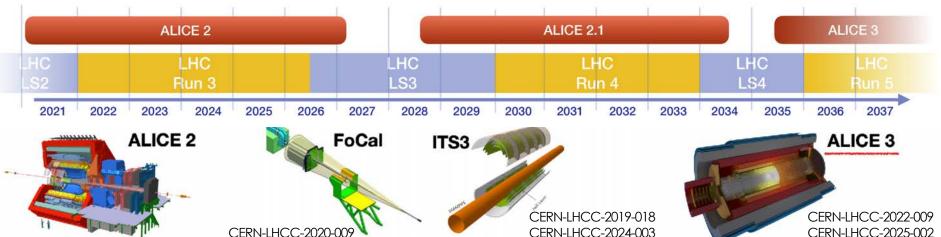


Sanghoon Lim
for the ALICE Collaboration

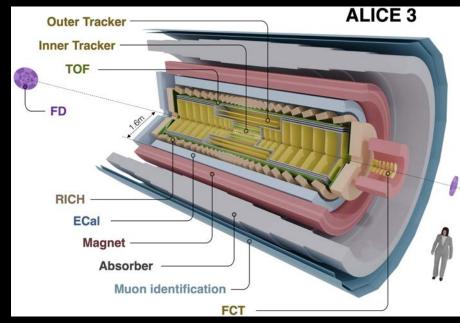
Pusan National University

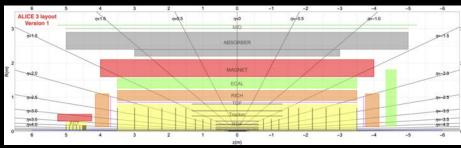


ALICE

ALICE in the future

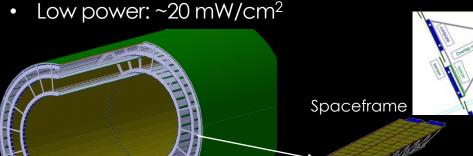
Heavy-ion physics at the LHC beyond Run 4

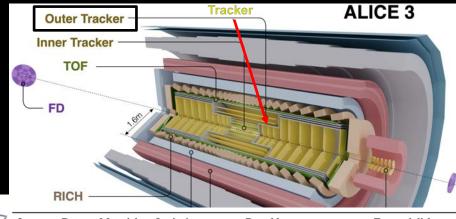

- Parton transport: high-precision beauty measurements
- Formation of hadrons: multi-charm baryons, P-wave quarkonia, exotic hadrons
- Bulk and shear viscosity: azimuthal asymmetry of electromagnetic radiation
- Chiral symmetry restoration: low mass dileptons
- Collectivity in small systems: high event rates and a large acceptance



ALICE 3: Detector Overview

- Compact and large acceptance
 - $|\eta|$ <4 and p_T >0.02 GeV/c
- Superconducting magnet system
 - Maximum field: B=2 T
- All silicon-based large acceptance tracker
 - ~10% X₀ overall material budget
 - ~10 μ m pointing resolution at p_T ~200 MeV/c
- Particle identification in a wide p_T and η range
 - Silicon-based TOF and RICH
 - Muon identification
- Continuous readout and online processing

