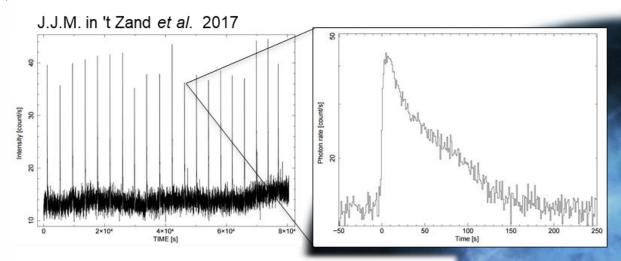
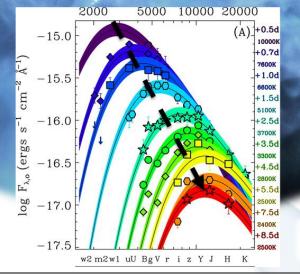
The 29th International Nuclear Physics Conference, INPC 2025

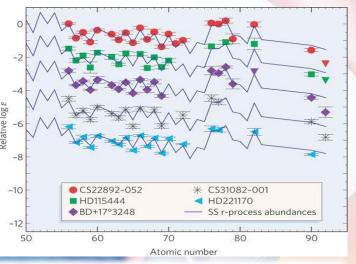
Direct Measurements of Key Reactions in Nuclear Astrophysics at CENS

Sunghoon (Tony) Ahn

Center for Exotic Nuclear Studies
Institute for Basic Science
(CENS/IBS)

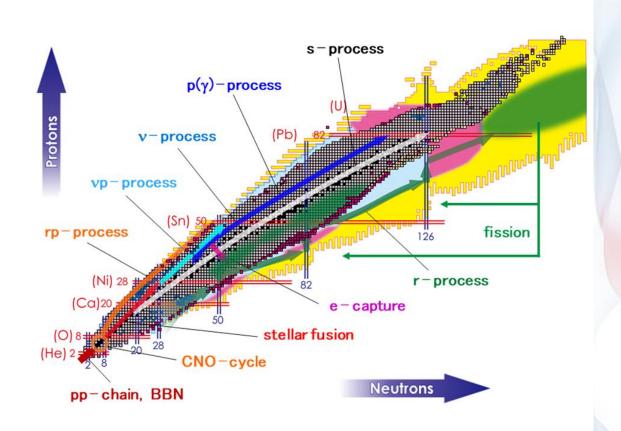

on behalf of CENS Astro-boys 05/29/2025





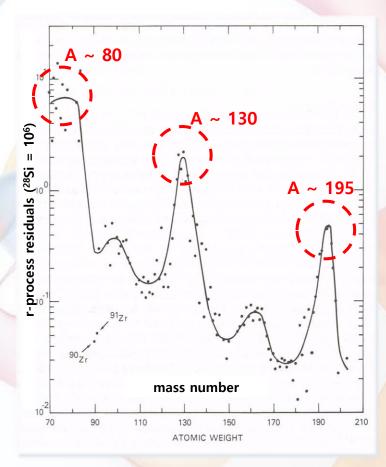
Astrophysical Observables

Observed light curves of X-ray burst



Abundances in metal poor r-stars J.J. Cowan and C. Sneden, Nature 440, 1151 (2006)

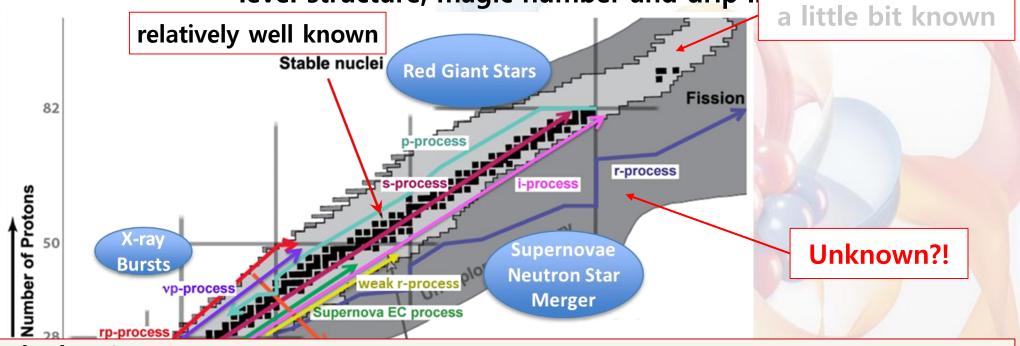
Kilo Nova/GW Observations Drout et al. 2017


