

Scalable approaches to the ab initio description of nuclei

Vittorio Somà

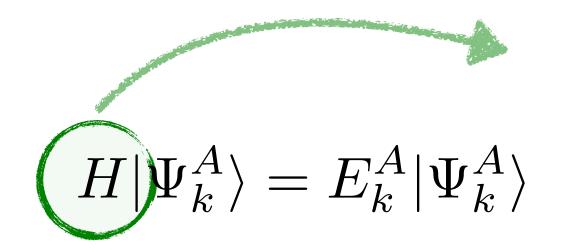
CEA Paris-Saclay, France

• A systematic approach to describe nuclei

$$H|\Psi_k^A\rangle = E_k^A|\Psi_k^A\rangle$$

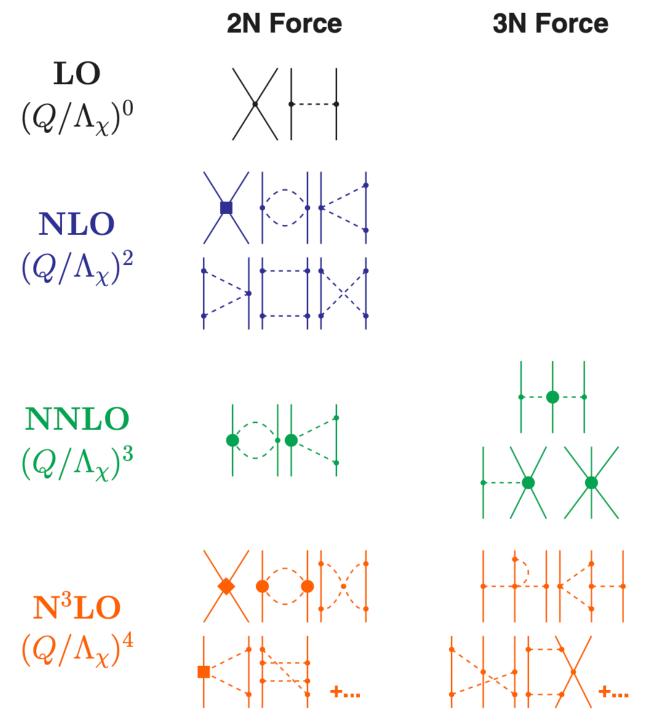


• A systematic approach to describe nuclei



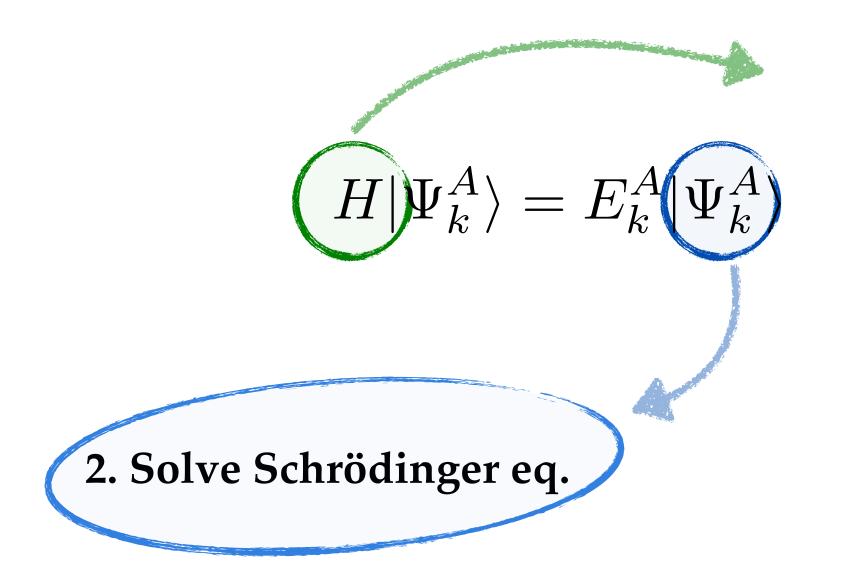
Inter-nucleon forces from chiral EFT

- Low-energy limit of QCD
- Nucleons and pions as d.o.f.
- Power counting → expansion of H





• A systematic approach to describe nuclei

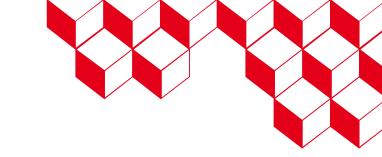


Inter-nucleon forces from chiral EFT

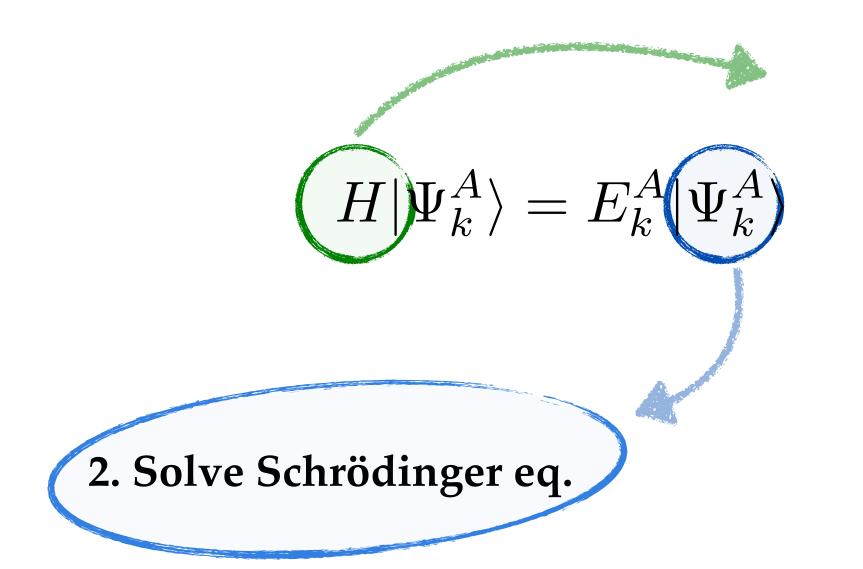
- Low-energy limit of QCD
- Nucleons and pions as d.o.f.
- Power counting → expansion of H

	2N Force	3N Force
${f LO} \ (Q/\Lambda_\chi)^0$	\	
$rac{\mathbf{NLO}}{(Q/\Lambda_\chi)^2}$		
$rac{\mathbf{NNLO}}{(Q/\Lambda_\chi)^3}$		
${f N}^3{f L}{f O} \ (Q/\Lambda_\chi)^4$		+

Option 1: Exact solutions have factorial or exponential scaling $e^n \rightarrow limited$ to light nuclei



• A systematic approach to describe nuclei



1. Model Hamiltonian

Inter-nucleon forces from chiral EFT

- Low-energy limit of QCD
- Nucleons and pions as d.o.f.
- Power counting → expansion of H

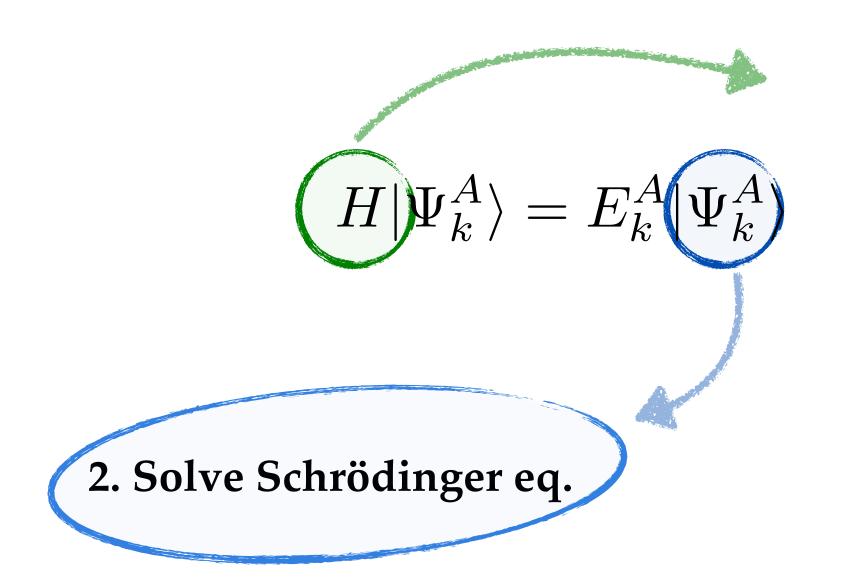
	2N Force	3N Force
${f LO} \ (Q/\Lambda_\chi)^0$		
$rac{\mathbf{NLO}}{(Q/\Lambda_\chi)^2}$		
NNLO $(Q/\Lambda_\chi)^3$		

Option 1: Exact solutions have factorial or exponential scaling $e^n \rightarrow limited$ to light nuclei

Option 2: Correlation-expansion methods to achieve polynomial scaling

- \circ Hamiltonian partitioning $H=H_0+H_1$
- \circ Reference state $H_0|\Phi_k^{(0)}\rangle=E_k^{(0)}|\Phi_k^{(0)}\rangle$
- \circ Wave-operator expansion $|\Psi_k^A\rangle = \Omega_k |\Phi_k^{(0)}\rangle = |\Phi_k^{(0)}\rangle + |\Phi_k^{(1)}\rangle + |\Phi_k^{(2)}\rangle + \dots$