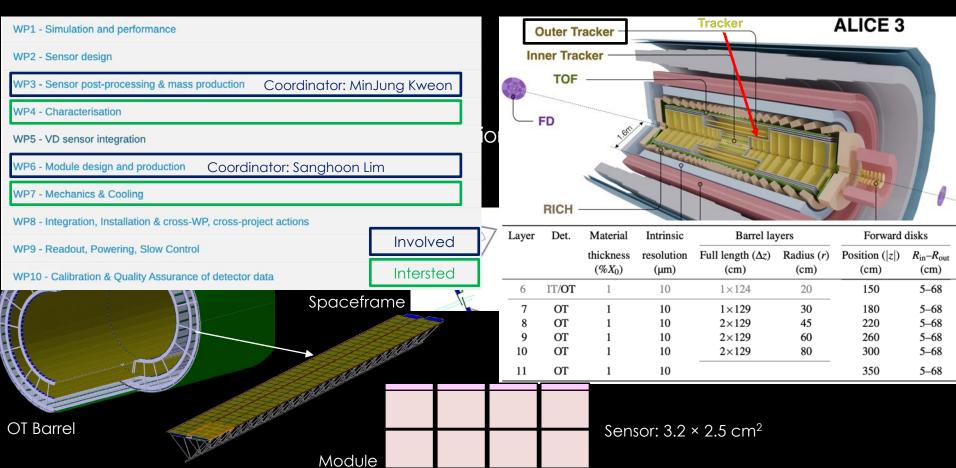



ALICE

ALICE 3: Outer Tracker

- 8 layers and 9 disks based on MAPS
 - Total of ~60m² of silicon
 - Compact design (R<80 cm, |z|<4 m)
- Pixel pitch of 50 μ m for 10 μ m intrinsic resolution
- 1% X₀ per layer

OT Barrel


Layer	Det.	Material	Intrinsic	Barrel layers		Forward disks	
		thickness $(\%X_0)$	resolution (µm)	Full length (Δz) (cm)	Radius (r) (cm)	Position (z) (cm)	R _{in} -R _{ou} (cm)
6	IT/OT	1	10	1×124	20	150	5-68
7	OT	1	10	1×129	30	180	5-68
8	OT	1	10	2×129	45	220	5-68
9	OT	1	10	2×129	60	260	5-68
10	OT	1	10	2×129	80	300	5-68
11	OT	1	10			350	5-68

Sensor: 3.2 × 2.5 cm²

Module

ALICE 3: Outer Tracker

Sanghoon Lim (PNU)

Path to the module after sensor fabrication

Pusan

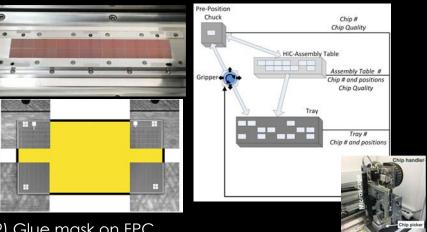
Sensor test procedure for ITS2 # for ALICE 3 OT 5% **Raw Wafer Production** Raw Wafer QA 1,500 raw wafers MEMC (Italy) TMEC (Thailand) 1,200 CMOS wafers **CMOS Manufacturing** 8% **Wafer Probe Testing** CERN TowerJazz (Israel) 1,920 CMOS wafers (2/25)**Thinning & Dicing** 55,000 sensors FUREX (South Korea) 109,200 sensors

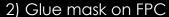
Chip Series Testing

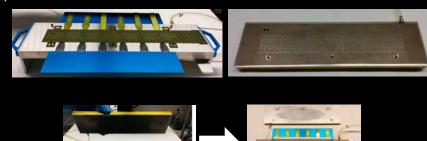
Detector assembly

Pick & Place FUREX (South Korea), tbc.

ALICE 3 OT is a factor of 6 wider area than the ITS2 (\sim 10 m²)


100%


Yonsei



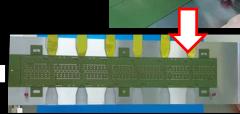
Module assembly procedure for the ITS2 OB 2600 modules for ~2 years in 5 sites

1) Chips positioned on the HIC table

Path to the module after sensor fabrication

ALICE 3 OT:

5620 for barrel and 2688 for disks ~10000 modules considering yield and spares


3) Gluing and curing

~5 hours curing time

Module assembly for ALICE 3 OT

- Automation and industrialization of module assembly
 - Collaboration with MEMSPACK using a multi-purpose machine die bonder

- Epoxy stamping option
- Filled and unfilled epoxy, wide viscosity range
- Small footprint, low cost-of-ownership

· New high-speed image processing unit

- · Full alignment & Bad mark search
- · Pre-defined fiducial geometry & customized teaching

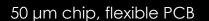
Automatic Wafer and Tool Changer

· Fully Automatic cycle for Multi-Chip production

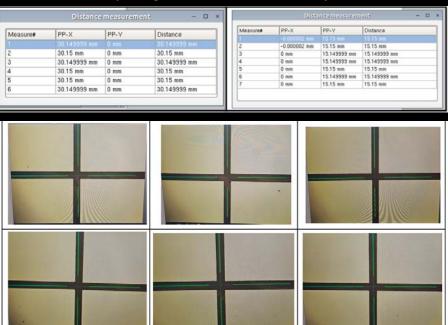
- · Up to 7 Pick & Place tools (optionally 14), 5 eject tools
- · Stamping tools and calibration tools possible