Nucleosynthesis Processes

Nuclear chart and the major nucleosynthetic processes in the universe X. Tang *et al.*, *Association of Asia Pacific Physical Societies* 31, 19 (2021)

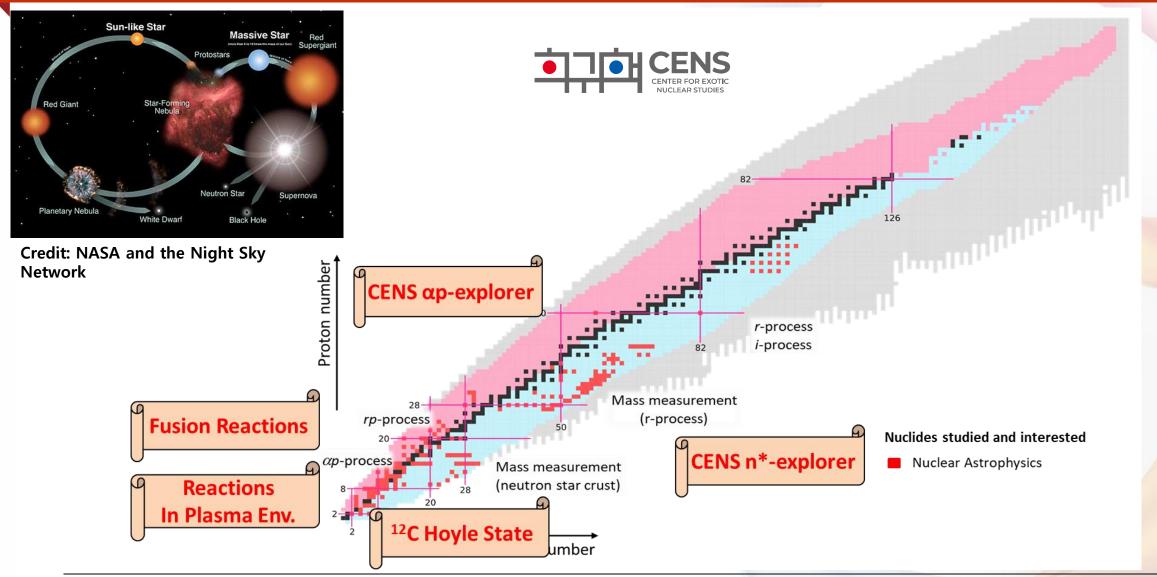
Nucleosynthesis process can explain the observation.

→ Nuclear Physics plays an important role!

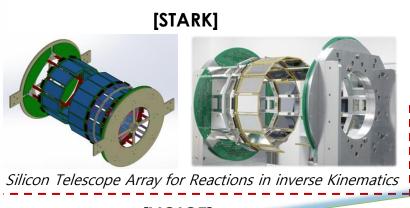


Calculated r-process yields
for solar abundance patterns
F. Kappeler et al. Rep. Prog. Phys. 52 945 1989

What do we need to study?

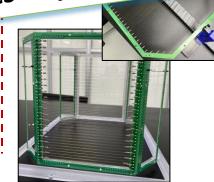

Properties of Nuclei: mass, Q-value, T_{1/2}, P_n, level densities, reaction rates, level structure, magic number and drip line.

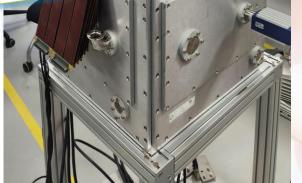
- → How can we study them?
 - 1. Indirect techniques for constraining neutron-capture reactions (optical potential and γ -ray strength function).
 - 2. Direct measurements of explosive hydrogen and helium burning reactions at or near the astrophysical energies using recoil separators, active targets, or gas targets.
 - **3. Direct reaction-rate measurements for charged particle reaction rates** of importance to heavy element nucleosynthesis in the weak r-, p-, and vp-processes.


