

The β -decay properties of N=Z nuclei: Role of neutron-proton pairing and the shell model interpretation

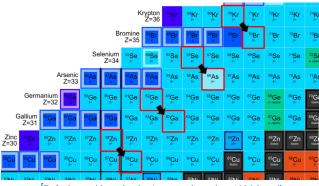
Priyanka Choudhary

KTH Royal Institute of Technology, Stockholm, Sweden

The 29th International Nuclear Physics Conference (INPC 2025)

25 May - 30 May 2025

Table of contents


- Motivation
- 2 The beta decay theory
- The nuclear shell model
- 4 Results and discussion
- 5 Conclusion

Motivation

- Recent measurement of the beta-decay of the even-even nucleus ⁷⁰Kr into ⁷⁰Br. [Ref.: A. Vitéz-Sveiczer et al., Phys. Lett. B 830, 137123 (2022).]
- An increase in the β-decay strength to the 1⁺₁ state in comparison to the β-decay of Z = N + 2 system, ⁶²Ge is observed that may indicate increased np correlations in the T = 0 channel.

Transitions of interest:

- ${}^{58}\text{Zn} (0_{g.s.}^+) \rightarrow {}^{58}\text{Cu}$
- 62 Ge $(0_{g.s.}^+) \rightarrow ^{62}$ Ga
- 66 Se $(0_{g.s.}^+) \rightarrow ^{66}$ As
- 70 Kr $(0_{g.s.}^+) \rightarrow ^{70}$ Br
- → Relavent to the rp-process

[Ref.: https://people.physics.anu.edu.au/ecs103/chart/]

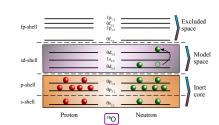
Gamow-Teller transition strength

- For Gamow-Teller transition: $\Delta J=\pm 1$, parity change=No
- The reduced transition probability is expressed as

$$B(GT) = \frac{g_{\rm A}^2}{2J_i + 1} |\mathcal{M}_{GT}|^2$$

 $g_{\rm A} \rightarrow {\rm axial} \ {\rm vector} \ {\rm coupling} \ {\rm constant}$

 $\mathcal{M}_{\mathrm{GT}} \to \mathrm{Gamow}\text{-Teller}$ nuclear matrix element (NME)


 The NMEs for a transition between an initial (i) and final (f) states is given by

Single-particle matrix elements

The nuclear shell model

- The nuclear shell-model is the primary tool for understanding the structure of atomic nucleus.
- In this model, interaction takes place among valence nucleons on top of an inert core via residual nuclear forces.

Hamiltonian for a system of A nucleons:

$$H_A = T + V = \underbrace{\sum_{\alpha} \epsilon_{\alpha} c_{\alpha}^{\dagger} c_{\alpha}}_{\text{single-particle energy}} + \underbrace{\frac{1}{4} \sum_{\alpha\beta\gamma\delta} v_{\alpha\beta\gamma\delta} c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\delta} c_{\gamma}}_{\text{Nucleon-nucleon interaction}}$$

Results

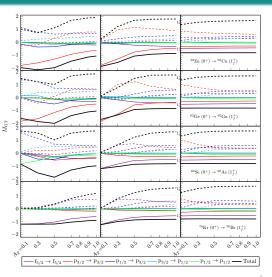
- A schematic calculation in the model space $p_{3/2}p_{1/2}f_{5/2}$ above N=Z=28 shell closure considering pairing matrix elements.
- Only $J=0,\,T=1$ and $J=1,\,T=0$ two-body matrix elements are taken into account.
- We consider three extreme setups for the single-particle level scheme:

Setup I	Setup II	Setup III	
——— f _{5/2}	p _{1/2}		
——— <i>p</i> _{1/2}	f _{5/2}	$p_{1/2}$	
p _{3/2}	p _{3/2}	$p_{3/2}, f_{5/2}$	

 \rightarrow Setup III favors pseudo-SU(4) symmetry.

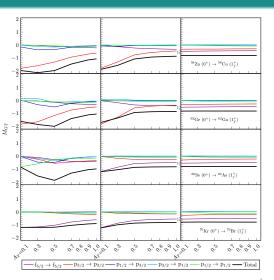
Surface delta interaction

 The matrix elements of the surface delta effective interaction are evaluated as


$$\left\langle j_{\mathbf{a}} j_{\mathbf{b}} \left| V^{\mathrm{SDI}}(1,2) \right| j_{c} j_{\mathbf{d}} \right\rangle_{JT} = \frac{1}{\sqrt{(1+\delta_{\mathbf{a}\mathbf{b}})(1+\delta_{\mathbf{c}\mathbf{d}})}} \frac{1}{2} A_{T} (-1)^{n_{\mathbf{a}}+n_{\mathbf{b}}+n_{\mathbf{c}}+n_{\mathbf{d}}}$$