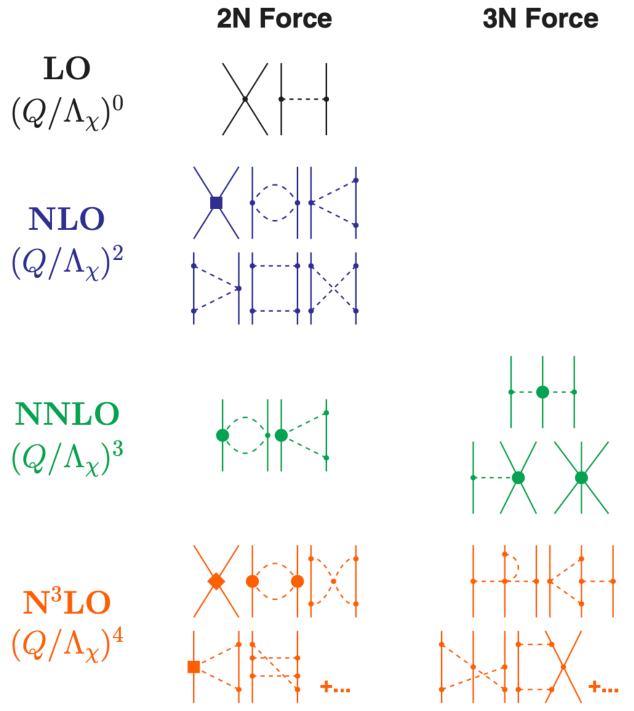
• A systematic approach to describe nuclei



1. Model Hamiltonian

Inter-nucleon forces from chiral EFT

- Low-energy limit of QCD
- Nucleons and pions as d.o.f.
- Power counting → expansion of H



Option 1: Exact solutions have factorial or exponential scaling $e^n \rightarrow limited$ to light nuclei

Option 2: Correlation-expansion methods to achieve polynomial scaling

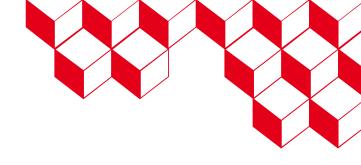
- \circ Hamiltonian partitioning $H=H_0+H_1$
- \circ Reference state $H_0|\Phi_k^{(0)}\rangle=E_k^{(0)}|\Phi_k^{(0)}\rangle$
- \circ Wave-operator expansion $|\Psi_k^A\rangle=\Omega_k|\Phi_k^{(0)}\rangle=|\Phi_k^{(0)}\rangle+|\Phi_k^{(1)}\rangle+|\Phi_k^{(2)}\rangle+\dots$

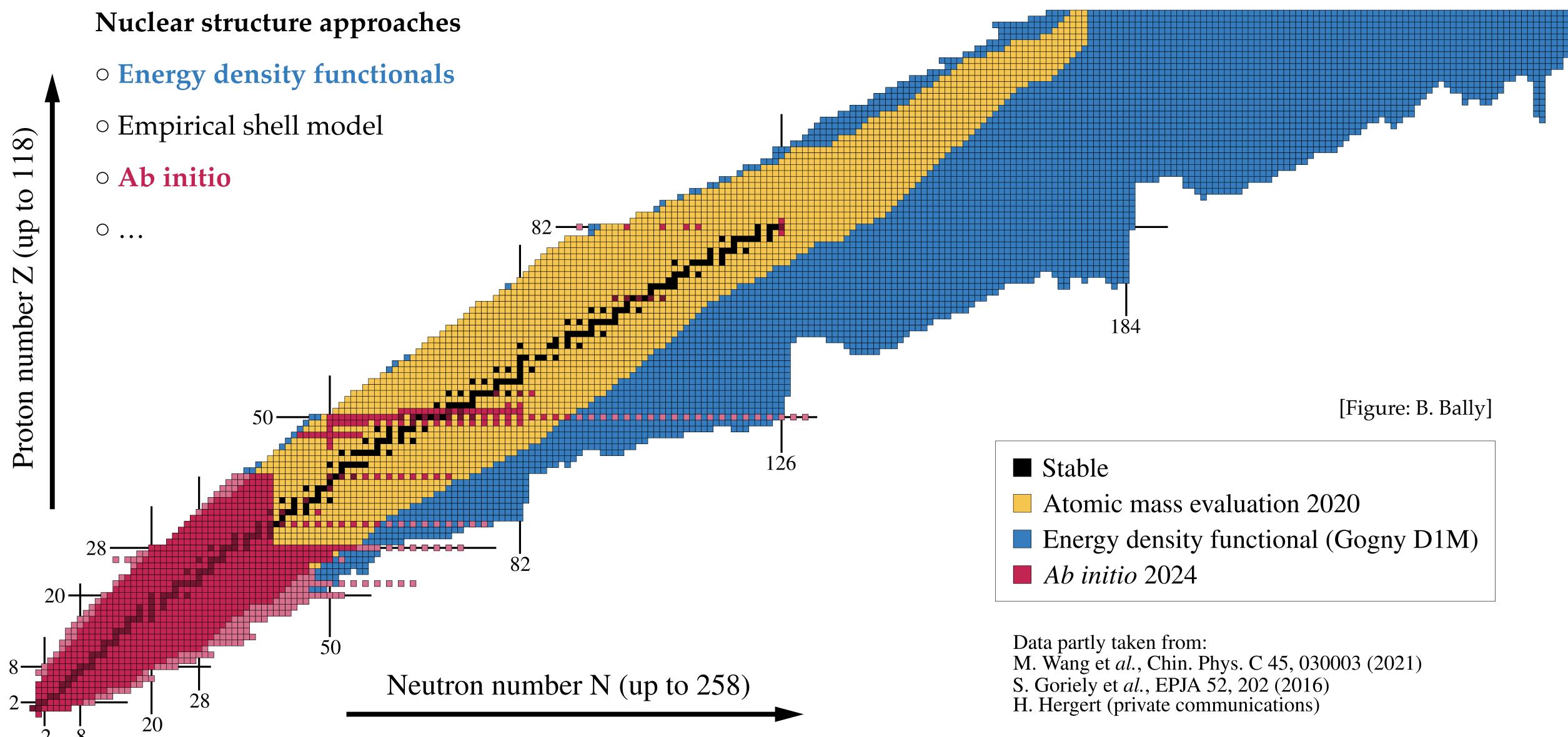
CPU-scalable to **heavy masses**?



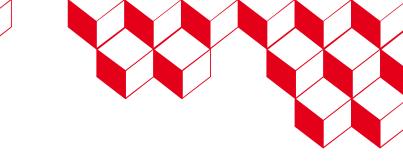
with $\alpha > 4$

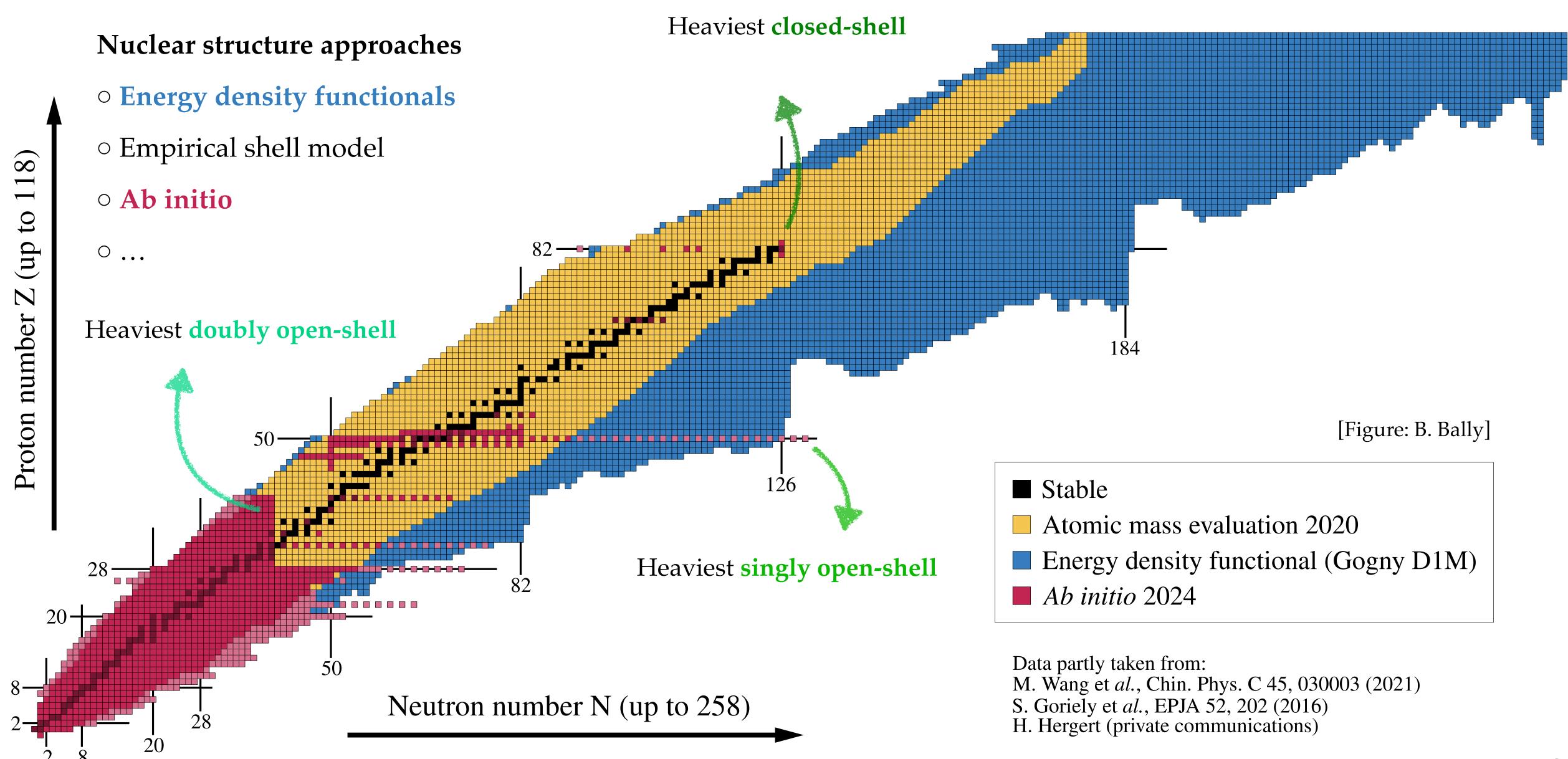
The Segrè chart





The Segrè chart





○ Correlation expansion performed in terms of particle-hole excitations → Breaks down in open-shell systems

$$|\Psi_k^A\rangle = \Omega_k |\Phi_k^{(0)}\rangle = |\Phi_k^{(0)}\rangle + |\Phi_k^{(1)}\rangle + |\Phi_k^{(2)}\rangle + \dots$$