Astrophysically important nuclei on CENS Nuclear Chart

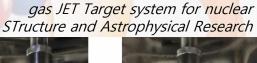
Institute for Basic Science

CENS Detector Developments (selected)

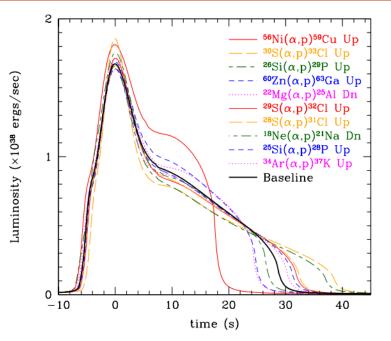




Chamber with sEgmentation)" by Minju Kim


F-07 "Development of a new active target TPC for multiple nuclear

physics experiments" by Soomi Cha



Vertically Oriented wire Ionization Chamber with sEgmentations

Active target TPC for Multiple nuclear eXperiments

CENS αp -explorer Project

Rank	Reaction	Type ^a	Sensitivity ^b	Category
1	⁵⁶ Ni(α, p) ⁵⁹ Cu	U	12.5	1
2	59 Cu(p, $\gamma)^{60}$ Zn	D	12.1	1
3	$^{15}O(\alpha, \gamma)^{19}Ne$	D	7.9	1
4	$^{30}S(\alpha, p)^{33}Cl$	U	7.8	1
5	26 Si(α , p) 29 P	U	5.3	1
6	61 Ga(p, γ) 62 Ge	D	5.0	1
7	23 Al(p, γ) 24 Si	U	4.8	1
8	$^{27}P(p, \gamma)^{28}S$	D	4.4	1
9	63 Ga(p, γ) 64 Ge	D	3.8	1
10	60 Zn(α , p) 63 Ga	U	3.6	1
11	22 Mg(α , p) 25 Al	D	3.5	1
12	⁵⁶ Ni(p, γ) ⁵⁷ Cu	D	3.4	1
13	$^{29}S(\alpha, p)^{32}Cl$	U	2.8	1
14	$^{28}S(\alpha, p)^{31}C1$	U	2.7	1
15	$^{31}Cl(p, \gamma)^{32}Ar$	U	2.7	1
16	35 K(p, γ) 36 Ca	U	2.5	2
17	18 Ne(α , p) 21 Na	D	2.3	2
18	$^{25}Si(\alpha, p)^{28}P$	U	1.9	2 2
19	57 Cu(p, γ) 58 Zn	D	1.7	2 3
20	34 Ar(α , p) 37 K	U	1.6	3
21	$^{24}Si(\alpha, p)^{27}P$	U	1.4	3
22	22 Mg(p, γ) 23 Al	D	1.1	3
23	65 As(p, γ) 66 Se	U	1.0	3
24	$^{14}O(\alpha, p)^{17}F$	U	1.0	3
25	40 Sc(p, γ) 41 Ti	D	0.9	3
26	$^{34}Ar(p, \gamma)^{35}K$	D	0.8	3
27	47 Mn(p, γ) 48 Fe	D	0.8	3
28	$^{39}Ca(p, \gamma)^{40}Sc$	D	0.8	3

Rank	Reaction	Type ^a	Sensitivity ^b	Category
1	$^{15}O(\alpha, \gamma)^{19}Ne$	D	16	1
2	56 Ni(α , p) 59 Cu	U	6.4	1
3	59 Cu(p, γ) 60 Zn	D	5.1	1
4	61 Ga(p, γ) 62 Ge	D	3.7	1
5	22 Mg(α , p) 25 Al	D	2.3	1
6	$^{14}O(\alpha, p)^{17}F$	D	5.8	1
7	23 Al(p, γ) 24 Si	D	4.6	1
8	$^{18}\text{Ne}(\alpha, p)^{21}\text{Na}$	U	1.8	1
9	63 Ga(p, γ) 64 Ge	D	1.4	2
10	19 F(p, α) 16 O	U	1.3	2
11	$^{12}\mathrm{C}(\alpha, \gamma)^{16}\mathrm{O}$	U	2.1	2
12	26 Si(α , p) 29 P	U	1.8	2
13	17 F(α , p) 20 Ne	U	3.5	2
14	$^{24}\text{Mg}(\alpha, \gamma)^{28}\text{Si}$	U	1.2	2
15	$^{57}Cu(p, \gamma)^{58}Zn$	D	1.3	2
16	60 Zn(α , p) 63 Ga	U	1.1	2
17	17 F(p, γ) 18 Ne	U	1.7	2
18	40 Sc(p, γ) 41 Ti	D	1.1	2
19	$^{48}Cr(p, \gamma)^{49}Mn$	D	1.2	2

