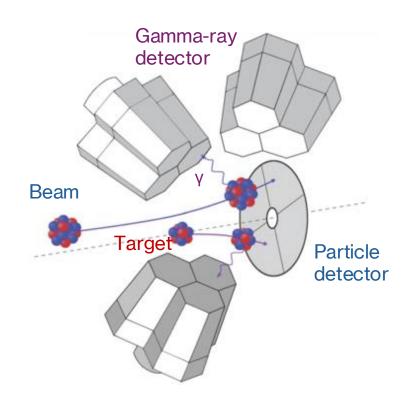
⁷⁹Zn: previous studies

From X. Yang et al., Phys. Rev. Lett. 116, 182502 (2016)

From M.C. Delattre's PhD thesis, Université Paris-Sud (2016)


From L. Nies et al., Phys. Rev. Lett. 131, 222503 (2023)

Coulomb excitation


Population of excited levels via purely electromagnetic interaction in a quasi-elastic scattering (safe energy criterion)

Measurement of **gamma-ray decay** of Coulomb-excited states **in coincidence with beam or target recoils**

Gamma-ray decay intensities, as a function of particle **scattering angle**, are related to **reduced transition probabilities** (e.g. **B(E2)**) and **spectroscopic quadrupole moments**.

Determination of these observables with a **multi-dimensional fit** performed using dedicated analysis codes (e.g. **GOSIA**)

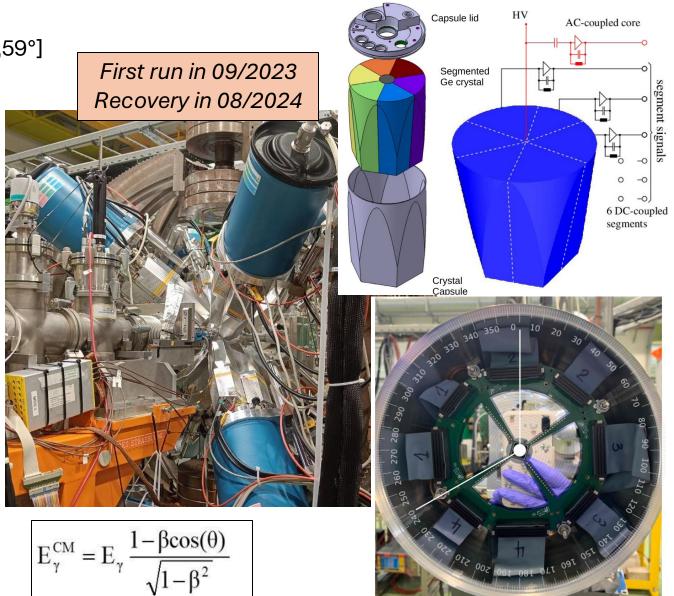
For details about the method: M. Zielińska, Lecture Notes in Physics 1005 (2022), chap. 2

⁷⁹Zn Coulomb excitation at HIE-ISOLDE

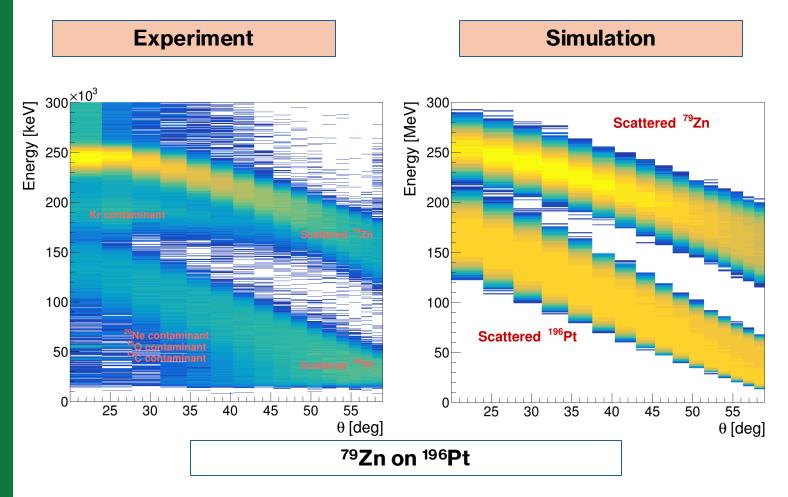
- 8 Miniball HPGe triple clusters

- Forward DSSSD detector (CD), θ range [20°,59°]