○ Correlation expansion performed in terms of particle-hole excitations → Breaks down in open-shell systems

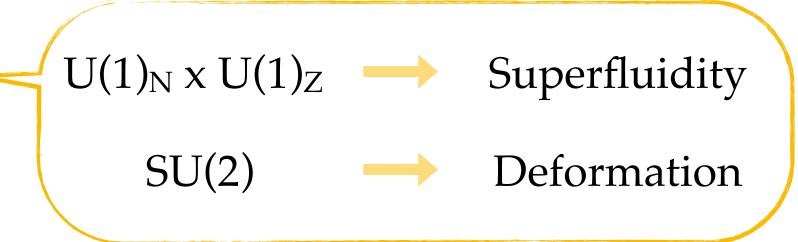
Solution: start from a symmetry-breaking reference state

→ At some point, necessary to **restore symmetries**

$$|\Psi_k^A\rangle = \Omega_k |\Phi_k^{(0)}\rangle = \Phi_k^{(0)}\rangle + |\Phi_k^{(1)}\rangle + |\Phi_k^{(2)}\rangle + \dots$$

Static correlations

Dynamic correlations



→ cf. energy density functionals

○ Correlation expansion performed in terms of particle-hole excitations → Breaks down in open-shell systems

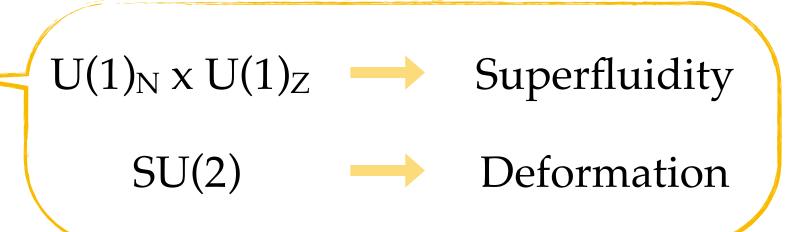
Solution: start from a symmetry-breaking reference state

→ At some point, necessary to restore symmetries

$$|\Psi_k^A
angle=\Omega_k|\Phi_k^{(0)}
angle=\Phi_k^{(0)}+\Phi_k^{(1)}
angle+|\Phi_k^{(2)}
angle+\dots$$
 Dynamic correlations

Static correlations

Keep polynomial cost (with higher pre-factor)



→ cf. energy density functionals

○ Correlation expansion performed in terms of particle-hole excitations → Breaks down in open-shell systems

Solution: start from a symmetry-breaking reference state

→ At some point, necessary to restore symmetries

$$|\Psi_k^A\rangle = \Omega_k |\Phi_k^{(0)}\rangle = \Phi_k^{(0)} + \Phi_k^{(1)}\rangle + |\Phi_k^{(1)}\rangle + |\Phi_k^{(2)}\rangle + \dots$$

 $U(1)_N \times U(1)_Z$ Superfluidity SU(2) Deformation

→ cf. energy density functionals

Dynamic correlations

Static correlations

- Keep polynomial cost (with higher pre-factor)
- Many different strategies exist
 - → Break which symmetries?
 - → Restore then expand or expand then restore?

Most efficient option will depend on

- Nucleus
- Observables
- Required precision
- 0 ..

Necessity to develop many different, complementary approaches

Theoretical methods

Two approaches discussed here

Self-consistent Green's functions (SCGF)

Symmetry restoration missing

$$|\Psi_k^A\rangle = \Omega_k |\Phi_k^{(0)}\rangle = |\Phi_k^{(0)}\rangle + |\Phi_k^{(1)}\rangle + |\Phi_k^{(2)}\rangle + \dots$$

Dynamical correlations on top

"Simple" symmetry-breaking reference state

Theoretical methods

Two approaches discussed here

Self-consistent Green's functions (SCGF)

Symmetry restoration missing

$$|\Psi_k^A\rangle = \Omega_k |\Phi_k^{(0)}\rangle = \Phi_k^{(0)}\rangle + |\Phi_k^{(1)}\rangle + |\Phi_k^{(2)}\rangle + \dots$$

Dynamical correlations on top

"Simple" symmetry-breaking reference state

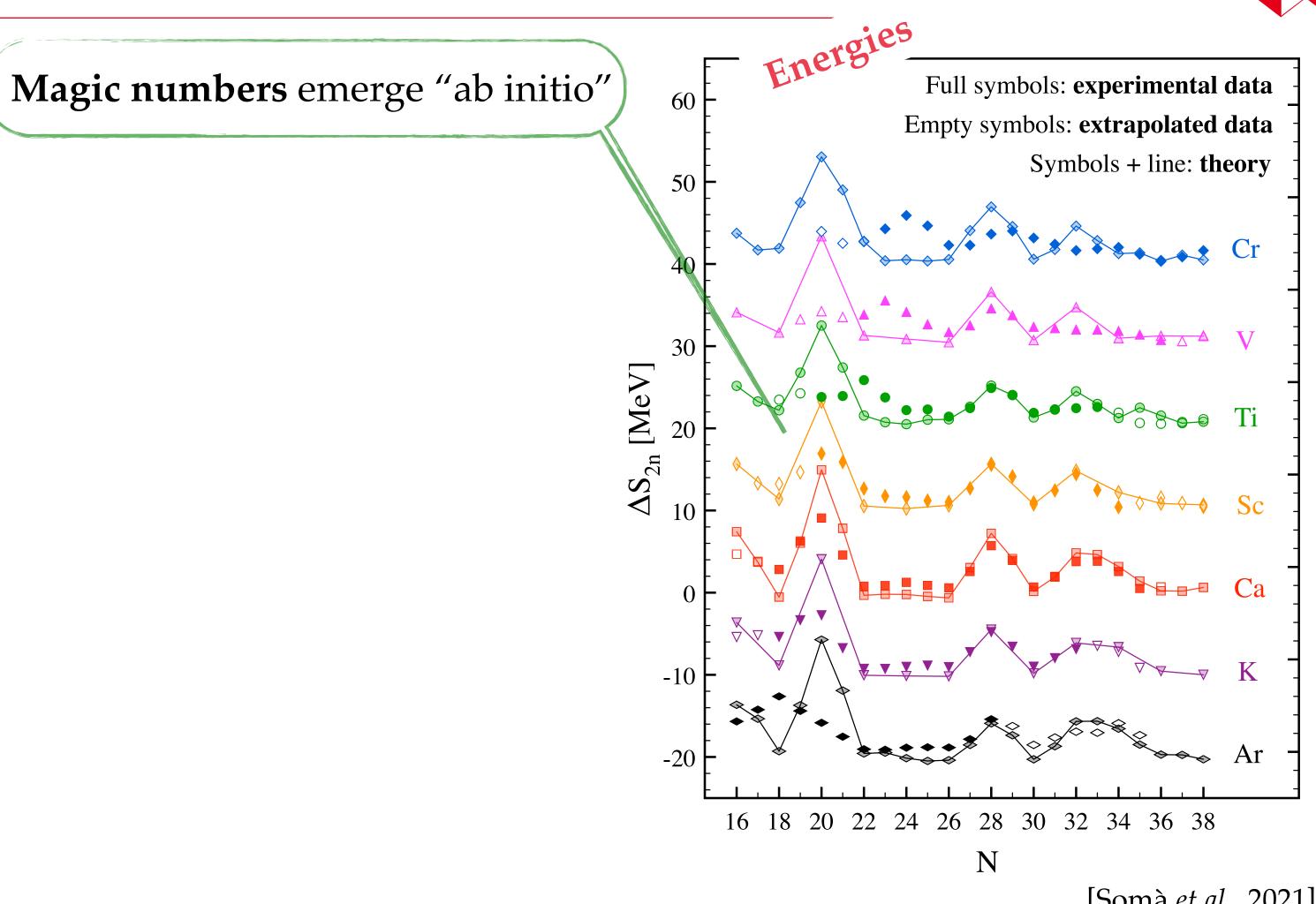
Projected Generator Coordinate Method (PGCM)

$$|\Psi_k^A\rangle = \Omega_k |\Phi_k^{(0)}\rangle = (\Phi_k^{(0)}) + (\Phi_k^{(1)}) + |\Phi_k^{(2)}\rangle + \dots$$

