

Contribution ID: 352

Type: Contributed Oral Presentation

The Connection Between the \(\text{decay of 92Rb, the} \) Reactor Antineutrino Anomaly, and the Pygmy Dipole Resonance

Friday, 30 May 2025 09:25 (15 minutes)

The \(\text{\tex{

The \boxtimes -decay of 92Rb is one of the main contributors to the reactor high-energy antineutrino spectrum and, consequently, is an important contributor to the RAA. Its decay has been recently studied in Total Absorption Spectroscopy (TAS) and shows significant differences with previous High-Resolution Spectroscopy performed in the early 70s, which can be attributed to the so-called pandemonium effect, when \boxtimes decay branching ratios are poorly measured or even unknown especially for the isotopes that decay with large \boxtimes values.

We have thus revisited the \boxtimes -decay of 92Rb (\boxtimes = 0-; t1/2 = 4.48(3) s) with the GRIFFIN spectrometer at TRI-UMF that consists of up to 16 Compton-supressed HPGe clover detectors. Due to the high intensity radioactive beam of 92Rb of 106 pps and the high efficiency for detecting \boxtimes rays of GRIFFIN we have obtained an unparallel picture of 92Sr with over 180 levels and 850 \boxtimes -ray transitions up to and beyond the neutron separation energy of ~7.3 MeV, and performed comprehensive \boxtimes -ray spectroscopy, including angular correlations to assign spins to the new states.

The decay the $\mathbb{N}=0$ - ground state of 92Rb takes place with a large \mathbb{N} value of 8095 keV and populates numerous high-lying 1– levels in 92Sr. These 1- states are situated in the region of the Pygmy Dipole Resonance (PDR) that manifests as an enhancement of \mathbb{N} 1 strength below the neutron separation energy, located at the low-energy tail of the Giant Dipole Resonance. The PDR is interpreted as an out-of-phase oscillation between the neutron-skin and an isospin saturated core, however, this remains a matter of debate. The new information of nuclear levels in 92Sr points to the possibility of to investigate the PDR via \mathbb{N} -decay experiments.

The results of this study are also compared to recent TAS experiments and with theoretical shell model calculations and show a great agreement despite of the large density of levels and fragmented decay in 92Sr.

Primary authors: ANDREOIU, Corina (Simon Fraser University); SUHONEN, Jouni (University of Jyväskylä); SCHECK, Marcus (UWS); RAMALHO, Marlom (University of Jyvaskyla); SPAGNOLETTI, Pietro (University of Liverpool); TÄHTELÄ, Samuli (University of Jyvaskyla)

Co-authors: GARNSWORTHY, Adam (TRIUMF); NANNINI, Adriana (INFN - Sezione di Firenze); RADICH, Allison (UoGuelph); GREAVES, B. (University of Guelph); OLAIZOLA, Bruno (TRIUMF/IEM); SVENSSON, Carl (UoGuelph); GRIFFIN, Chris (TRIUMF); NATZKE, Connor; Prof. PETRACHE, Costel (IJClab, Université Paris-Saclay and CNRS/IN2P3); TORRES, D. A. (Universidad Nacional de Colombia); HYMERS, D. (University of Guelph); Dr

KALAYDJIEVA, Desislava (University of Guelph); ANNEN, Dominic (Simon Fraser University); KASANDA, E. (University of Guelph); WADGE, Elliot (Simon Fraser University); GYABENG FUAKYE, Eric (University of Regina); GARCIA, Fatima (SFU); BENZONI, Giovanna (INFN Milano); BALL, Gordon (TRIUMF); HACKMAN, Greg (TRI-UMF/SFU); GRINYER, Gwen (University of Regina); BIDAMAN, H. (University of Guelph); DJIANTO, I. (Simon Fraser University); DILLMANN, Iris (TRIUMF); ORTNER, K. (Simon Fraser University, Canada); MASHTAKOV, Konstantin (University of Guelph); KAPOOR, Kushal; SINGH, M. (Saint Mary's University, Canada); SATRAZANI, Magda (KU Leuven); ZIELINSKA, Magda (CEA Paris-Saclay); ROCCHINI, Marco (INFN); SICILIANO, Marco (Argonne National Laboratory); POLETTINI, Marta (GSI); MARCHINI, Naomi (INFN - Florence section); SAEI, Nastaran; GARRETT, Paul (UoGuelph); COLEMAN, R. (University of Guelph); KANUNGO, R. (Saint Mary's University, Canada); UMASHANKAR, Rashmi (TRIUMF/UBC); CABALLERO-FOLCH, Roger (TRIUMF); DEVINYAK, S. (TRIUMF); BHATTACHARJEE, S. S (TRIUMF); BUCK, Samantha (University of Guelph); ZIDAR, Tammy (University of Guelph); VEDIA, Victoria (TRIUMF); BILDSTEIN, Vinzenz (UoGuelph); KORTEN, Wolfram (CEA Saclay); AHMED, Z. (University of Guelph)

Presenter: ANDREOIU, Corina (Simon Fraser University)

Session Classification: Parallel Session

Track Classification: Nuclear Structure