ISOL secondary beam from UC_X primary target ⁷⁹Zn @ 4.0 MeV/u, ~8x10⁴ pps

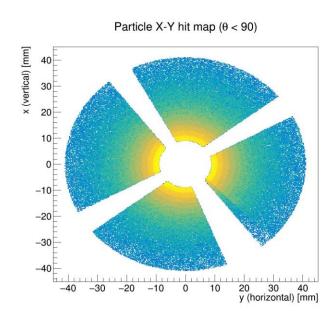

Mixture of g.s. and isomer: $r(^{79}Zn^m) = 7.1(4)\%$ Ratio measured from mass spectroscopy

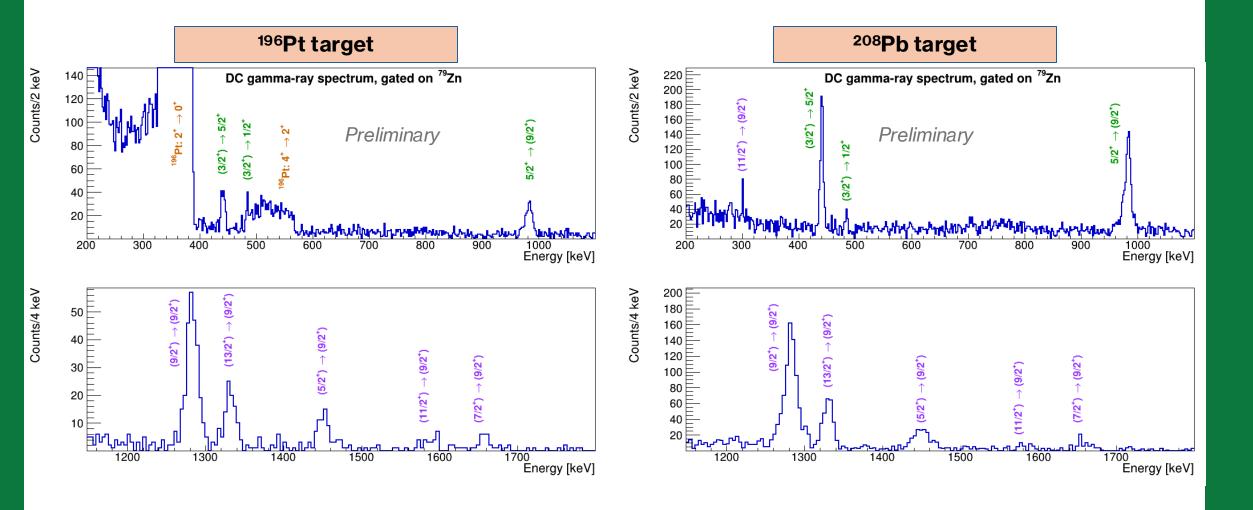
Targets:


- ²⁰⁸Pb 4 mg/cm² for low target bg
- ¹⁹⁶Pt 3 mg/cm² for target normalization

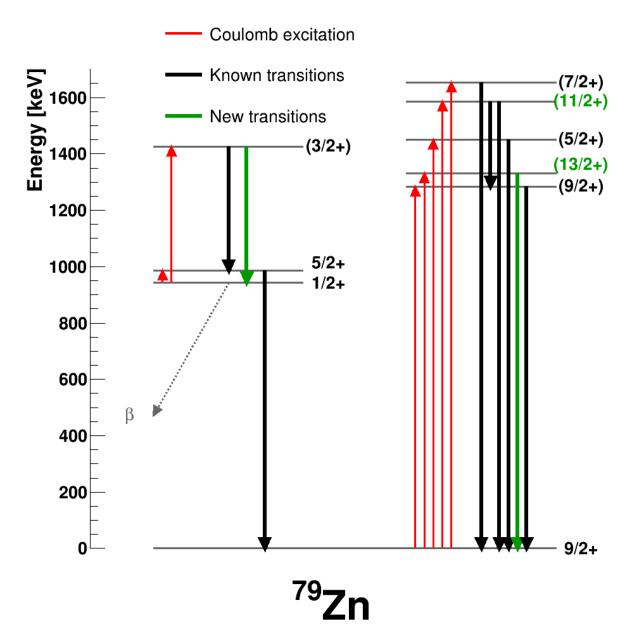
Scattering of **either partners** can be detected in the CD -> **Different** θ_{CM}

