The 29th International Nuclear Physics Conference (INPC 2025)

Contribution ID: 200

Type: Contributed Oral Presentation

High-precision TDRIV g-factor measurement in 22Ne and its implications for the N=20 Island of Inversion

Tuesday, 27 May 2025 11:50 (15 minutes)

The Island of Inversion in the neutron-rich N=20 region arises in part due to a significant reduction in the energy gap between the sd and fp shells. Recent theoretical calculations [1] and experimental results in 30 Mg [2] favor a much smoother transition towards the Island of Inversion than previously thought, with considerable fp admixtures in the ground state of 30 Mg and small fp admixtures down to 28 Mg. If such admixtures are present already in 28 Mg, they are expected to influence the g factor of its 2_1^+ state as the magnetic dipole moments are especially sensitive to the mixing of single-particle configurations.

To test this hypothesis, the first application of the Time Differential Recoil In Vacuum (TDRIV) method [3,4] on a radioactive ion beam aimed to measure the g factor of the 2_1^+ state in 28 Mg. The experiment was carried out at HIE-ISOLDE in 2017 using the MINIBALL HPGe detector array, a CD DSSSD for particle detection and the MINIBALL plunger device, and the state of interest was populated via Coulomb excitation of the post-accelerated 28 Mg beam. The TDRIV method is based on observing the Larmor frequency, proportional to the g factor, at which the nuclear and atomic spins precess around the total spin of the projectile as it recoils between the target and a secondary foil within a plunger device. In the same experiment a calibration TDRIV measurement of the supposedly well-known g factor of the 2_1^+ state in 22 Ne was also performed as a test of the plunger system and in order to determine the plunger zero-offset distance, needed to constrain the 28 Mg TDRIV analysis. A striking disagreement was observed between the newly-obtained results from the 22 Ne measurement and the adopted g-factor value from the 1970s [5], which introduced significant systematic uncertainties for the 28 Mg g-factor result.

In order to reduce the systematic uncertainties of the 28 Mg measurement and to resolve the discovered discrepancy in 22 Ne an experiment to re-measure the g factor of the 2^+_1 state in 22 Ne was performed in September 2024 at GANIL. The experimental setup consisted of the EXOGAM γ -ray spectrometer coupled to the Orsay Universal Plunger System and the newly-developed Orsay Particle Scintillator Array (OPSA). With the provided 10^9 pps 22 Ne beam intensity we were able to collect high-statistics particle- γ coincidence data that will allow us to obtain a high-precision and high-accuracy value for the g factor of the 2^+_1 state in 22 Ne. The results from the preliminary analysis of this data set will be presented and compared to theoretical predictions. In addition, the implications of these results on the 28 Mg g-factor measurement from ISOLDE, and on the extent of the N=20 Island of Inversion will be discussed.

Primary author: STOYCHEV, Konstantin (University of Guelph, Canada)

Co-authors: GEORGIEV, Georgi (IJCLab, Orsay, France); LJUNGVALL, Joa (IPHC Strasbourg); STUCHBERY,

Andrew (ANU, Canberra, Australia); THE E845 COLLABORATION

Presenter: STOYCHEV, Konstantin (University of Guelph, Canada)

Session Classification: Parallel Session

Track Classification: Nuclear Structure