Pick & Place Head

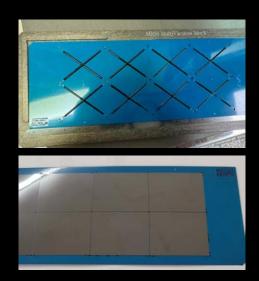
- · Die Attach, Flip Chip and Multi-Chip in
- · Die pick from: wafer, waffle pack, Gel-Pak®, feeder
- · Die place to: substrate, boat, carrier, PCB, leadframe, wafer
- · Hot and cold processes supported: epoxy, soldering, thermo-compression, eutectic

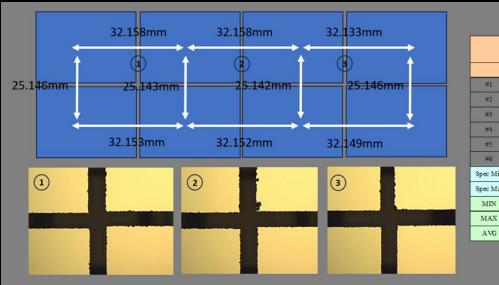


- Machine validation using dummy chips and dummy boards
 - Both for the ITS2 OB HIC design and the ALICE 3 OT design



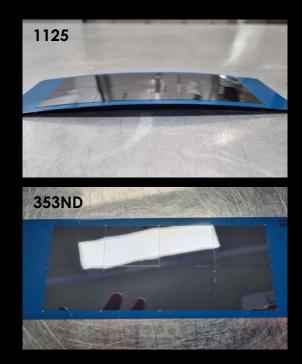
Sanghoon Lim (PNU)


- Machine validation using dummy chips and dummy boards
 - Both for the ITS2 OB HIC design and the ALICE 3 OT design
 - Thicker chip (50-100 μm) and board (0.3 mm) to validate the repeatability of position precision
 - Successfully produced five modules with good position precision (<u>using double-sided tape</u>)

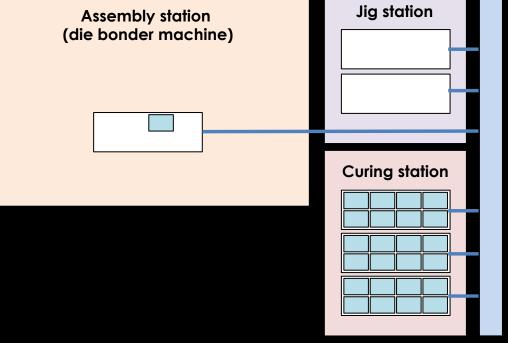


- Die bond with heat-cure epoxy
 - Generally used in the industry
 - Heat cure condition: 100 °C, 30 minutes (outside the die bonder machine)
 - Dispense epoxy on the PCB (a few lines) and place chips
 - 0.3 mm thick chip (will reduce gradually)
 - Confirmed a good position precision

	X	Y			
#1	32.1583	25.1466			
#2	32.1581	25.1434			
#3	32.1337	25.1428			
#4	32.1582	25.1460			
#5	32.1528				
#6	32.1493				
Spec Min	0.010	0.010			
pec Max	0.010	0.010			
MIN	32.134	25.143			
MAX	32.158	25.147			
AVG	32.152	25.145			


- Die bond with heat-cure epoxy
 - Generally used in the industry
 - Heat cure condition: 100 °C, 30 minutes (outside the die bonder machine)
 - Dispense epoxy on the PCB (a few lines) and place chips
 - 0.3 mm thick chip (will reduce gradually)
 - Confirmed a good position precision
 - However, bending is observed after curing