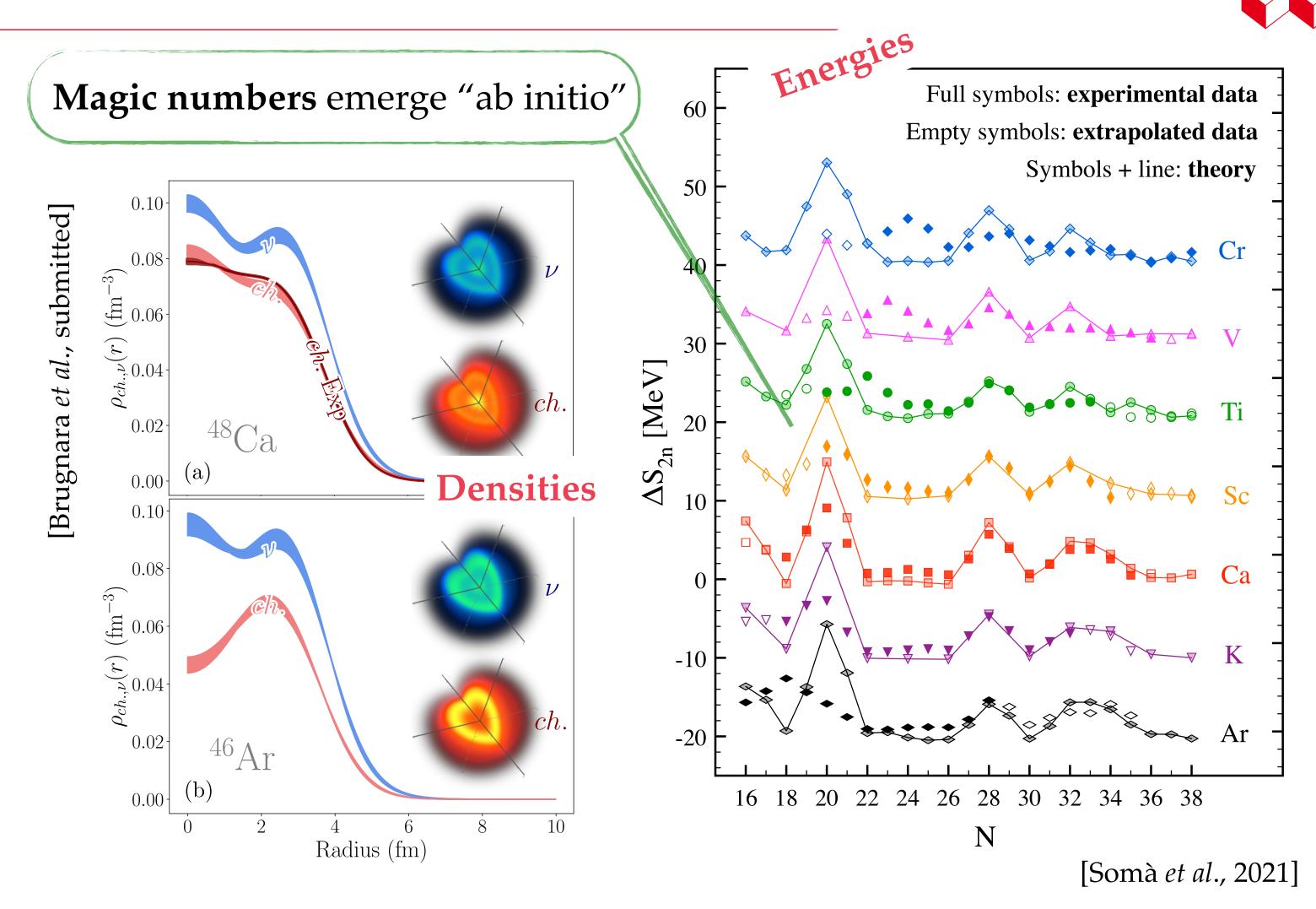
Dynamical correlations not shown here

Sophisticated reference state (linear combination of projected dHFB states)

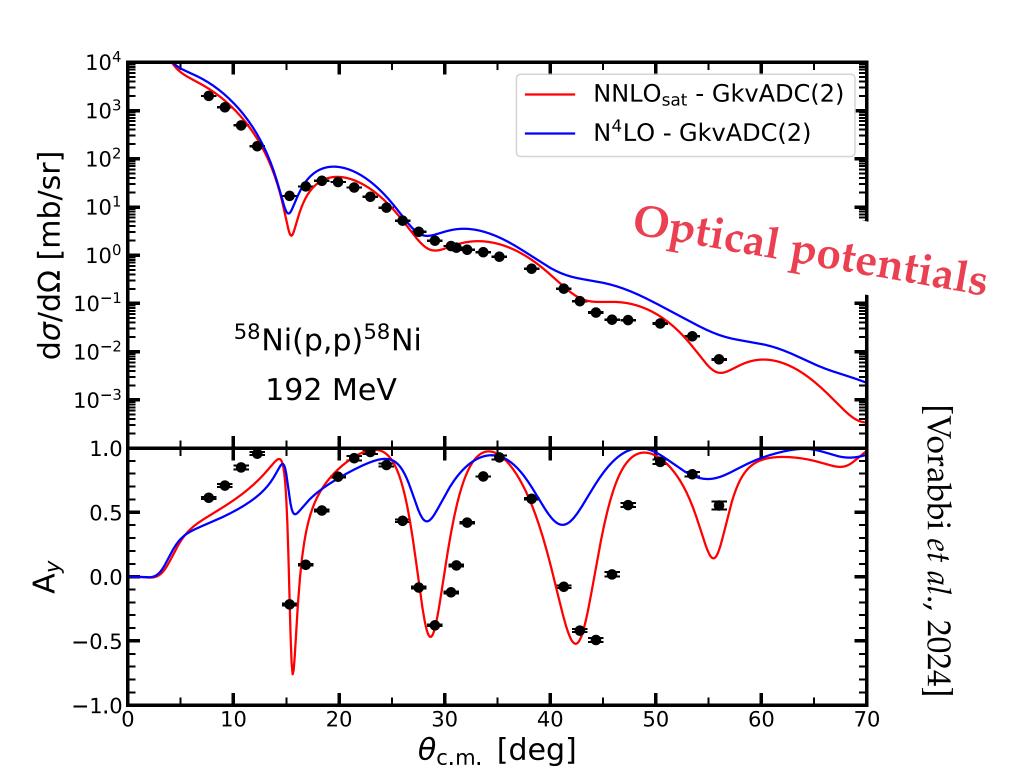
- Symmetry breaking: particle number
- Dynamical correlations at 2nd order
- → G.s. properties of singly open-shell

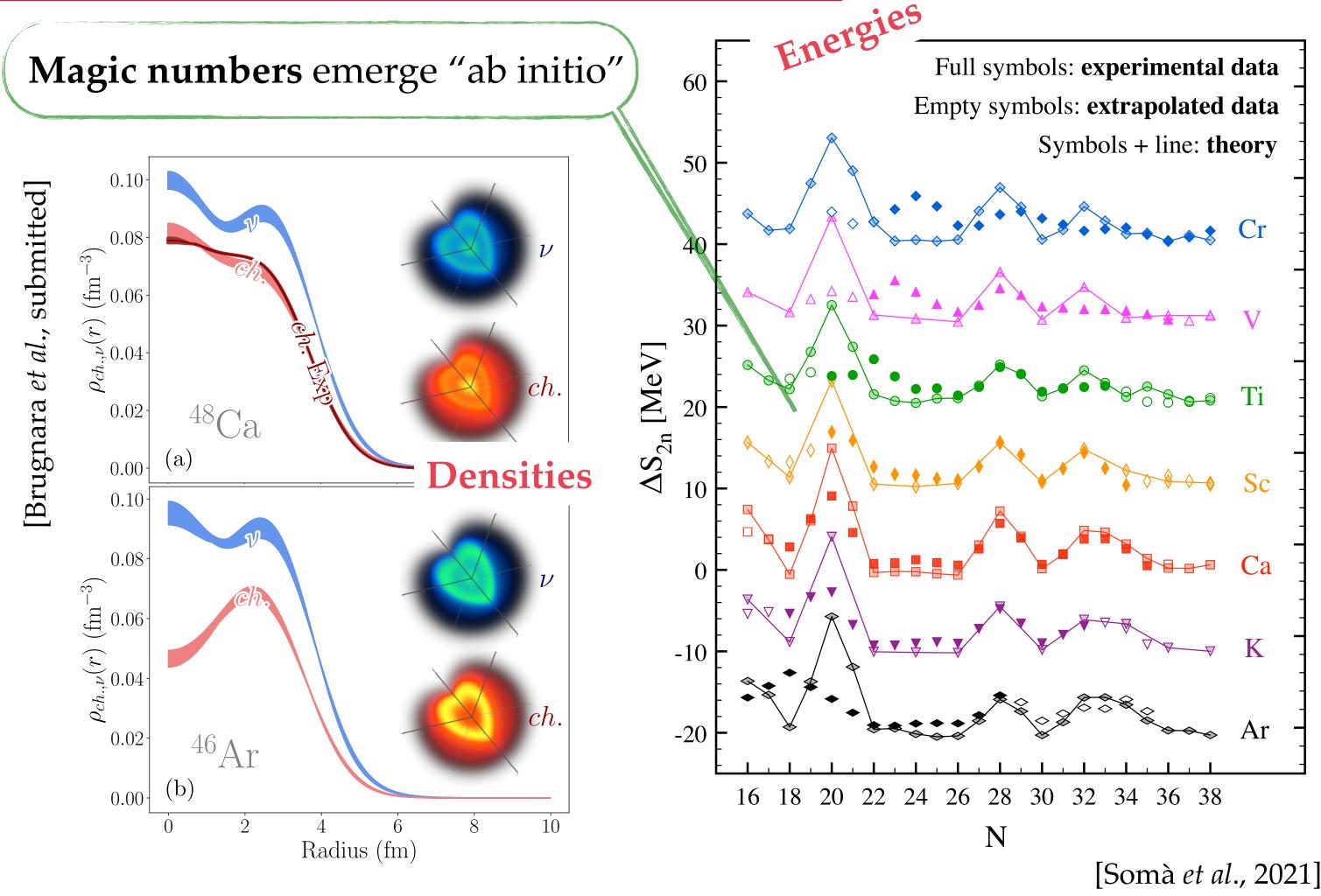


- Symmetry breaking: particle number
- Dynamical correlations at 2nd order
- → G.s. properties of singly open-shell