Gamma rays detected with Miniball In flight emission: **Doppler correction needed**


Calibration of the CD detector


Stable **beam contaminants** from EBIS charge breeder (A/Q=4): $^{12}C^{3+}$, $^{16}O^{4+}$, $^{20}Ne^{5+}$, $^{40}Ar^{10+}$, $^{84}Kr^{21+}$ / $^{80}Kr^{20+}$

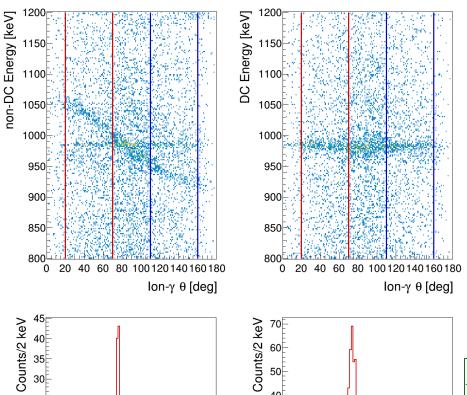
Kinsim simulation used to estimate the energy released in each ring


Calibration of segments: **P-side vs N-side**

DC addback spectra: target comparison

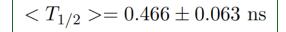
Identified transitions

- New transition measured at ~480 keV:
 It completes the intruder band scheme as a (3/2+) -> 1/2+ decay.
- Whole multiplet of $g_{9/2}$ n-hole coupled with 2+ of 80 Zn was observed: 5 states lying around $E(2+;^{80}$ Zn) = 1492(1) keV.
- Assignment of (11/2+) and (13/2+) spins: their population in beta decay was hindered due to **low spin** of mother nucleus (5/2-)

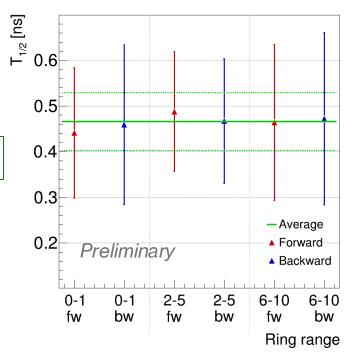

State at 985 keV: lifetime

Components are visible both with and without DC

A part of the decays happens after implantation in the CD


Sort of **Recoil Distance Doppler Shift** method with different CD rings to estimate lifetime

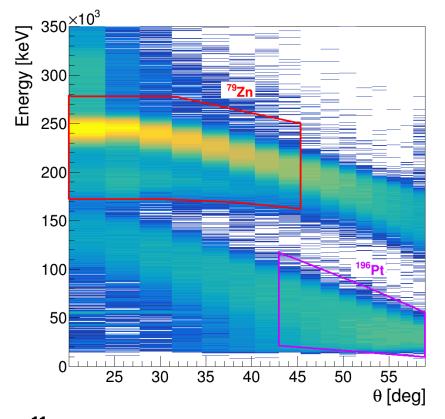
DC Energy [keV]

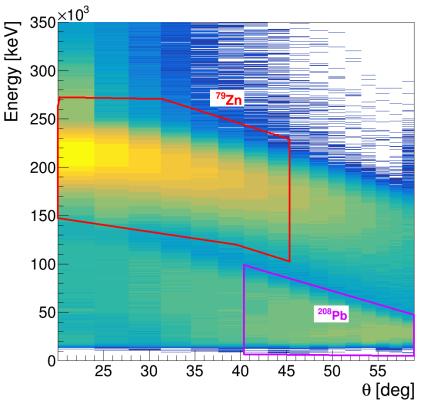

Inspired from R. Clews's Master thesis, University of Liverpool (2021)

) 1000 1050 110 non-DC Energy [keV]

$$B(E2; 5/2^+ \to 9/2^+) = 0.065 \pm 0.009 \text{ W.u.}$$

Strongly **hindered** transition!