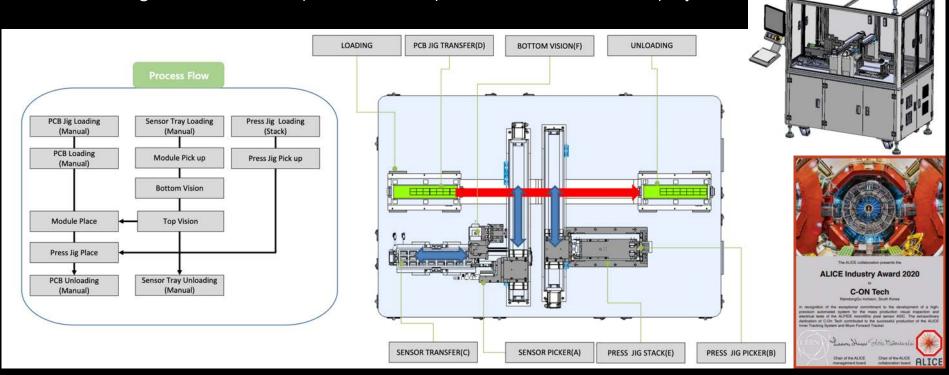
- Die bond with room temperature cure epoxy
 - Two-component epoxy (353ND), easier to handle than Araldite 2011
 - 100 µm-thick chip
 - Confirmed a good position precision after curing



Concept of mass production procedure

- Uses several assembly jigs to run the assembly station continuously
 - FPCB is held in a vacuum during curing
 - Plan to build the system and verify the procedure
 - Expected production rate: 20-30 modules per day, even with Araldite 2011

Vacuum line



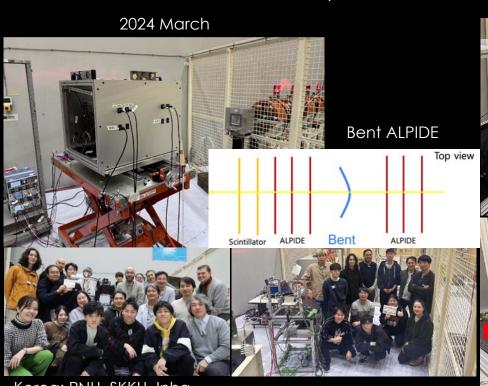
Customized module assembly machine

- Customized assembly machine for optimization of the assembly procedure
 - The chip handling system will provide an accurate position precision

Initial design with C-ON Tech produced a chip test machine for the ITS2 project

Radiation hardness test

- Proton beams (15~20 MeV) at KOMAC can be utilized for radiation hardness tests of epoxies
 - High-intensity beams (10¹⁰⁻¹¹ #/cm² s)
 - Evaluate different epoxies to select radiation-hard and easy-to-handle epoxies.
 - Requirement: 2.5×10^{12} NIEL (1 MeV n_{eq}/cm^2) and 0.1 Mrad TID for the innermost OT layer (r=30 cm)



Test beam activity at KEK PF-AR

 The Korean ALICE group produced a telescope and performed several test beams of newly developed sensors for ITS3 at KEK PF-AR with Japanese and French colleagues

3 ALPIDE SOWNING THE REPORT OF THE THE REPORT OF THE REPORT OF THE REPORT OF THE REPORT OF THE REPOR

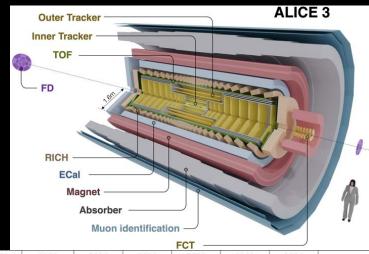
2024 December 2025 March

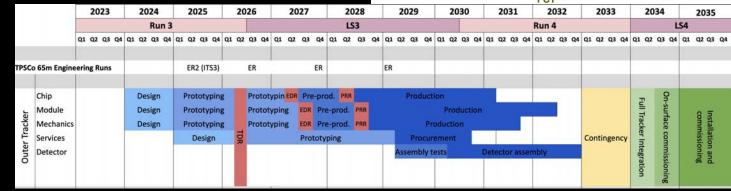
6 ALPIDE

5 mm Carbon

3D printed target for imaging

Korea: PNU, SKKU, Inha


Japan: Hiroshima, Tsukuba, Tokyo CNS


France: Grenoble

Summary and outlook

- The Korean ALICE group is actively working on R&D for ALICE 3 OT
 - R&D of module assembly by utilizing a general-purpose die attach machine for module assembly is ongoing
 - Developed an assembly procedure and achieved a good position precision from the dummy module production
 - Extending activities to post-processing, sensor
 characterization, automatic sensor test, and stave assembly

BACKUP