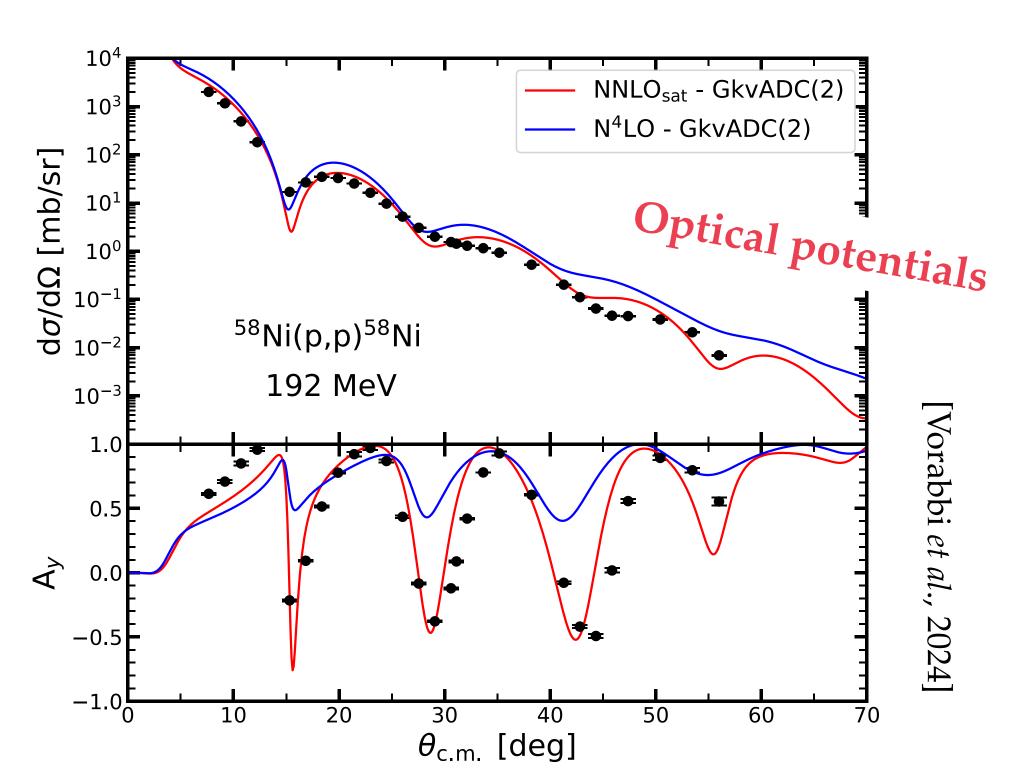


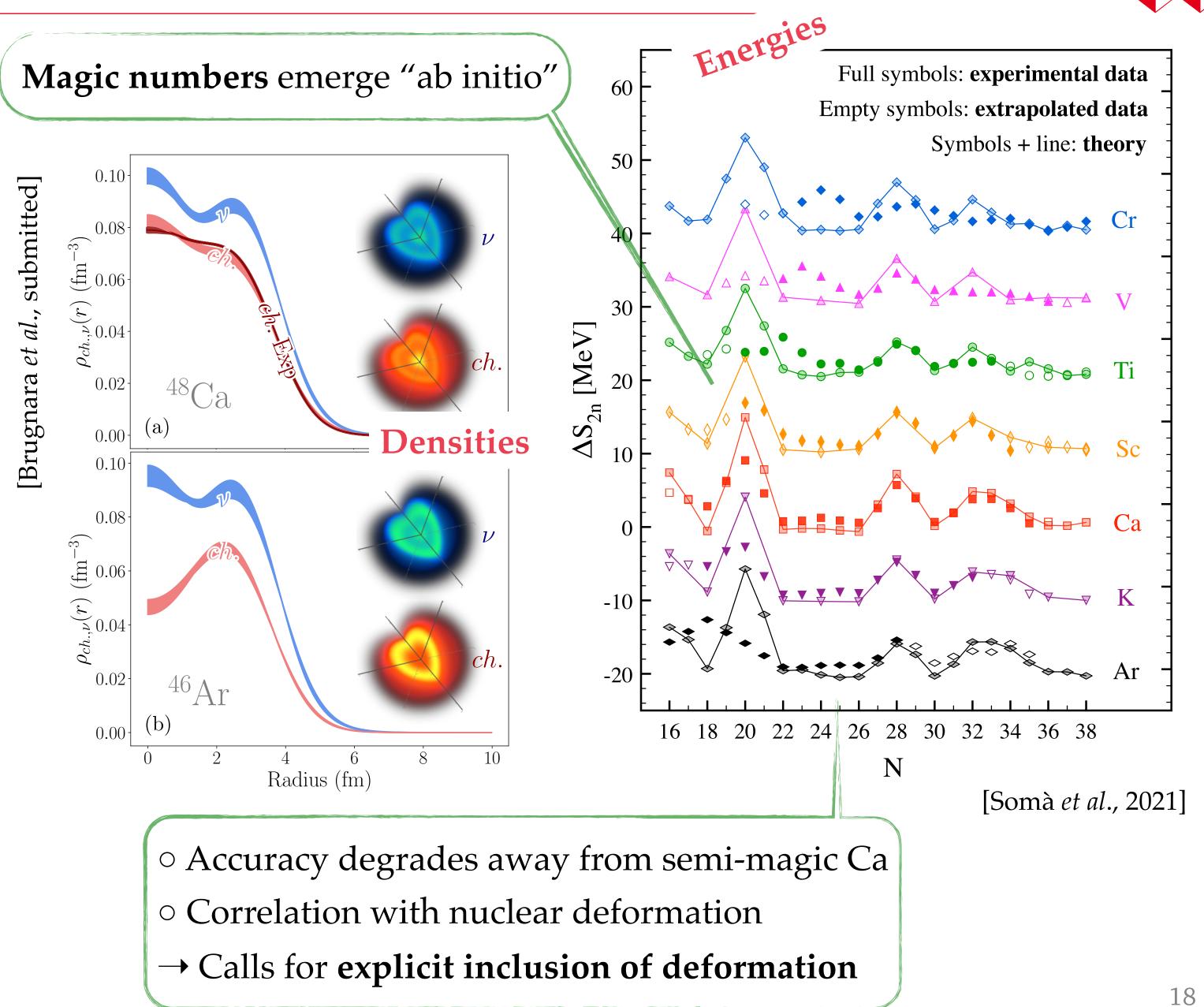
- Symmetry breaking: particle number
- Dynamical correlations at 2nd order
- → G.s. properties of singly open-shell





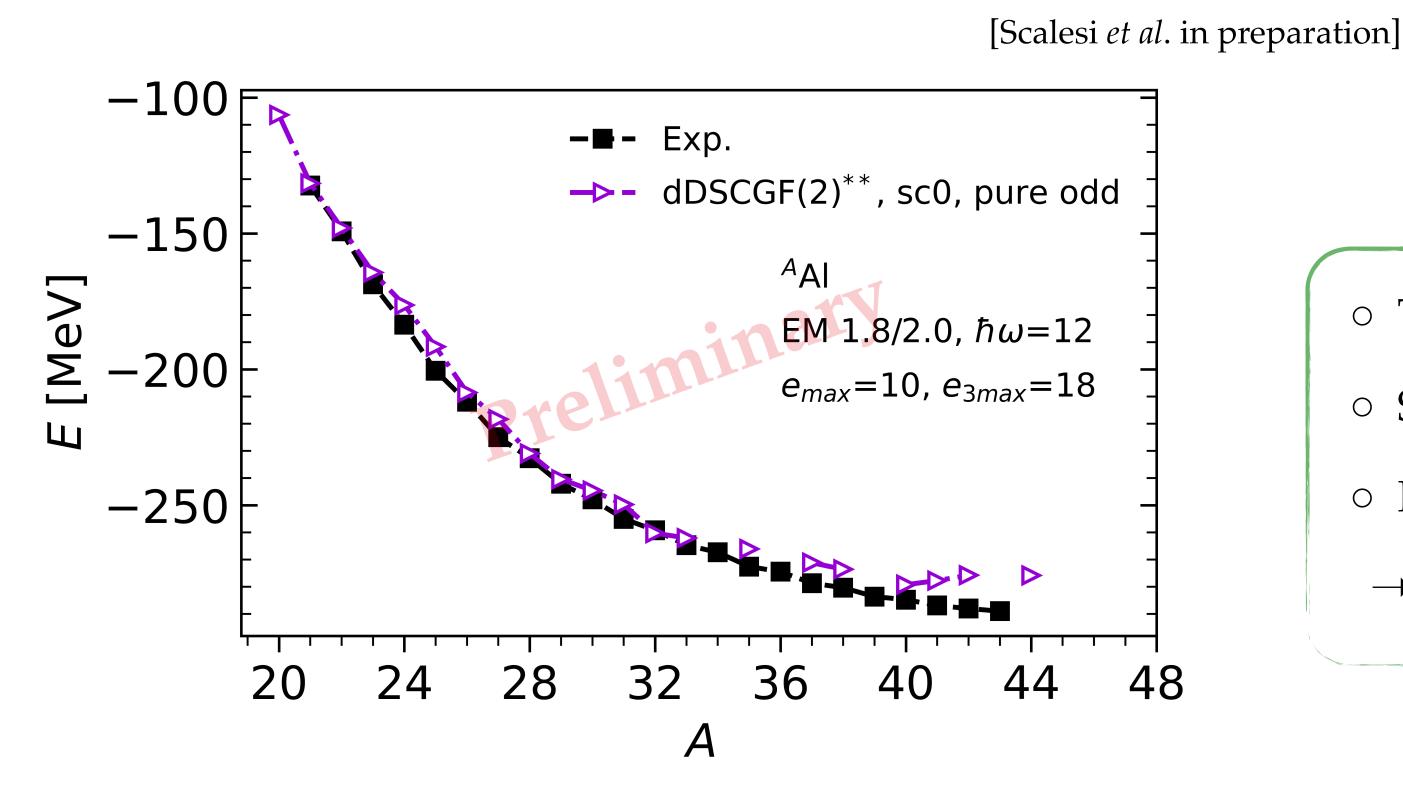
- Symmetry breaking: particle number
- Dynamical correlations at 2nd order
- → G.s. properties of singly open-shell

