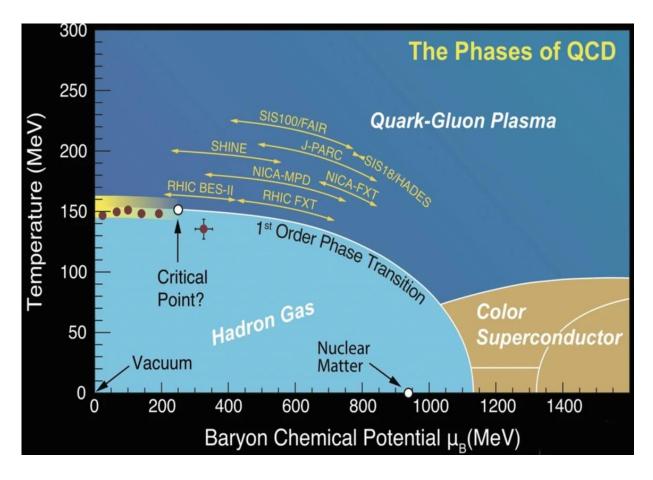

Probing dense nuclear matter by heavy-ion collision experiments at NICA

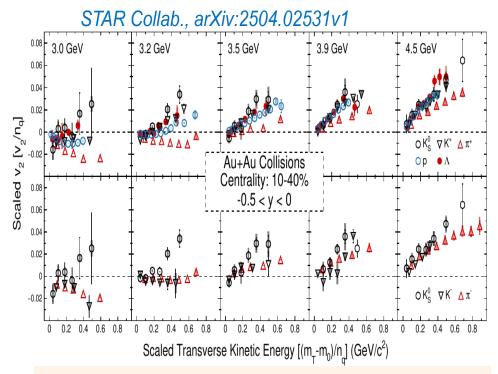
V. Kolesnikov VBLHEP, JINR on behalf of NICA



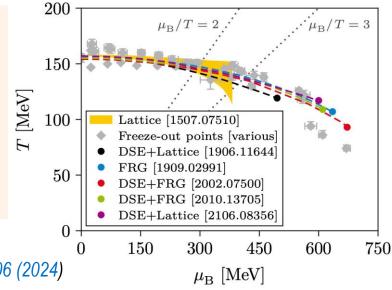
The 29th International Nuclear Physics Conference (INPC 2025) DCC, Daejeon, Korea, May 25-30, 2025

OUTLINE

- Introduction
- NICA accelerator complex: status and prospects
- Detectors for heavy-ion physics at NICA
- Recent results in A+A collisions from NICA
- Summary


Heavy-ion collisions and QCD phase diagram

- QCD phase diagram: rich structure and variety of conditions. Theoretically probed by lattice QCD and effective models, experimentally by heavy-ion collisions. Location of CEP and 1st order PT is one among major goals
- NICA niche: moderate-temperature and highdensity domain. High μ_B region is poorly explored, results from HIC have implications for nuclear physics and astrophysics
- Several running and future experimental programs worldwide (RHIC, SPS, FAIR, NICA, HIAF)


Nuclear matter in the high- μ_B region

- Low energies: baryons and baryon resonances are dominant *dof*, in-medium effects play a role in hadroproduction
- Higher energies: transition from baryon-rich to meson-dominated matter and QGP droplets can be formed

A gradual onset of NCQ scaling is observed, emergence of partonic collectivity at 5 GeV

- LQCD results:
 1) T_{crit} < 135 MeV
 2) HG_to_QGP transition is a crossover at μ_B/T<4
- CEP location might be in the region of T and μ_B achievable at NICA