GOSIA analysis: safe energy cuts

GOSIA is a standard code used to extract electromagnetic matrix elements via a multi-dimensional fit of gamma-ray intensities measured in Coulomb excitation experiments

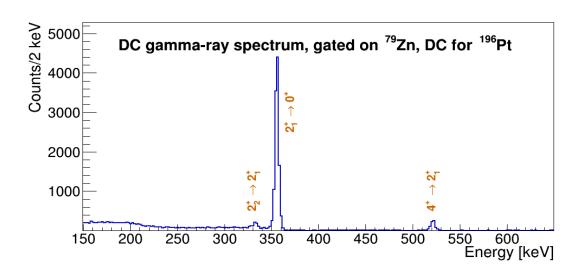
GOSIA2 used for normalization to target excitations (196Pt)

Extraction of **EM matrix elements** and uncertainty estimation

Selections for ensuring:

- Safe energy criterion.
- No double counting of the θ_{cм} range where both scattered partners can be detected.

- E2 excitations - E2 decays - E2+M1 decays Energy [keV] -Fake E1 decay (3/2+)Energy [keV] (7/2+)(11/2+) 400 (5/2+)(13/2+)300 (9/2+)1200 200 1000 100 800 600 Isomer scheme 400 200 **Ground state scheme**


GOSIA analysis: excitation schemes

From the (5/2+) lifetime estimation, the excitation of this state from g.s. is **negligible (~1%)**

It is possible to use a simpler treatment with **2 separate** schemes for isomer and g.s. excitations.

Normalization to ¹⁹⁶Pt **2**+ excitation

Analysis is ongoing

Conclusions

Up to now:

- Observed population of states built on the 9/2+ ground state and the 1/2+ intruder isomeric state in 79Zn via low-energy Coulomb excitation
- Lifetime extracted for **5/2**⁺ **intruder state**: very **hindered** transition
- **GOSIA analysis** ongoing

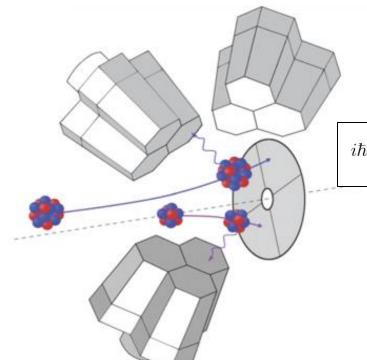
Perspectives:

- Extraction of **EM matrix elements** with uncertainties
- Comparison with predicted values from **shell model calculations**

Thank you to the collaboration!

F. Angelini ^{1,2}, <u>A. Gottardo¹, M. Zielińska</u> ³, I. Anastasov ⁴, M. Balogh ¹, F. Browne ⁵, D. Brugnara ¹, J. Cederkall ⁶, G. Colombi ⁷, F. Didierjean ⁸, G. Duchene ⁸, M. Droste ⁹, Z. Eleme ¹⁰, S. Franchoo ^{11,12}, L. Gaffney ¹³, B. Gongora Servin ^{1,14}, A. Illana ¹⁵, B. Johansson ¹⁶, B. Jones ¹³, M. Kaci ¹¹, D. Kalaydjieva ⁷, H. Kleis ⁹, M. Komorowska ¹⁷, T. La Marca ¹⁸, S. Lange ⁷, M.M.R. Majid ⁶, N. Marchini ¹⁹, K. Mashtakov ⁷, A. Nannini ¹⁹, L. Nies ²⁰, B. Olaizola ²¹, E. Pilotto ^{2,22}, C. Porzio ²⁰, M. Rocchini ¹⁹, M. Satrazani ²³, K. Stoychev ⁷, G. Tocabens ³, P. Van Duppen ²³, N. Warr ⁹, K. Wrzosek-Lipska¹⁷, L. Zago ¹ + the Miniball and ISOLDE collaborations

- 1 INFN-LNL, Legnaro (PD), Italy
- 2 University of Padova, Padova, Italy
- 3 CEA Saclay, Gif-sur-Yvette, France
- 4 University of Sofia, Sofia, Bulgaria
- 5 University of Manchester, Manchester, UK
- 6 University of Lund, Lund, Sweden
- 7 University of Guelph, Guelph, Canada
- 8 IPHC-Strasbourg, Strasbourg, France
- 9 *University of Cologne*, Cologne, Germany
- 10 University of Ioannina, Ioannina, Greece
- 11 IJCLab-Orsay, Orsay, France
- 12 University Paris-Saclay, Orsay, France