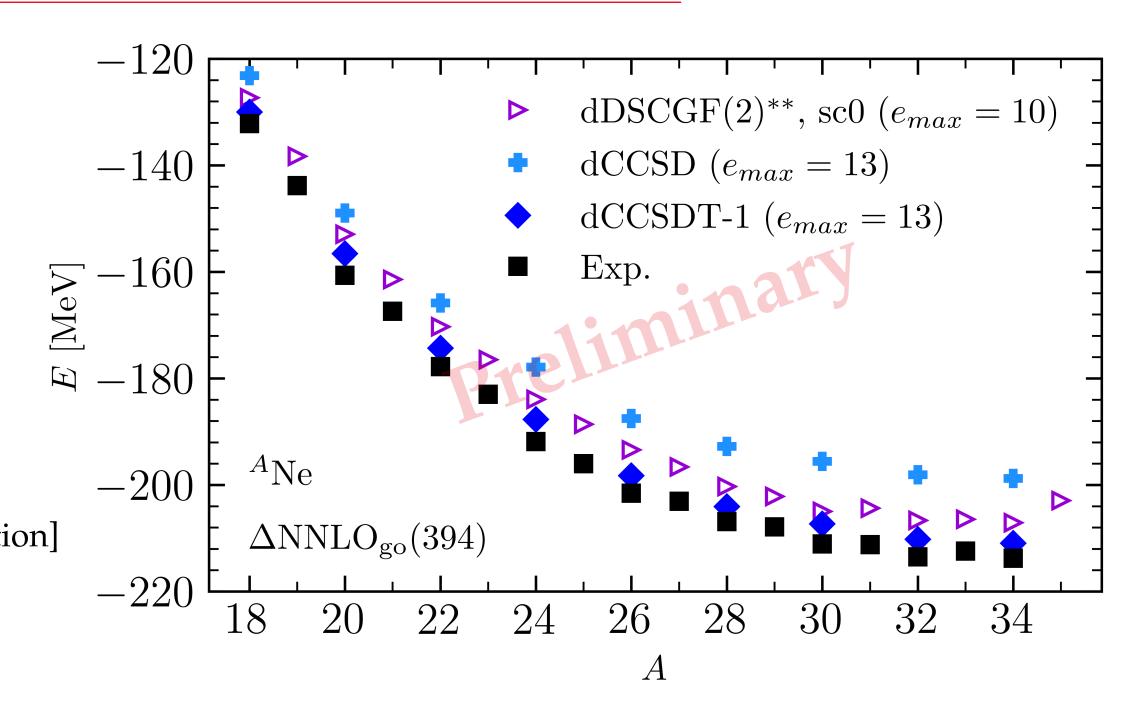




Deformed self-consistent Green's functions

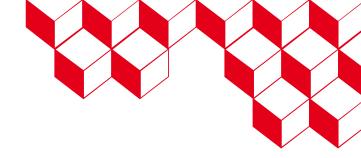
- Symmetry breaking: rotational invariance
- Dynamical correlations at 2nd order
- → G.s. properties of doubly open-shell



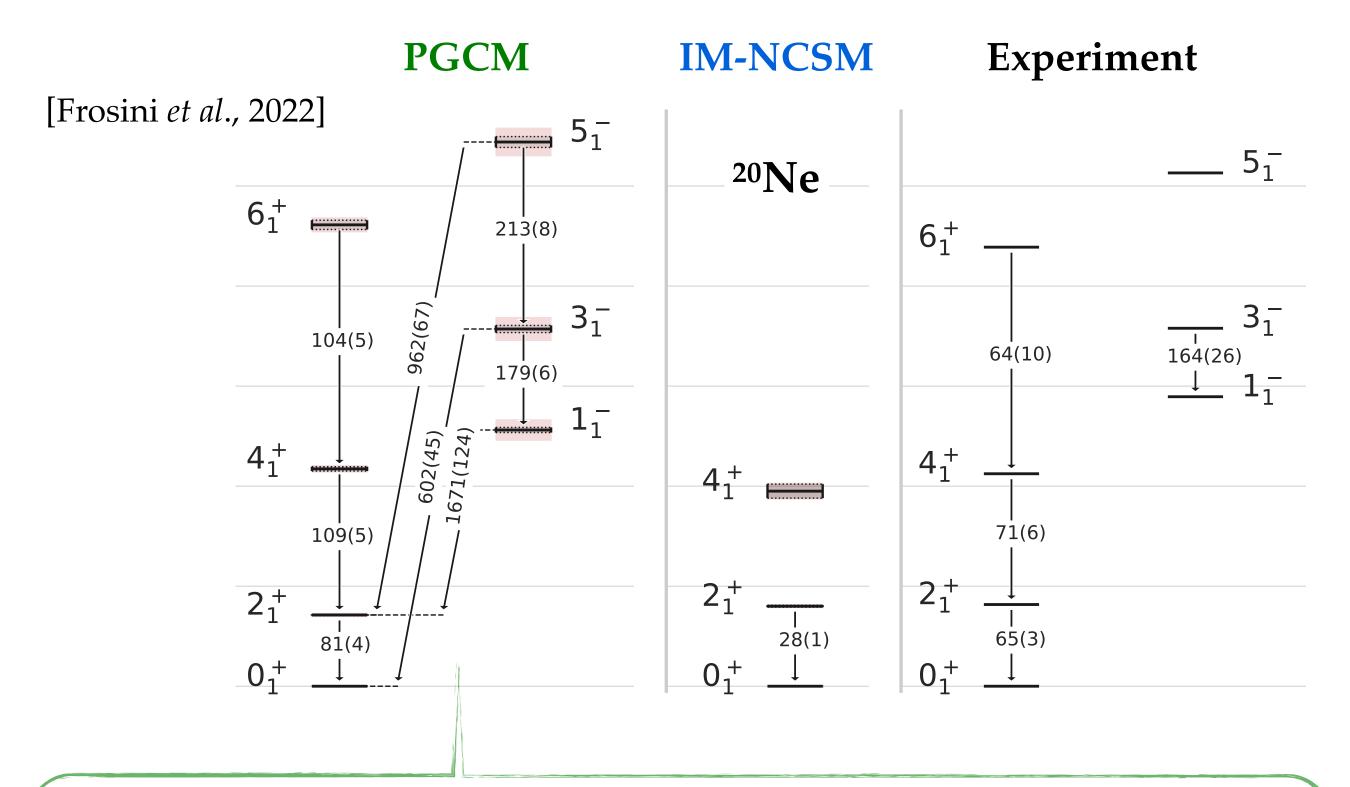


- Trend consistent with CC results
- Successful benchmark in odd-even isotopes
- Preliminary test in odd-Z chain promising
- → First odd-odd calculations with expansion methods

Projected generator coordinate method



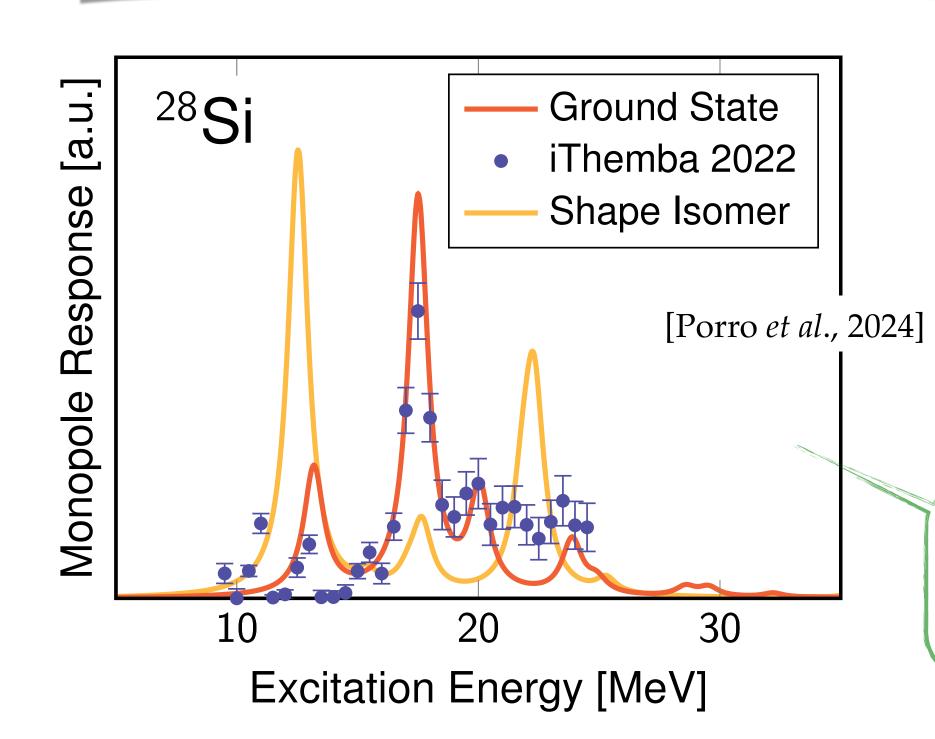
- Symmetry breaking & restoration
 - → particle number
 - → rotational invariance (axial)
 - → parity
- No dynamical correlations
- → Excitation spectra & collective properties