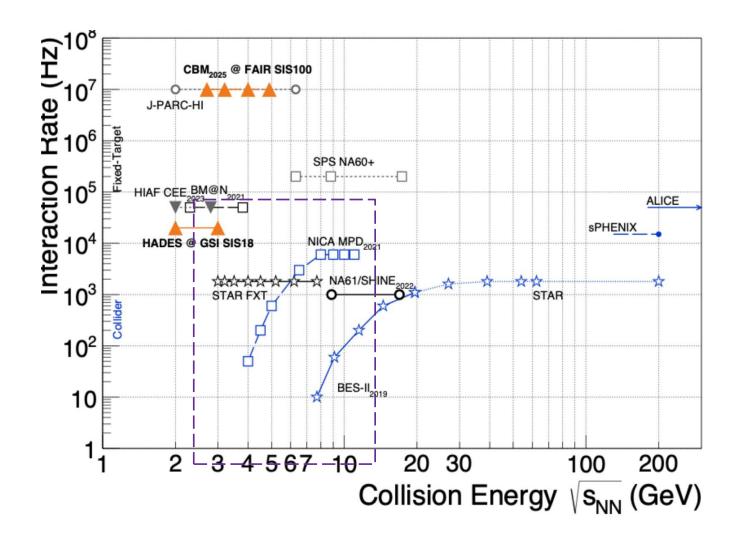
Phys. Rev. D 110, 094006 (2024)

Method	$\mu_c \; ({\rm MeV})$	$T_c \; ({ m MeV})$
Holography + Bayesian	560 - 625	101 - 108
FRG/DSE	495 - 654	108 - 119
Lee-Yang edge singularities	500 - 600	100 - 105
Lattice QCD	$\mu_c/T_c > 3$	F. Karsch et al.
Summary	495 - 654	100 - 119

$$(\mu_{c}, T_{c}) = (495 - 654, 100 - 119) \text{ MeV}$$
 3.5 $< \sqrt{s_{NN}} < 4.9 \text{ GeV}$

- Multiplicities, <pT>, azimuthal anisotropies are sensitive to EOS. Cumulants of conserved quantities and particle ratios are suggested to be sensitive to the QCD critical point. In-medium potentials: resonances and (hyper)nuclei.
- Experimental strategy: vary collision energy and system size to probe different trajectory across phase diagram

NICA - Nuclotron-based Ion Collider fAcility (JINR, Dubna)



- NICA is approaching full commissioning, all infrastructure elements are ready (cryo, electricity, water, etc.)
- Fixed target mode is fully functional, ion beams up to to ¹²⁴Xe (E/A=0.5-4.5 GeV) are provided by Nuclotron,
- The (fixed-targed) BM@N experiment has taking data (collisions with C, Ar and Xe beams are recorded)
- Collider and MPD detector commissioning : 2025 onwards

Beam species at NICA and event rates

- Many beam combinations at NICA, a beam energy and system-size scan will be performed
- A high event rate in the region of the max. baryonic density: up to 7 kHz for Au+Au collisions

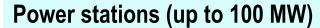
	Beam intensity (particle / cycle)		
Beam	Current	lon source type	at NICA
p	3⋅10 ¹⁰	Duoplasmotron	5·10 ¹²
d	3⋅10 ¹⁰	,,	5·10 ¹²
⁴ He	8·10 ⁸	,,	1·10 ¹²
d↑	2.108	SPI	1·10 ¹⁰
⁷ Li	8.108	Laser	5·10 ¹¹
11,10 B	1.108	,,	
¹² C	1·10 ⁹	,,	2·10 ¹¹
²⁴ Mg	2·10 ⁷	,,	
¹⁴ N	1·10 ⁷	ESIS ("Krion-6T")	5·10 ¹⁰
⁴⁰ Ar	1·10 ⁹	,,	2·10 ¹¹
⁵⁶ Fe	2·10 ⁶	,,	5·10 ¹⁰
⁸⁴ Kr	1·10 ⁴	,,	1·10 ⁹
¹²⁴ Xe	1·10 ⁴	,,	1·10 ⁹
¹⁹⁷ Au	-	,,	1·10 ⁹
²⁰⁹ Bi	-		

NICA: status of the accelerator complex

NICA HILINAC: operational, ions up to ¹²⁴Xe, work for heavier specie ongoing

NUCLOTRON : operational, beams from p to Xe E/A – 0.5-4.5 GeV

NICA Booster : operational, beams up to Xe E/A ~ 600 MeV


NICA Collider: assembled; commissioning; vacuum, cryo, power, quench protection tests

NICA: status of infrastructure and engineering systems

Detector buildings and engineering systems

Cryogenic system (100 kW, 2000 l/h He at 4.5K)