$$\times \sqrt{(2j_{\mathbf{a}}+1)(2j_{\mathbf{b}}+1)(2j_{\mathbf{c}}+1)(2j_{\mathbf{d}}+1)}$$

$$\times (-1)^{j_{\mathbf{b}}+j_{\mathbf{d}}+l_{\mathbf{d}}+l_{\mathbf{b}}} [1-(-1)^{lc+ld+J+T}] \left(\begin{array}{cc} j_{\mathbf{a}} & j_{\mathbf{b}} & J \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{array} \right) \left(\begin{array}{cc} j_{\mathbf{c}} & j_{\mathbf{d}} & J \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{array} \right) -$$


$$[1+(-1)^{T}] \left(\begin{array}{cc} j_{\mathbf{a}} & j_{\mathbf{b}} & J \\ \frac{1}{2} & \frac{1}{2} & -1 \end{array} \right) \left(\begin{array}{cc} j_{\mathbf{c}} & j_{\mathbf{d}} & J \\ \frac{1}{2} & \frac{1}{2} & -1 \end{array} \right).$$

• We assume the same coupling strength A_T for both pairing channels for simplicity.

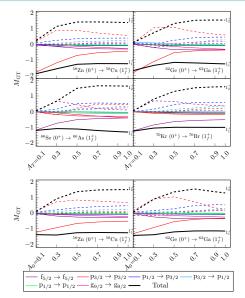

- Contribution from different single-particle transitions as well as the total M_{GT} for decay to the lowest two 1⁺ states.
- The effect of isoscalar and isovector strength on the individual GT matrix elements.
- It is not generally true that the pairing correlation can enhance the GT decay strength.
- Major contributions of different single-particle transitions have the same signs and are constructive.

Figure: The solid lines indicate the transition from g.s. to 1_1^+ state, while the dashed lines are for 1_2^+ state.

- Contribution from different single-particle transitions as well as the total M_{GT} for decay to the lowest two 1⁺ states.
- The effect of isoscalar and isovector strength on the individual GT matrix elements.
- It is not generally true that the pairing correlation can enhance the GT decay strength.
- Major contributions of different single-particle transitions have the same signs and are constructive.

Figure: The solid lines indicate the transition from g.s. to 1_1^+ state, while the dashed lines are for 1_2^+ state.

- We have extended our model space by including the g_{9/2} orbital and performed the schematic calculations.
- For the 1⁺₁ state, the B(GT) value first decreases with increasing np pairing strength. After a certain strength, it starts increasing.

Figure: The calculated reduced GT transition matrix elements as a function of A_T (the same coupling strength for both pairing channels) in the top panel and as a function of A_0 for the fixed $A_1=0.6$ in the bottom panel in the $f_{5/2}pg_{9/2}$ model space.

The realistic shell model calculations

- The focus of the calculation is to determine the sign of the different components of the wave functions and the separate contributions from different one-body transitions.
- We have performed shell-model calculations for all the above transitions with realistic shell-model Hamiltonians.
- Shell model interactions:
 - JUN45 interaction \rightarrow Core: ⁵⁶Ni Valence space: $f_{5/2}, p_{1/2}, p_{3/2}, g_{9/2}$
 - GXPF1J interaction \rightarrow Core: ⁴⁰Ca Valence space: $f_{5/2}, f_{7/2}, p_{1/2}, p_{3/2}$

Results and discussion

$$\beta^+$$
 decay of $^{58}{\rm Zn}~(0^+_{\rm g.s.}) \to ^{58}{\rm Cu}$

A. JUN45 interaction

		11+	12+
	SPME	SPME*OBTD	SPME*OBTD
$f_{5/2} \to f_{5/2}$	-1.195	-0.0223	0.1120
$p_{3/2} \rightarrow p_{3/2}$	1.491	-1.1343	0.4487
$p_{1/2} \rightarrow p_{3/2}$	-1.333	-0.5930	-0.0692
$p_{3/2} \rightarrow p_{1/2}$	1.333	-0.2478	-0.0289
$p_{1/2} \rightarrow p_{1/2}$	-0.471	-0.0057	0.0371
$g_{9/2} \to g_{9/2}$	2.018	-0.0360	0.0329
$\sum M_{\rm GT}$		-2.0390	0.5325
B_{GT}		4.1577	0.2826
$B_{\rm GT}({\rm Expt})$		≤0.31	0.54(26)