Key Research Question:

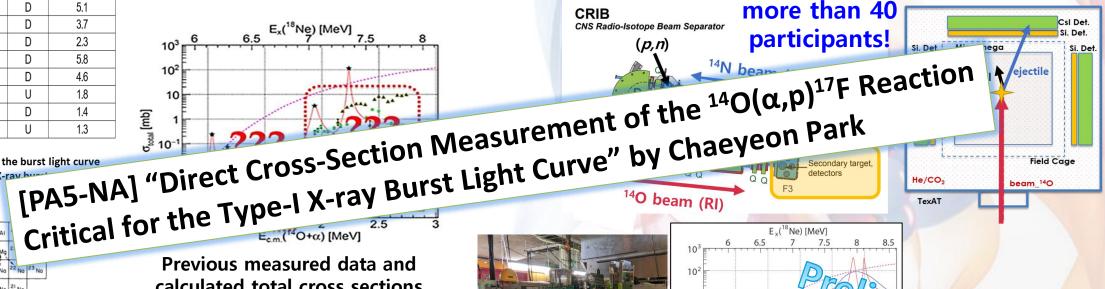
R. H. Cyburt et al. ApJ 830:55 (2016)

1. direct measurements of key (α, p) reaction cross sections which important for αp -process and *p*-process.

Methods:

- 1. Thick Target in Inverse Kinematics (TTIK) using TexAT_v2, AToM-X or VOICE
- 2. (α,p) Reaction in Inverse Kinematics using JENSA, CryoSTAR or JETTSTAR with STARK

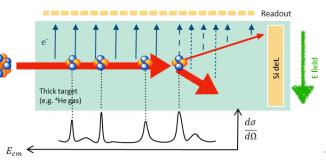
Direct measurement of $^{14}O(\alpha,p)^{17}F$ cross section at CRIB/CNS

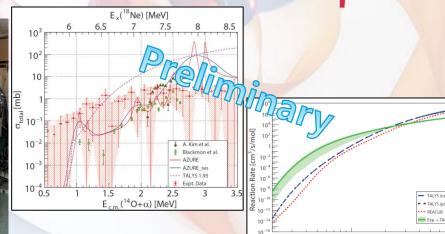

R. H. Cyburt et al. 2016

Rank	Reaction	Туре	Sensitivity
1	¹⁵ O(α,γ) ¹⁹ Ne	D	16
2	⁵⁶ Ni(α,p) ⁵⁹ Cu	U	6.4
3	⁵⁹ Cu(<u>p,γ</u>) ⁶⁰ Zn	D	5.1
4	⁶¹ Ga(<u>p,γ</u>) ⁶² Ge	D	3.7
5	²² Mg(α,p) ²⁵ Al	D	2.3
6	¹⁴ O(α,p) ¹⁷ F	D	5.8
7	²³ Al(<u>p,y</u>) ²⁴ Si	D	4.6
8	¹⁸ Ne(α,p) ²¹ Na	U	1.8
9	⁶³ Ga(<u>p,γ</u>) ⁶⁴ Ge	D	1.4
10	¹⁹ F(p,α) ¹⁶ O	U	1.3