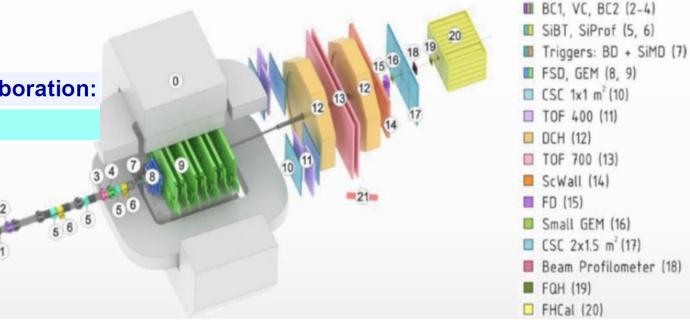
BM@N detector at NICA

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

Nucl.Instrum.Meth.A 1965 (2024) 169352


Full Length Article

The BM@N spectrometer at the NICA accelerator comp S. Afanasiev a, G. Agakishiev a, E. Aleksandrov a, I. Aleksandrov a, P. A

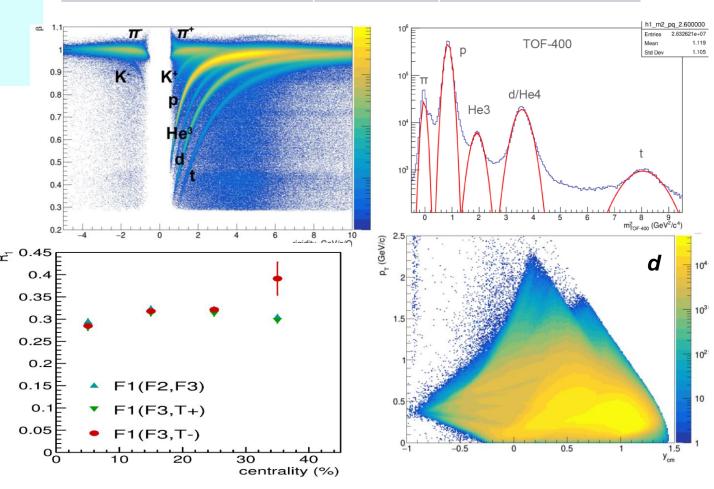
Baryonic Matter at Nuclotron (BM@N) Collaboration:

5 Countries, 13 Institutions, 214 participants

FSD, GEM, CSC, DCH: charged particle tracking + momentum measurements TOF400, TOF700: charged particle identification by m^2/β

FQH, FHCAL: event geometry, event centrality

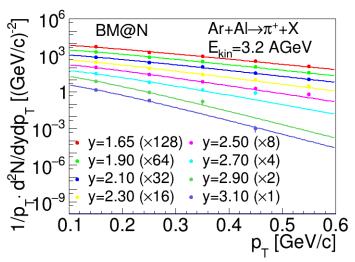
■ Magnet SP-41 (0)

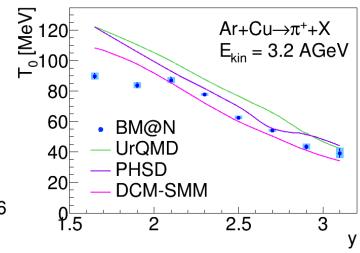

■ Vacuum Beam Pipe (1)

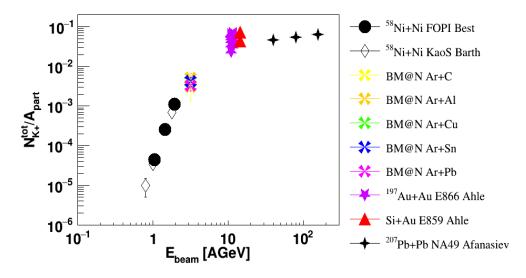
BM@N: data taking campaign and detector performance

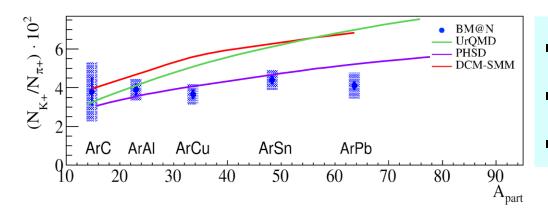
- Centrality by charged track multiplicity, pileup rejection (residual pileups ~1%)
- Event plane by azimuthal distribution of spectators in FHCAL
- Particle ID by Time Of Flight
- Good phase-space coverage in the forward hemisphere for hadrons