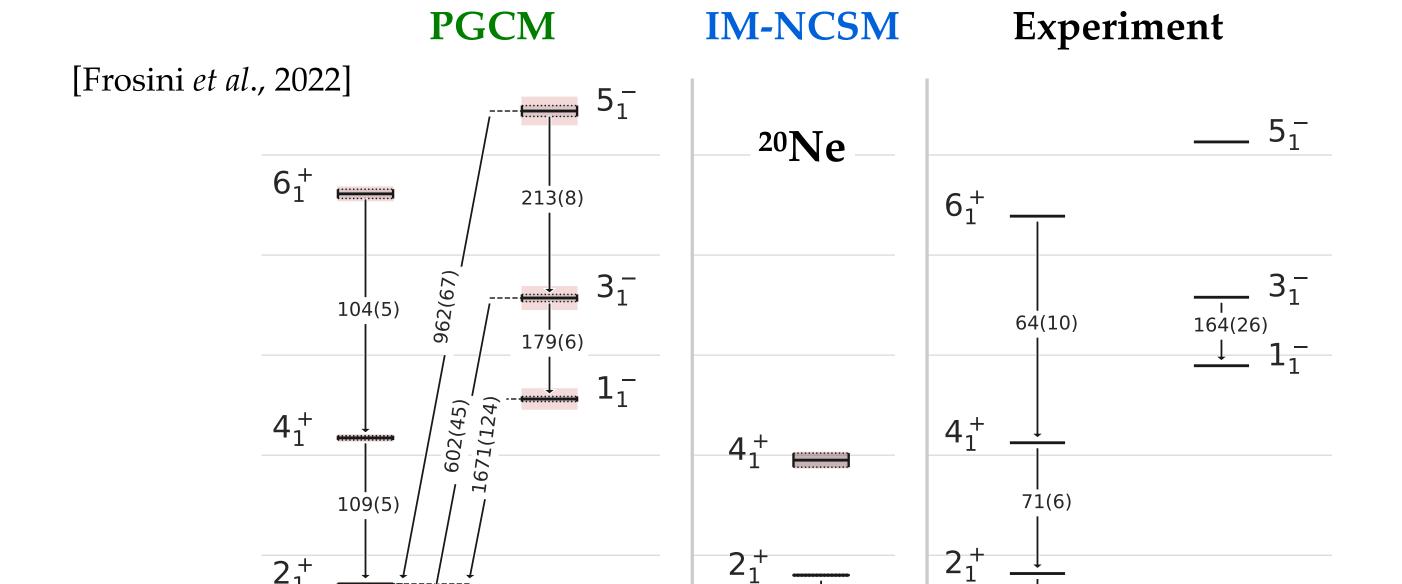


- Good agreement with experiment and (quasi-)exact IM-NCSM
 - → Essential **static correlations** captured by PGCM

Projected generator coordinate method

- Symmetry breaking & restoration
 - → particle number
 - → rotational invariance (axial)
 - → parity
- No dynamical correlations
- → Excitation spectra & collective properties





- Good agreement with experiment and (quasi-)exact IM-NCSM
 - → Essential **static correlations** captured by PGCM
- Oblate ground state & low-lying prolate isomer

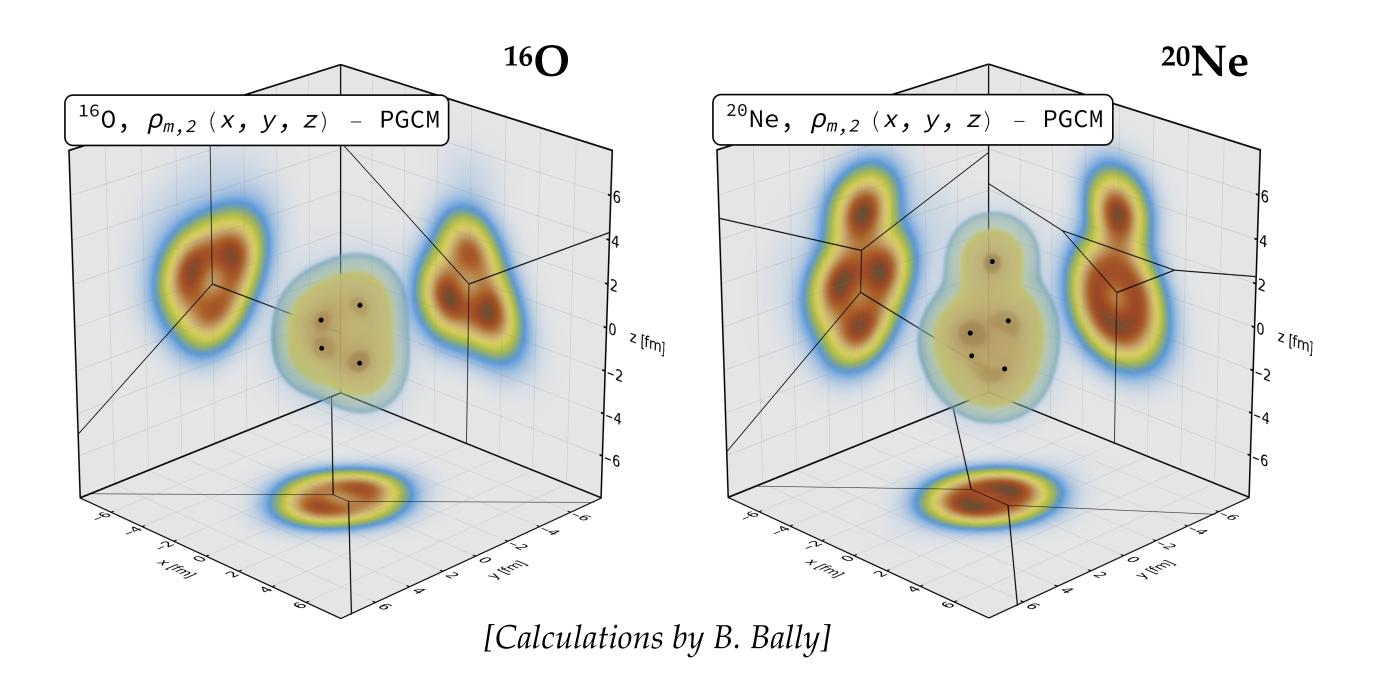
81(4)

→ Shape coexistence (but weak mixing)

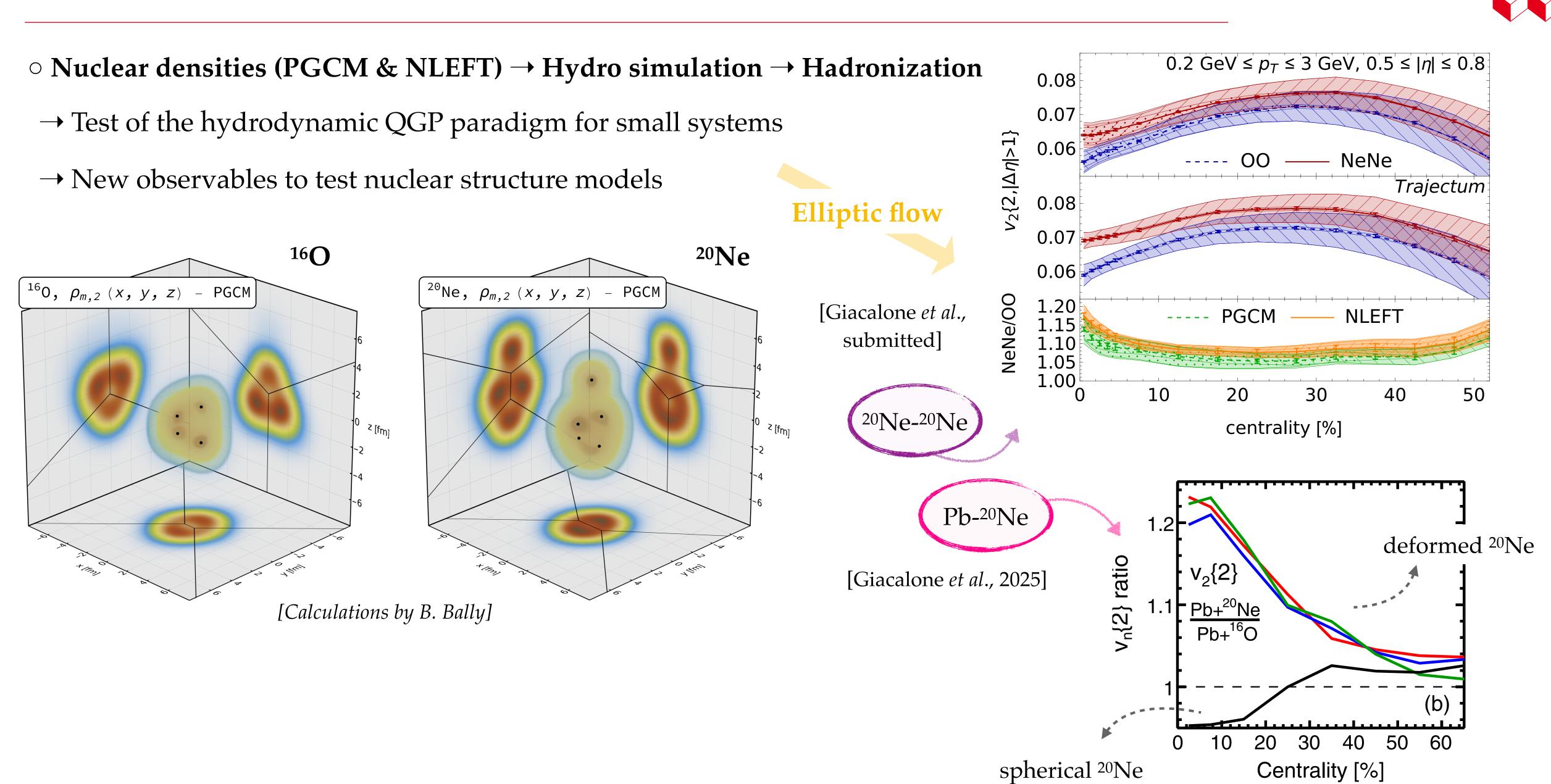
Nuclear structure & relativistic ion collisions



- \circ Nuclear densities (PGCM & NLEFT) \rightarrow Hydro simulation \rightarrow Hadronization
- → Test of the hydrodynamic QGP paradigm for small systems
- → New observables to test nuclear structure models