Reactions that impact the burst light curve

in the multi-zone X-ray h

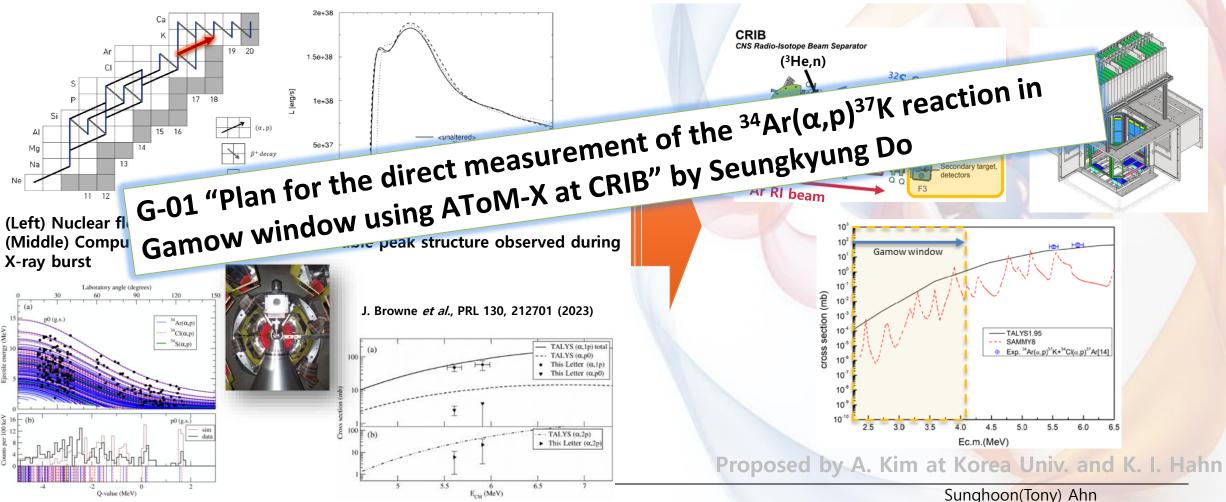

- "A direct measurement of the $^{14}O(\alpha,p)^{17}F$ reaction with the Texas Active Target detector" approved by RIKEN PAC (2020)
- Beam time was very hard to get due to the Covid-19. We performed the experiment in Mar. 2023.