d P	10 ⁶	BM@N Rur f=0.40, k=0	n8, Xe+Cs .28, μ=0.42	(I), N _a =fN _{part} 22, p=0.30%	+(1-f)N c _{oll} %, χ ² /ndf=0.4	423±0.035	
	10⁴ =	The second second	THE PERSON NAMED IN COLUMN		• data	□ fit	-
	10 ³	20-25%	5-10%	0-5%	△ single	▽ pile-up	
	10 ²	THE THE PERSON NAMED IN TH		Ö	No.		
_	10			A SANSAR MANAGAMAN			
data/fit	1.2	selection of the factor	Carlandy and and an all all all all all all all all all				
	0.9			1 1 1	171.67 11.61 1 1 ₆₀ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	0.8			†	[1][[1][1][1]	•	14
	Ē.,	50	100	150	200	250	300 N _{ch}

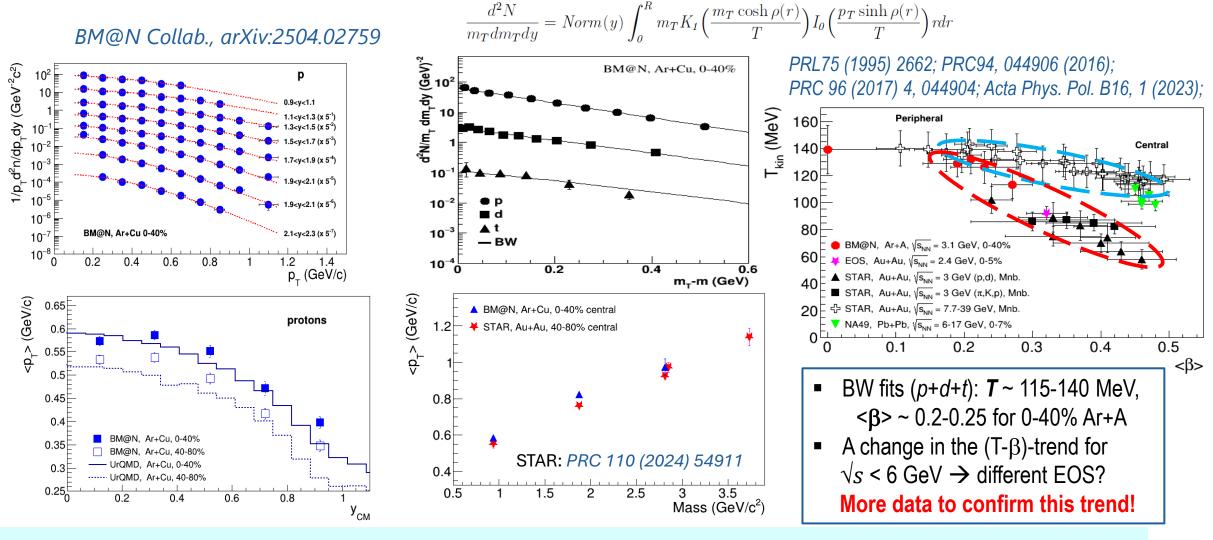

Data	\sqrt{s} (GeV)	# Events
¹² C + C, Al, Cu, Pb	4, 4.5	25M
⁴⁰ Ar + C, Al, Cu, Sn, Pb	3.1	20M
¹²⁴ Xe + CsI	3.3	500M



