

Contribution ID: 190

Type: Contributed Oral Presentation

Spectroscopy of shell-model nuclei around A = 90

Tuesday, 27 May 2025 09:55 (15 minutes)

Abstract

The investigation of nuclei in the mass-90 region provides insight into various aspects of both single-particle and collective excitations. Large-scale shell-model calculations have demonstrated good agreement with experimental data across both low- and high-spin states. High-spin states in the mass-90 region have been observed with multiquasiparticle configurations. The $g_{9/2}$ orbital plays a crucial role in generating both lowand high-spin states. The lower energy part of the level scheme is primarily dominated either by the excitation of fp protons to the $g_{9/2}$ orbital or by proton occupancy in this orbital. In contrast, the high-spin states are mainly driven by the coupled excitation of $\nu g_{9/2}$, particularly to

 $\nu d_{5/2}$, along with proton excitation across the Z = 40 shell gap. In the N = 50 isotones— 86 Kr, 87 Rb, 88 Sr, 89 Y, 90 Zr [1], 91 Nb [2], 92 Mo [3], 93 Tc, 94 Ru, and 95 Rh—shell-model calculations have successfully explained neutron excitations from the $g_{9/2}$ orbital to $d_{5/2}$.

The odd-odd nuclei in the mass 90 region are equally interesting because both the odd nucleons span the same $Z\sim40$, $N\sim50$ subshell space, providing a good testing ground to study the role of proton-neutron residual interaction and its influence on both the single-particle as well as collective motion. The odd-odd nucleus 90 Nb, with one proton particle and one neutron hole outside the Z=40 and N=50 shells, respectively, can provide

valuable information about the particle-hole interaction at low as well as high-spin states. In-beam gamma-ray spectroscopy of 90 Nb was carried out using fusion-evaporation reaction 65 Cu(30 Si, 30 Pi) at a beam energy of 120 MeV [4]. The gamma rays were detected using the Indian National Gamma Array (INGA [5]) having sixteen Compton-suppressed HPGe clover detectors at the TIFR, Mumbai. In the present study, 15 new transitions were found. The positive parity sequence was modified based on triple gamma-ray coincidence conditions. We found an E3 transition decaying from 11 to the ground state, 8 . However, the experimental B(E3) = 0.020(4) W.u. indicates that the 11 is not collective.

The odd-odd, odd-even, and even-even nuclei, 90 Nb, 91 Nb, and 92 Mo, were studied in the framework of shell-model with GWBXG interaction. The deviations of shell-model calculation with the experimental data suggest the scope for improvement in the interaction.

The experimental results for 90 Nb and the shell model comparison for 90 Nb, 91 Nb, and 92 Mo will be presented.

Acknowledgment

This work is supported by the Department of Atomic Energy, Government of India (Project Identification No. RTI 4002); the Department of

Science and Technology, Government of India (Grant No. IR/S2/PF-03/2003-II); and the U. S. National Science Foundation (Grant No. PHY-2310059).

References

- [1] P. Dey et al., PRC 105, 044307 (2022).
- [2] P. Dey et al., PRC 109, 034313 (2024).
- [3] Vishal Malik et al., JPhysG accepted.
- [4] Vishal Malik et al., under review.
- [5] R. Palit et al., NIM A 680, 90 (2012).

Primary author: MALIK, vishal (Tata Institute of fundamental research, Mumbai)

Co-authors: Ms SINDHU, Aditi (TIFR Mumbai); Dr KUNDU, Ananya (TIFR Mumbai); Dr DAS, Biswajit (TIFR Mumbai); Dr NEGI, DInesh (Manipal Academy of Higher Education); Mr PATEL, Deepak (IIT roorkee); Mrs

GOEL, Nidhi (IIT BHU); Prof. SRIVASTAVA, P C (IIT Roorkee); Dr DEY, Piku (TIFR Mumbai); PALIT, Rudrajyoti (TIFR); Dr NAG, Somnath (IIT BHU); Prof. GARG, Umesh (University of Norte Dame)

Presenter: MALIK, vishal (Tata Institute of fundamental research, Mumbai)

Session Classification: Parallel Session

Track Classification: Nuclear Structure