 $T_9 = 0.60$ $\rho = 100 \text{ g cm}^{-3}$ HCNO cycle at T_o>0.5

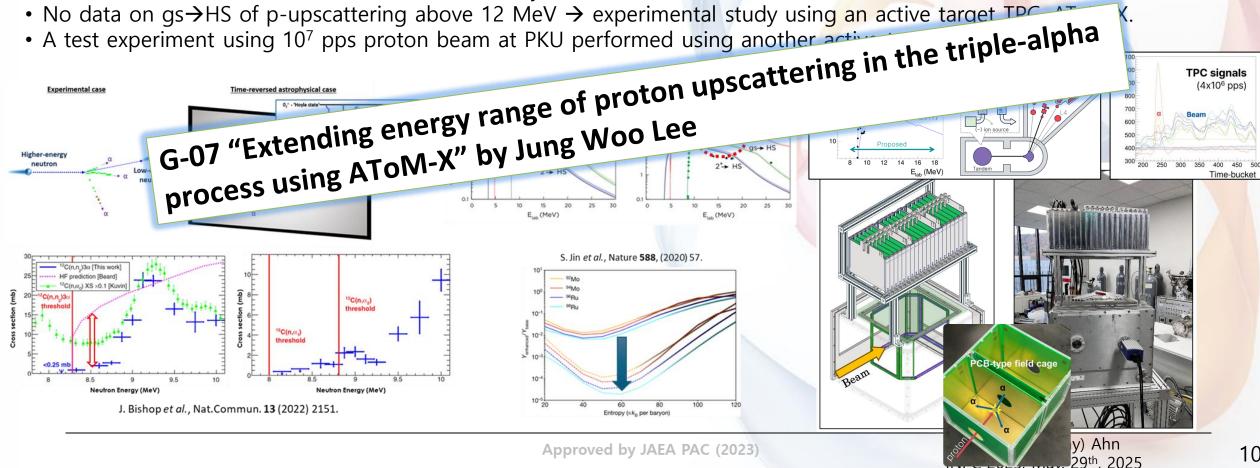
CNO cycle at To<0.5

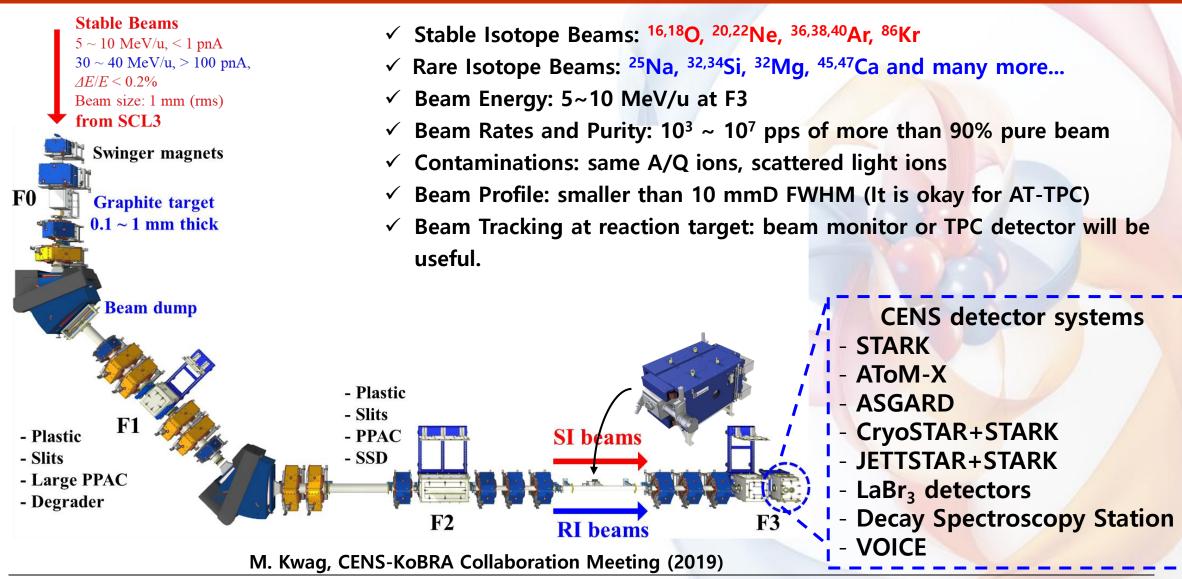
calculated total cross sections of $^{14}O(\alpha,p)$ reaction


Temperature [GK

INPC 2025, May. 29th, 2025

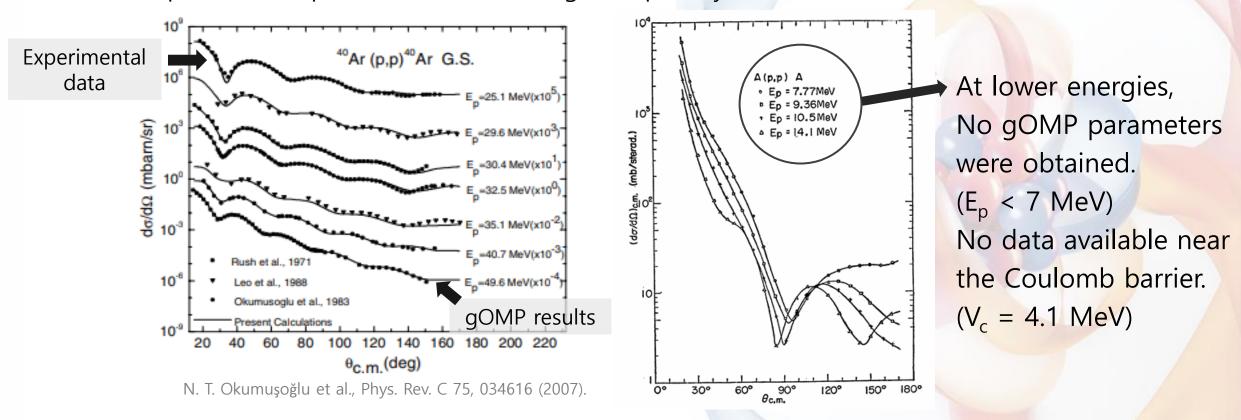
Direct measurement of 34 Ar(α ,p) 37 K cross section at CRIB/CNS


Motivation: a key reaction for understanding the luminosity curve of the double peak and nucleosynthesis mechanism in X ray bursts. ¹⁸Ne(α ,p)²¹Na(p, γ)²²Mg(α ,p)²⁵Al(p, γ)²⁶Si,(α ,p)²⁹P(p, γ)³⁰S(α ,p)³³Cl(p, γ)³⁴Ar(α ,p)³⁷K(p, γ)³⁸Ca(α ,p)⁴¹Sc