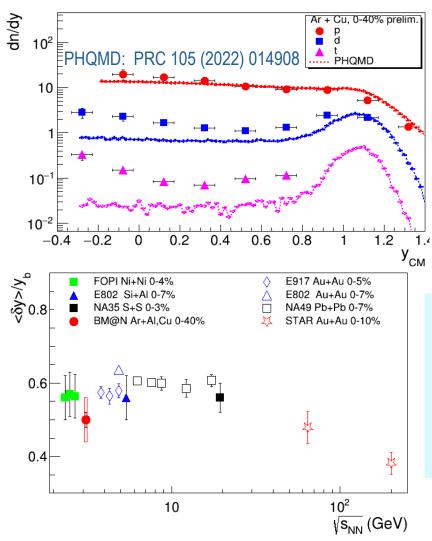

BM@N: results on π^+ and K^+ production in Ar+A at 3.2A Γ 3B

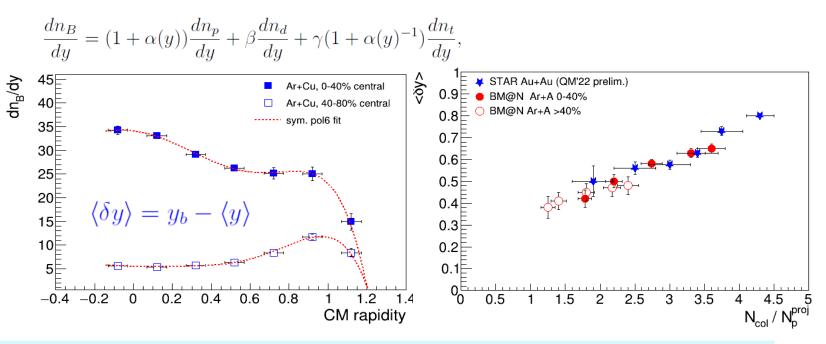

- 0-80% Ar+A(C,Al,Cu,Sn,Pb) collisions
- pT-spectra, yields and ratios of pions and kaons

BM@N Collab. JHEP 07 (2023) 174



- Max. radial expansion at midrapidity
- Fast rising trend for kaon multiplicity at BM@N energies
- K/π -ratio shows a weak system size dependence in Ar+A

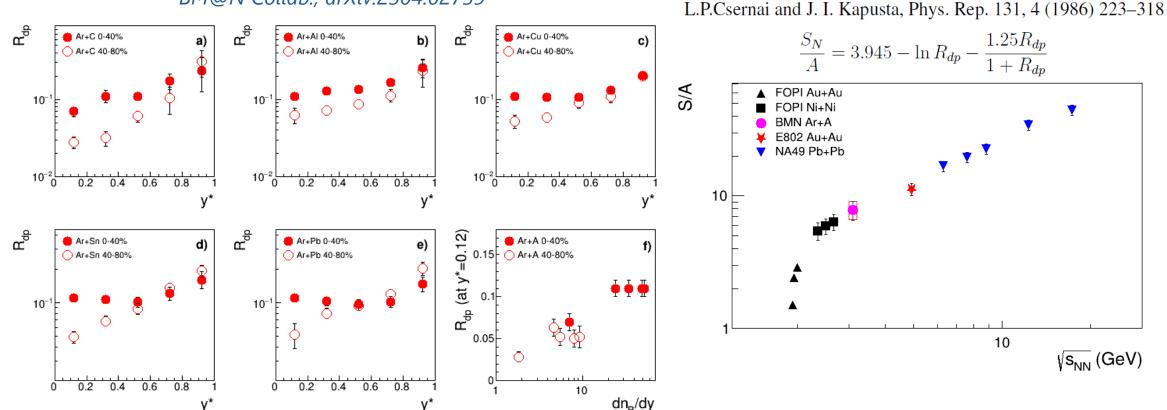

BM@N: results on p, d, t in Ar+A at 3.2A ГэВ


- <pT> rises with particle mass and has the maximum at midrapidity (max. compression)
- Models reproduce qualitatively rapidity dependence → test pT-generation mechanism?
- <pT> in Ar+Cu (0-40%) and Au+Au (40-80%) agree \rightarrow <pT> is defined by the size of the overlapping region?

BM@N results: rapidity spectra and losses in Ar+A at 3.2A ГэВ

Rapidity distributions of produced baryons are essential to quantify the momentum loss by the incoming nucleons, to estimate the initial energy and baryon density in the produced matter, and to tune model predictions

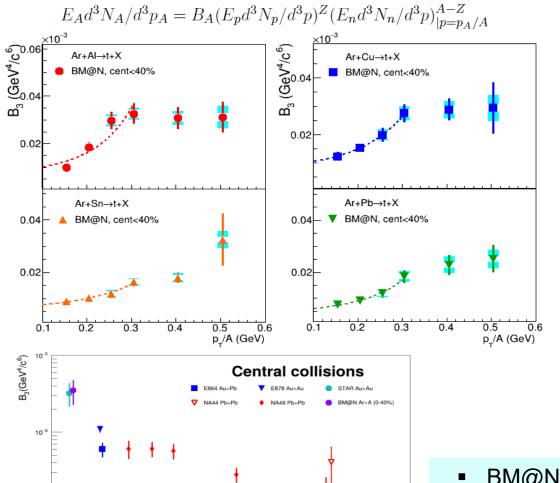
BM@N Collab., arXiv:2504.02759



- d,t: a large deficit near mifrapidity in models, coalescence produces too few clusters (indication of feeddown from excited states?)
- $<\delta y>$ rises with the target mass and centrality due to increase in the number of multiple interactions in the overlap region
- $<\delta y>$ scales with the beam rapidity in medium-size A+A over a broad energy range