- 13 University of Liverpool, Liverpool, UK
- 14 University of Ferrara, Ferrara, Italy
- 15 *UCM*, Madrid, Spain
- 16 Chalmers University of Technology, Gothenburg, Sweden
- 17 HIL UW, Warsaw, Poland
- 18 *University of Florence*, Florence, Italy
- 19 INFN-Florence, Florence, Italy
- 20 CERN, Geneva, Switzerland
- 21 IEM-CSIC, Madrid, Spain
- 22 INFN-Padova, Padova, Italy
- 23 KU Leuven, Leuven, Belgium

BACKUP SLIDES

Coulomb excitation

Heavy ion inelastic scattering via electromagnetic interaction

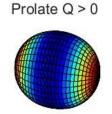
Safe energy -> **Purely EM** interaction

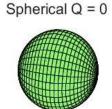
Cline's "safe energy" criterion

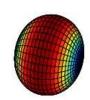
$$E_P(\theta_{CM}) < 0.72 \cdot \frac{Z_P Z_T}{1.25 \left(A_P^{1/3} + A_T^{1/3}\right) + 5} \cdot \frac{A_P + A_T}{A_T} \cdot \left(1 + \frac{1}{\sin\frac{\theta_{CM}}{2}}\right) \quad [\text{MeV}]$$

Time-dependent perturbation theory

$$i\hbar \frac{da_k(t)}{dt} = \sum_n a_n(t) \langle \varphi_k | V(t) | \varphi_n \rangle \exp \frac{it}{\hbar} (E_k - E_n) \qquad \frac{d\sigma_{clx}}{d\Omega} = \frac{d\sigma_R}{d\Omega} \cdot P_n \qquad P_n = |a_n|^2$$

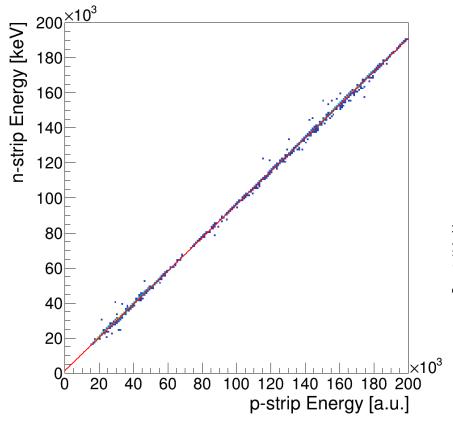

$$\frac{d\sigma_{clx}}{d\Omega} = \frac{d\sigma_R}{d\Omega} \cdot P_n$$

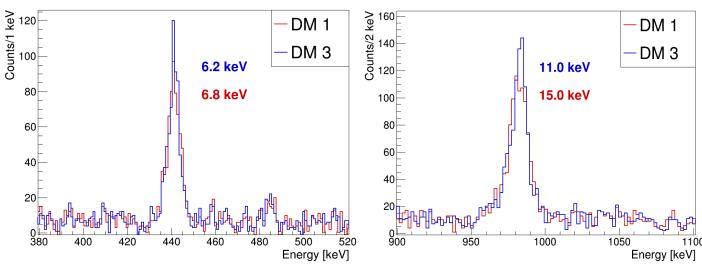

$$P_n = |a_n|^2$$


EM potential **V(t)** expanded in **multipoles Excitation** σ is proportional to EM multipole matrix elements (mainly E2)

Extraction of transitional matrix elements and quadrupole moments

<u>Setup:</u> Heavy ion particle detector + gamma array **Gamma decays** used to quantify the excitations of states





Oblate Q < 0

CD p-n side calibration

- A. Ring 13 (**P-side**) is calibrated with the simulation
- B. All the **N-side** strips are calibrated with coincident events with the ring 13
- C. All the remaining P-side rings are calibrated with coincident events with N-side strip 5

Doppler Mode 1: Average β from the CD angle Doppler Mode 3: event-by-event β from CD energy

500×10³ Yield [a.u.] Release curve of ⁷⁹Zn 450 350 300 250 200 150 100 50 Time from p pulse[s] From ISO-GPS log-book