Study of enhancements from neutron/proton upscattering

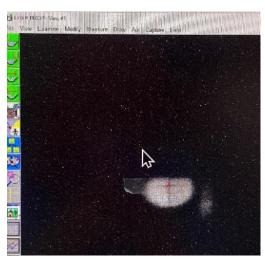
- High-density environment, large neutron enhancements at low temperature (≈0.2 GK)
- No data on gs→HS of n-upscattering from 8 to 16 MeV, higher E data deviate from Hauser-Feshbach (HF) OMP predictions
- The measured cross sections are significantly suppressed near the threshold in comparison to HF predictions.
- At these low temperatures, where previously the neutron enhancement factor was predicted to be greater than 100, the enhancement is instead small, of the order of unity.
- No data on gs→HS of p-upscattering above 12 MeV → experimental study using an active target TDC
- A test experiment using 10⁷ pps proton beam at PKU performed using another active

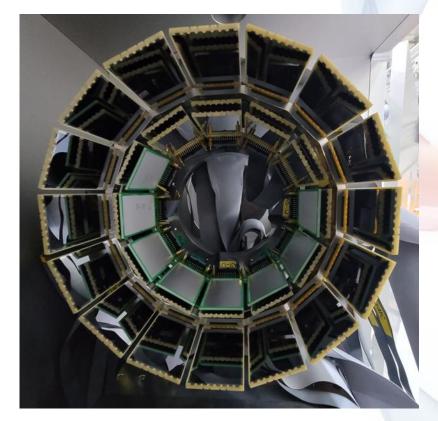
Stable/Rare Isotope Beams at KoBRA, RAON



Optical Model Potential Study of 40Ar + p elastic scattering

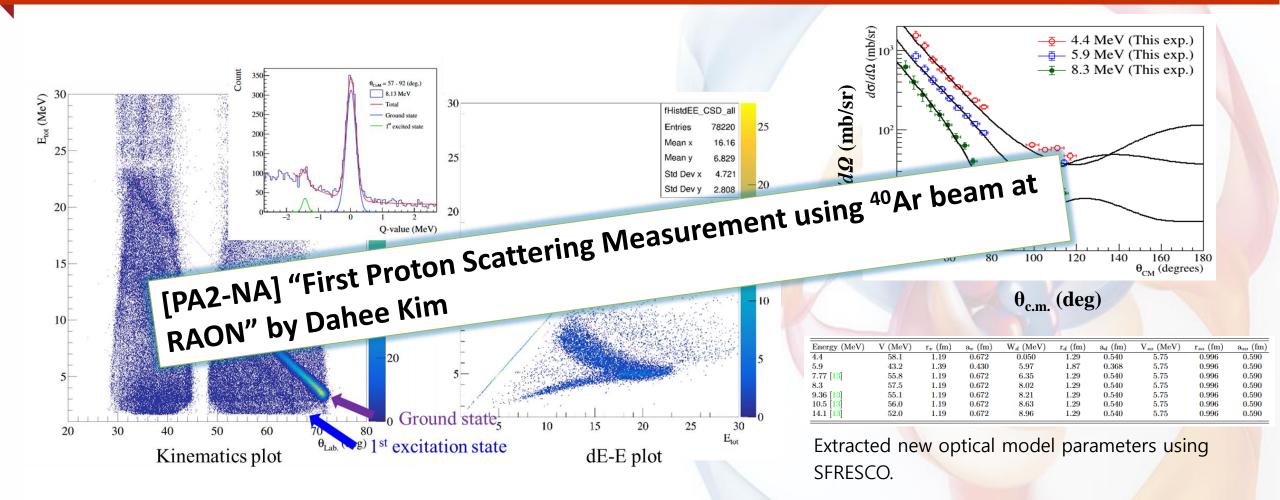
- Optical model potential (OMP) parameters are required to predict cross-section for each energy.
- Lack of optical model parameters at low energies, especially near the Coulomb barrier.