BM@N results: particle ratios in Ar+A at 3.2A ГэВ

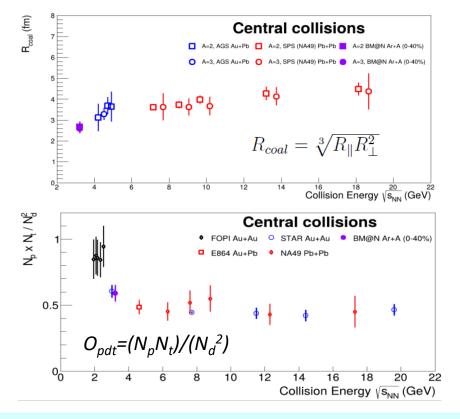
□ R_{dp} is related to the baryon phase-space density and entropy-per-baryon in the source



- R_{dp} rises towards the beam rapidity, the rise is stronger in peripheral Ar+A (increase of the contribution from nuclear fragmentation or/and the baryochemical potential plays a role)
- R_{dp} indicates a plateau in central Ar+A in addition to midrapidity R_{dp} saturation in central Ar+A
- S/A ~ 8.0 in central Ar+A (midrapidity value) and increases steady with collision energy

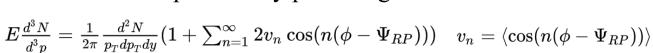
BM@N results: particle ratios in Ar+A at 3.2A ГэВ

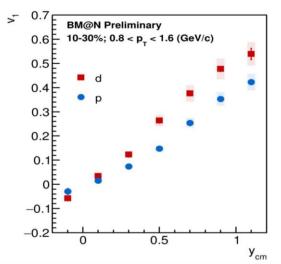
- Coalescence parameter B_{A} is related to the homogeneity volume in the source
- A peak structure in the excitation function of O_{pdt} (~ relative neutron density fluctuations) as a probe of the QCD phase diagram structure (phase transition and CEP) *K.J.Sun et al, Phys. Lett. B* 781, 499 (2018)

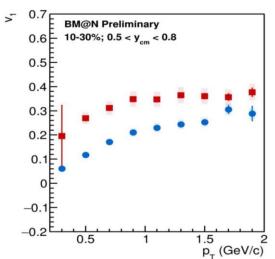

BM@N Collab., arXiv:2504.02759

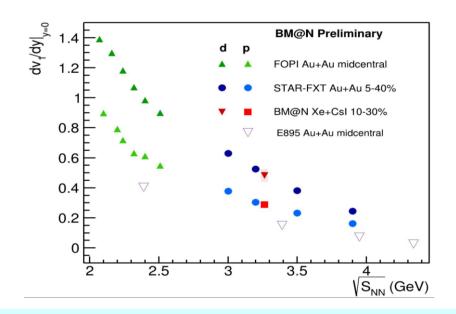
Collision Energy √s_{NN} (GeV)

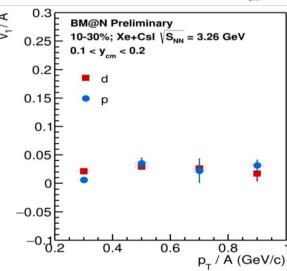
Using prescription for R_{coal} from:

