The 29th International Nuclear Physics Conference (INPC 2025)

Contribution ID: 471

Type: Contributed Poster Presentation

A study of neutrinoless double electron capture of ⁴⁰Ca with AMoRE-I experiment

The AMoRE collaboration aims to investigate for rare processes, including neutrinoless double electron capture (0 ν 2EC), an intriguing alternative to neutrinoless double-beta decay for exploring the fundamental nature of neutrinos. In this study, we present a comprehensive analysis of the 0 ν 2EC process in 40 Ca, utilizing the high-purity, enriched calcium molybdate (48dep Ca 100 MoO₄) detectors from the AMoRE-I experiment.

Utilizing advantage of the low-background environment and high energy resolution of AMoRE-I setup, we performed a thorough search for 0ν 2EC signature at the Q-value (193.51 keV) of the decay. In this presentation, we report studies on the half-life of 0ν 2EC in 40 Ca and highlight the sensitivity of low-temperature calorimeters in probing rare decay processes.

Primary author: Mr SHARMA, BIJAYA (IBS, UST)

Presenter: Mr SHARMA, BIJAYA (IBS, UST) **Session Classification:** Poster Session

Track Classification: Neutrinos and Nuclei