## The 29th International Nuclear Physics Conference (INPC 2025)





Contribution ID: 580

distribution.

**Type: Contributed Poster Presentation** 

## Study of double beta decay of $^{100}$ Mo to the excited states of $^{100}$ Ru in AMoRE

Studies of double beta (2000) decay to various excited states in different isotopes provide valuable insights

into nuclear structure models. The AMoRE, which utilizes an array of  $^{100}$ Mo-enriched CaMoO<sub>4</sub> and Li<sub>2</sub>MoO<sub>4</sub> crystal scintillators, is advantageous for investigating  $^{200}$ Mo to the excited states of  $^{100}$ Ru. In the AMoRE-I phase, we measured the half-life of  $^{200}$ Mo transition of  $^{100}$ Mo to the  $^{1}$ th state of  $^{100}$ Ru using in total 18 crystal detectors, and the half-life value is  $(6.83 \pm 0.71 \text{ (stat)} \pm 0.32 \text{ (sys)}) \times 10^{20}$  years. The half-life limit for the  $^{200}$ Mo transition to the  $^{2}$ th state of  $^{100}$ Ru is set as  $^{2.5} \times 10^{21}$  years (90% C.I.). A prospective study of  $^{200}$ Mo decay to the excited states of  $^{100}$ Ru has been conducted for AMoRE-II. Considering the increased crystal mass and measurement time, the error-to-signal ratio for the  $^{200}$ Mo decay of  $^{100}$ Mo to the  $^{1}$ th state is expected to decrease significantly from 6.3% to 0.3%. The half-life sensitivity to the  $^{200}$ Mo to  $^{2}$ Mo to  $^{2}$ th state of  $^{100}$ Ru in AMoRE-II is estimated as limit  $^{2}$ Mo to observing the pure election energy

Primary authors: HA, Daehoon (Department of Physics, Kyungpook National University); Prof. KIM,

Hongjoo (Kyungpook National University, Department of Physics.)

**Co-author:** AMORE COLLABORATION, on behalf of (IBS, CUP)

Presenter: HA, Daehoon (Department of Physics, Kyungpook National University)

Session Classification: Poster Session

Track Classification: Neutrinos and Nuclei