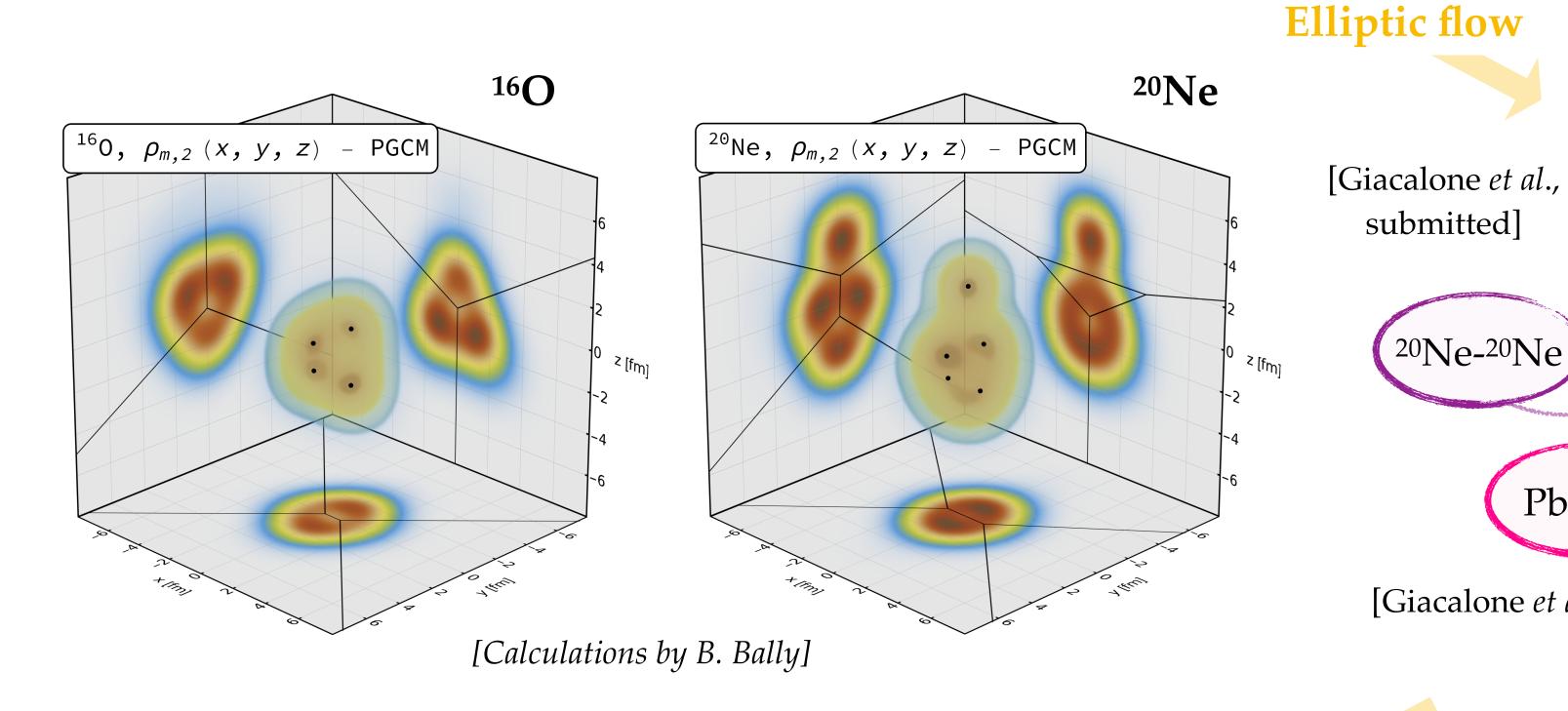


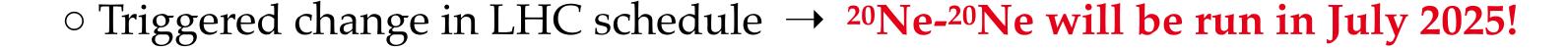
Nuclear structure & relativistic ion collisions

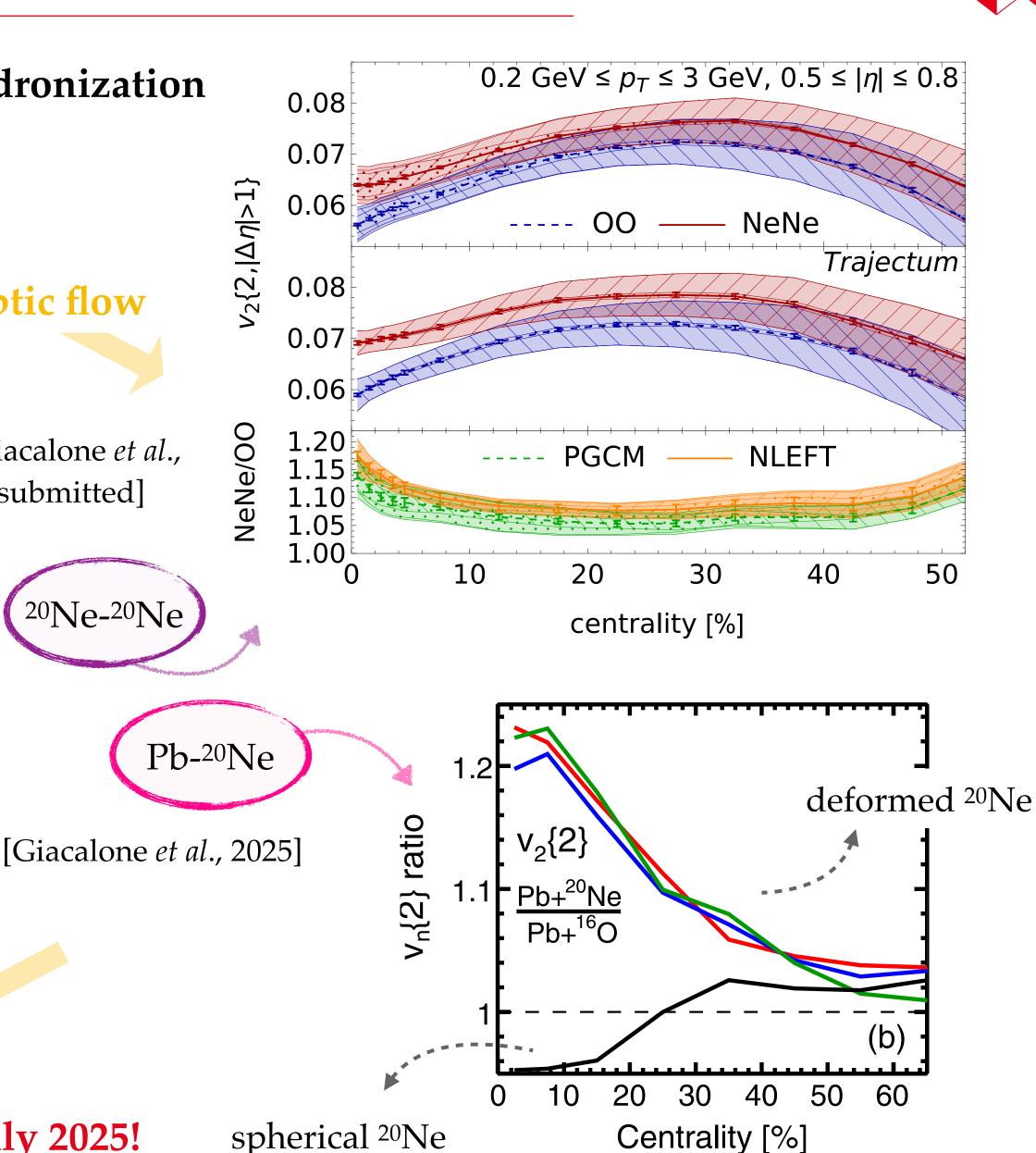


Nuclear structure & relativistic ion collisions

- \circ Nuclear densities (PGCM & NLEFT) \rightarrow Hydro simulation \rightarrow Hadronization
- → Test of the hydrodynamic QGP paradigm for small systems
- → New observables to test nuclear structure models







submitted]

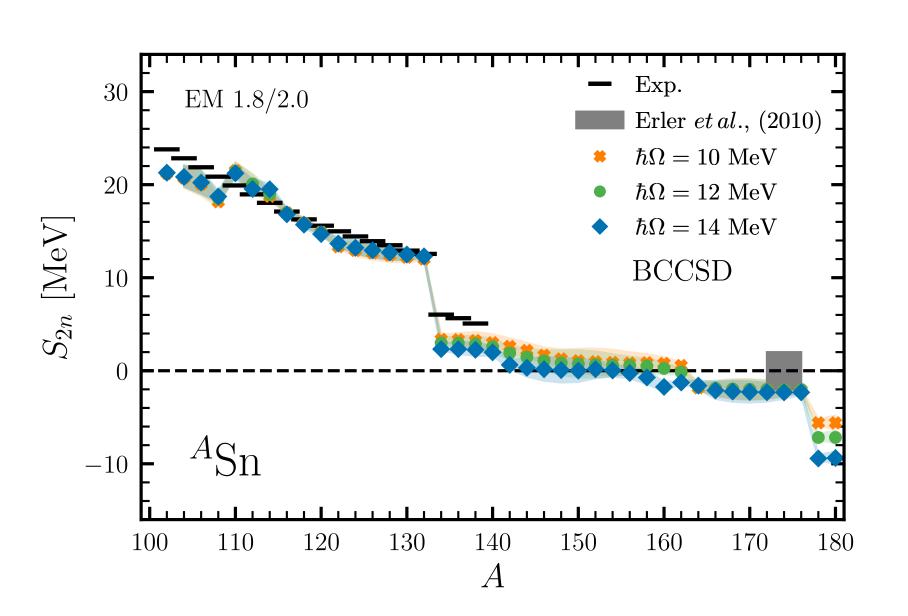
 20 Ne- 20 Ne

Perspectives

• How to extend such calculations to heavy systems?

Computational obstacles

- Current bottleneck: treatment of three-nucleon forces
 - → Incorporated via rank-reduction techniques $W^{3N} \rightarrow W^{2N} = \int W^{3N} \rho$
 - → Use of spherical density inadequate for large deformation



[Tichai *et al.*, 2024]

• How to extend such calculations to heavy systems?

Computational obstacles

- Current bottleneck: treatment of three-nucleon forces
 - → Incorporated via rank-reduction techniques $W^{3N} \rightarrow W^{2N} = \int W^{3N} \rho$
 - → Use of spherical density inadequate for large deformation

- Future requirement: reduce computational costs
 - → Development of dimensionality-reduction techniques

Importance truncation, natural orbitals, tensor factorisation

→ Use of emulators to produce statistically-relevant samples