B. GXPF1J interaction

		Truncated		Full	
	SPME	11+	1_{2}^{+}	1+	1_{2}^{+}
$f_{7/2} \to f_{7/2}$	1.8516	0	0	-0.0493	0.0956
$f_{5/2} \to f_{7/2}$	-2.1381	0	0	0.4919	-0.1726
$f_{7/2} \to f_{5/2}$	2.1381	0	0	0.4146	-0.3950
$f_{5/2} \rightarrow f_{5/2}$	-1.1952	0.0347	0.0760	0.0246	0.2281
$p_{3/2} \rightarrow p_{3/2}$	1.4907	-0.7936	1.0528	-0.6322	0.5526
$p_{1/2} \rightarrow p_{3/2}$	-1.3333	-0.5838	0.2799	-0.2462	0.0523
$p_{3/2} \rightarrow p_{1/2}$	1.3333	-0.1922	0.0922	-0.5557	0.1139
$p_{1/2} \rightarrow p_{1/2}$	-0.4714	0.0171	0.0290	0.0256	0.0572
$\sum M_{GT}$		-1.5178	1.5299	-0.5266	0.5322
B_{GT}		2.3037	2.3407	0.2773	0.2832
$B_{GT}(Expt)$		≤0.31	0.54(26)	≤0.31	0.54(26)

β^+ decay of 62 Ge $(0^+) \rightarrow ^{62}$ Ga

- The contribution from $g_{9/2}$ is found to be minimal.
- With the GXPF1J interaction, the contributions from $f_{5/2} \rightarrow f_{7/2}$ and $f_{7/2} \rightarrow f_{5/2}$ are in opposite phases which results in a reduction of the total $B_{\rm GT}$ value to 0.1936.
- The interaction with a reduced gap between p_{3/2} and f_{5/2} orbitals is labelled as 'GXPF1J⁻', whereas that with an increased gap is referred to as 'GXPF1J⁺'.

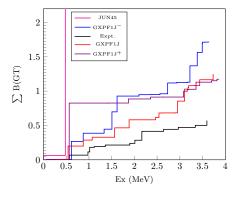


Figure: Comparison of cummulative GT-strength between the experimental data and shell model results.

[Ref. [23]: E. Grodner et al., Phys. Rev. Lett. 113, 092501 (2014).]
[Ref. [24]: S. E. A. Orrigo et al., Phys. Rev. C 103, 014324 (2021).]

β^+ decay of 62 Ge $(0^+) \rightarrow ^{62}$ Ga

- The contribution from $g_{9/2}$ is found to be minimal.
- With the GXPF1J interaction, the contributions from $f_{5/2} \rightarrow f_{7/2}$ and $f_{7/2} \rightarrow f_{5/2}$ are in opposite phases which results in a reduction of the total $B_{\rm GT}$ value to 0.1936.
- The interaction with a reduced gap between $p_{3/2}$ and $f_{5/2}$ orbitals is labelled as 'GXPF1J⁻⁻', whereas that with an increased gap is referred to as 'GXPF1J⁺⁻'.

Figure: Comparison of cummulative GT-strength between the experimental data and shell model results.

[Ref. [23]: E. Grodner et al., Phys. Rev. Lett. **113**, 092501 (2014).] [Ref. [24]: S. E. A. Orrigo et al., Phys. Rev. C **103**, 014324 (2021).]

$$\beta^+$$
 decay of 70 Kr $(0^+) \rightarrow ^{70}$ Br

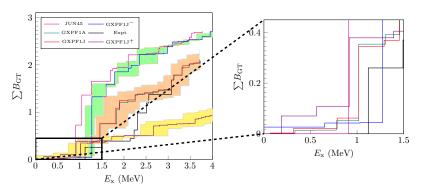


Figure: Distribution of GT strengths in the $^{70}{\rm Kr} \to ^{70}{\rm Br}$ decay corresponding to different shell-model interactions in comparison with the experimental data.

[Ref.: A. Vitéz-Sveiczer et al., Phys. Lett. B 830, 137123 (2022).]

- The calculations with JUN45 interaction tend to overestimate the B_{GT} values, due to dominant contribution from the transition $g_{9/2} \to g_{9/2}$.
- The experimental $B_{\rm GT}$ data lies between the results of GXPF1J⁺ and GXPF1J⁻.
- Increasing trend with mass number for the first 1^+ in calculations with JUN45. This is due to the enhanced contribution from the $g_{9/2}$ orbital.

	Expt	JUN45	GXPF1J
$^{62}\text{Ge}(0^+) \to ^{62}\text{Ga}(1_1^+)$	0.068(6)	0.0621	0.0065
$^{70}\mathrm{Kr}(0^+) \to ^{70}\mathrm{Br}(1_1^+)$	0.26(3)	0.7288	0.0028

• We observe that the calculated $B_{\rm GT}$ for 1_1^+ decreases with increasing mass number using GXPF1J interaction.

Conclusion

• The $B_{\rm GT}$ between yrast 0^+ and 1^+ states doesn't necessarily increase with increasing np pairing strength with the same coupling strength.

- By including the $g_{9/2}$ orbital, it can be enhanced due to increased contribution of $g_{9/2}$. The same conclusion is obtained for the different coupling strengths for both pairing channels.
- We have identified the role played by different orbitals on the GT-strength.

 \bullet The total accumulated $B_{\rm GT}$ strength increases for GXPF1J interaction.

• Calculation using the interaction with extended model space, containing both $f_{7/2}$ and $g_{9/2}$ orbitals, will be required to provide a better picture.

Conclusion

Thank you.