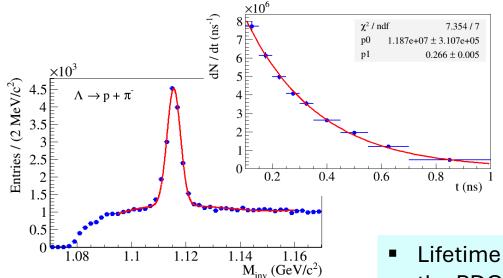

R. Scheibl and U. Heinz, Phys. Rev. C 59, 1585 (1999).

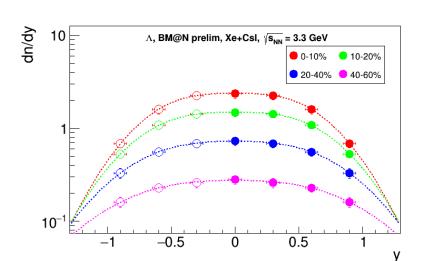


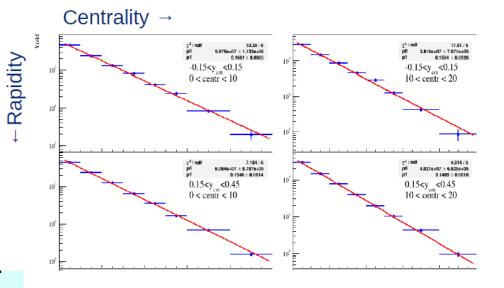

BM@N results from 0-40% central Ar+A follow the general trend of the excitation function for B_A and O_{dpt}

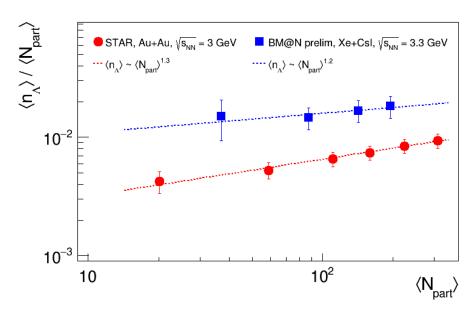

BM@N results on directed flow in Xe+CsI at E/A=3.8 GeV

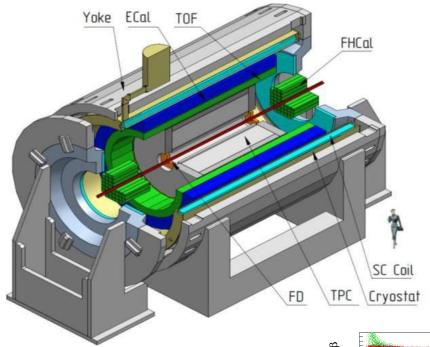

- Initial spatial asymmetry is transformed into particle momentum anisotropy
- Fourier coefficients v_n are sensitive to the matter compressibility providing access to medium properties (dof, viscosity and EOS)

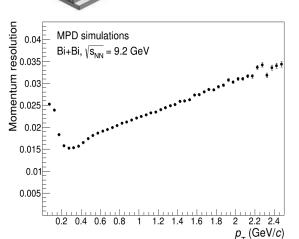


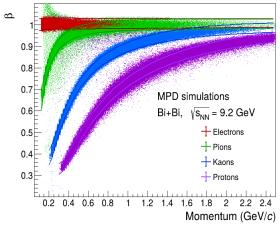


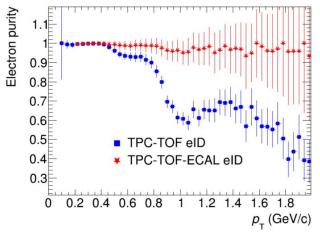

- v₁ increases with particle mass in mid-central Xe+CsI
- v₁ follows the scaling with mass number (as expected in a coalescence approach $v_{n,A}(Ap_t) = Av_n(p_t)$
- dv₁/dy close to linear scaling with mass, BM@N results follow the world data trend

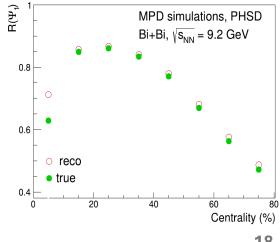

BM@N results on Λ production in Xe+CsI at E/A=3.8 GeV


- Lifetime in agreement with the PDG value
- <n_Λ > increases stronger
 than linear with N_{part} →
 energy accumulation in
 sequential NN collisions?
- A reduction of the rise with N_{parti} in Xe+CsI relative to Au+Au (higher energy and a smaller system)




Multi Purpose Detector (MPD) detector at NICA


MPD Collaboration: 12 Countries, >500 participants, 38 Institutes and JINR



- Uniform acceptance (barrel |y| < 1.5), full azimuth
- 3D tracking, combined PID (dE/dx + TOF and ECAL for e/γ)
- Precise event characterization and event plane (FHCAL)
- Fast timing and triggering (FFD)
- Upgrades (>2028) with central and endcap tracker + PID at |y|>1.5)

MPD physics objectives

Experimental strategy: energy and system size scan to measure a large variety of signals systematically changing collision parameters (energy, centrality, system size). Uniform acceptance of the setup is an advantage.