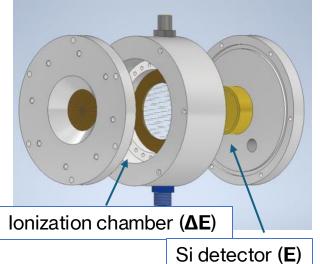
Isomeric ratio estimation

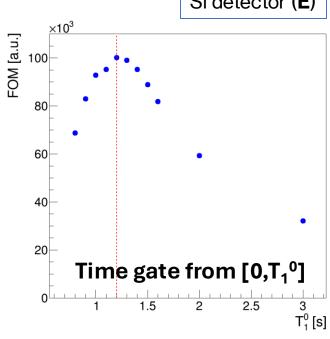
$$f_i = \frac{\int_{t_i}^{t_i + 100 \text{ ms}} R(t) dt}{\int_0^{1.2 \text{ s}} R(t) dt}$$

$$\bar{r} = \frac{\sum_{i} \frac{r_{i} \cdot f_{i}}{\sigma_{i}^{2}}}{\sum_{i} \frac{f_{i}}{\sigma_{i}^{2}}} \qquad \sigma_{\bar{r}} = \sqrt{\frac{1}{\sum_{i} \frac{f_{i}}{\sigma_{i}^{2}}}}$$

 $r = N(^{79}Zn \text{ in g.s.})/N(^{79}Zn \text{ total})$

Weighted average on uncertainty and integral of release curve

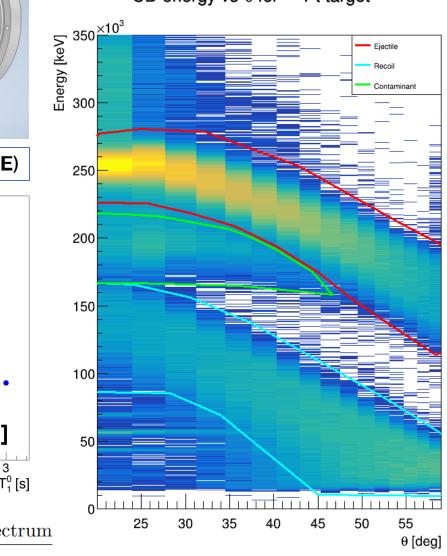

$$\bar{r} = 0.9308 \pm 0.0039$$


E [a.u.] ⁷⁹Zn pileup $\Delta E [a.u.]$

Beam contaminants can excite ¹⁹⁶Pt: Their effect must be **evaluated**

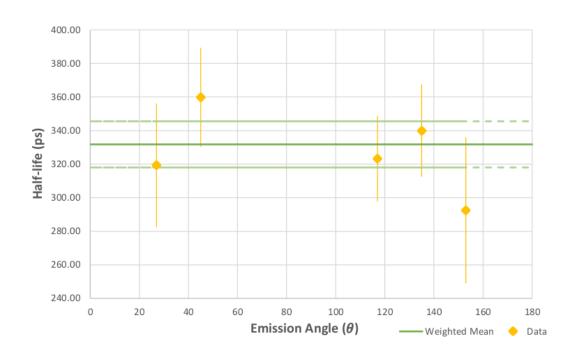
No time correlation with proton pulse

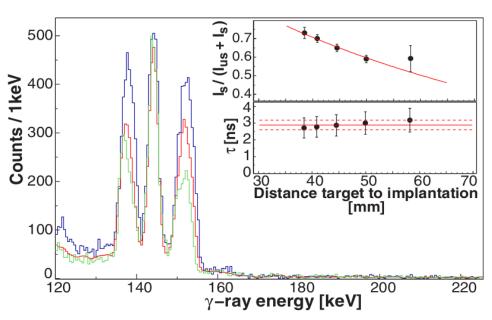
⁷⁹Zn $T_{1/2}$ ~ 0.7 s Time gate must not cut Zn Optimal $T_1^0 = 1.2s$



$FOM = \frac{\text{Integral} [430, 450] \text{ keV from DC } \gamma \text{ spectrum}}{\text{Kr/Zn ratio from IC}}$

Beam contaminants


CD energy vs θ for ¹⁹⁶Pt target


How to extract lifetime?

Dividing into theta ranges and extracting the ratio of stopped and in-flight component (plunger-like)

Method tried before in a coulex of ⁹⁸Sr, but result was significantly lower than real value!

State at 985 keV: lifetime

E. Clement et al., PRC 94, 054326 (2016)

²²²Rn Coulomb excitation at Miniball. Compatible with literature.

Previously measured value:

$$T_{1/2}$$
 (2+)= 320 ± 20 ps