[Main Goal] Compare the global optical models with the experimental data in low energy region and extract OMP parameters.



Experimental setup photos

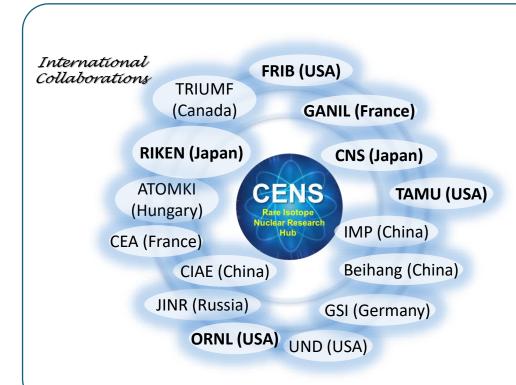
 E_{beam} = 4.4, 5.9, and 8.3 MeV/u 40 Ar stable beam at F3 focal plane

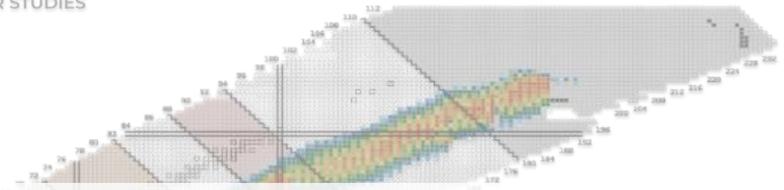


Analysis results of the ⁴⁰Ar+p scattering data

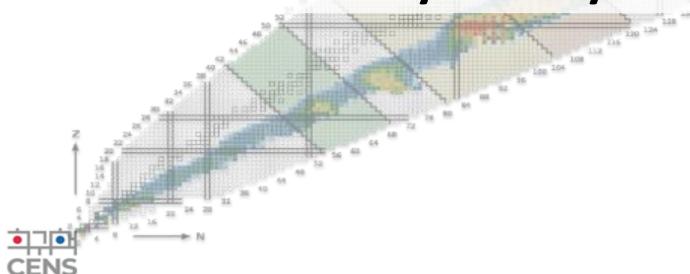
D. Kim, S. Ahn et al., submitted to PRC

Summary


- The origin of elements is an important question to answer, and properties of exotic nuclei play a very important role. However, there are large uncertainties on the nuclear properties from theoretical models triggering experimental study to confirm and provide accurate information.
- → Experimental measurements are very critical to reduce them.
- We recently focus on nuclear spectroscopic studies such as nuclear reactions occurred in a special astrophysical conditions.
 - ✓ Direct cross section measurements of $^{14}O(a,p)^{17}F$ and $^{34}Ar(a,p)^{37}K$ reactions using TexAT_v2 and AToM-X at CRIB/CNS.
 - ✓ 12C(p,p') proton upscattering measurement of Hoyle state at JAEA.
 - ✓ Optical Model Potential study of ⁴⁰Ar+p elastic scattering at low energy region.
- New major horses for nuclear astrophysics studies: AToM-X, CryoSTAR, JETTSTAR, IDATEN, Bρ-ToF, KoBRA Wien Filter, STARK, CENS Silicon Sensors and ASGARD.
- More key experimental studies can be performed using RI beams at world-leading facilities (RIKEN, FRIB, IMP, HIAF and RAON).
 - ✓ Optical Model Potentials for Exotic Nuclei such as ²⁵Na + p elastic scattering measurements
 - \checkmark (α ,p) cross section studies related to *ap*-process: (α ,p) reaction with ²²Mg, ¹⁸Ne, ²¹Na, ¹⁷F beams; (α ,p) reaction with ¹⁰Be beam (CRIB)
 - ✓ Nuclear structures related to \dot{r} -process: (d,p) or (d,p γ) with ³²Si, ³⁴Si and ³²Mg beams
 - ✓ Neutron transfer reactions and ToF mass measurements related to *r*-process
 - \checkmark (α ,n) cross section studies related to weak *r*-process: (α ,n) with ⁸Li, ²⁰Ne, ²⁷Al, ⁶³Co, ⁸⁷Kr, ⁸⁴Se, ⁹⁴Sr, ⁸²Ge beams


Acknowledgements

All the CENS members



Thank you for your attention!