Eur. Phys. J. A (2022) 58:140 https://doi.org/10.1140/epia/s10050-022-00750-6

THE EUROPEAN PHYSICAL JOURNAL A

Status and initial physics performance studies of the MPD experiment at NICA

The MPD Collaboration

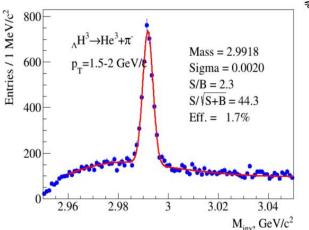
Received: 2 February 2022 / Accepted: 14 May 2022 / Published online: 27 July 2022 © The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Communicated by N. Alamanos

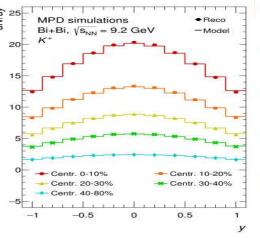
Abstract The Nuclotron-based Ion Collider (Acility (NICA) is under construction at the Joint Institute for Nuclear Research (JINR), with commissioning of the facility expected in late 2022. The Multi-Purpose Detector (MPD) has been designed to operate at NICA and its components are currently in production. The detector is expected to be ready for data taking with the first beams from NICA. This document provides an overview of the landscape of the investigation of the QCD phase diagram in the region of maximum baryonic density, where NICA and MPD will be able to provide significant and unique input. It also provides a detailed description of the MPD set-up, including its various subsystems as well as its support and computing infrastructures. Selected performance studies for particular physics measurements at MPD are presented and discussed in the context of existing data and theoretical expectations.

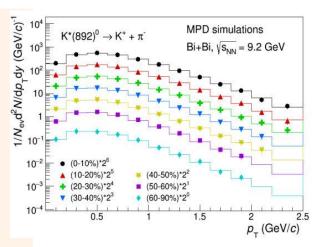
Contents

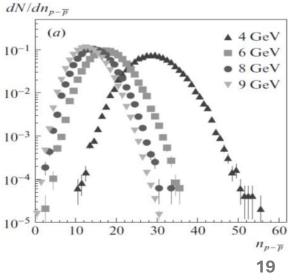
1	Introduction
2	Brief survey of the MPD physics goals
	2.1 Hadrochemistry
	2.2 Anisotropic flow measurements
	2.3 Intensity interferometry
	2.4 Fluctuations
	2.5 Short-lived resonances
	2.6 Electromagnetic probes
3	MPD apparatus
	3.1 Magnet
	3.2 Time projection chamber
	3.3 Time of flight
	3.4 Electromagnetic calorimeter
	3.5 Forward hadron calorimeter
	3.6 Fast forward detector
	3.7 Plans for additional detectors

	3.7.1 The inner tracking system	21
	3.7.2 The miniBeBe detector	22
	3.7.3 The cosmic ray detector	22
	3.8 Infrastructure and support systems	23
	3.8.1 MPD Hall	23
	3.8.2 Mechanical integration and support struc-	
	ture	23
	3.8.3 Support sytems	24
	3.9 Electronics	
	3.9.1 Slow control system	
	3.9.2 Data acquisition	
4	Software development and computing resources for	
	the MPD experiment	25
	4.1 Software	25
	4.2 Computing	26
	4.3 Preparation for data taking	26
5	Examples of physics feasibility studies	27
	5.1 Centrality determination	27
	5.2 Bulk properties: hadron spectra, yields and ratios	30
	5.3 Hyperon reconstruction	32
	5.3.1 A, A and ∃ reconstruction	32
	5.3.2 Ξ ⁺ and Ω [∓] reconstruction	
	5.4 Reconstruction of resonances	
	5.5 Electromagnetic probes	35
	5.6 Anisotropic flow	
	5.7 Event-by-event net-proton and net-kaon studies	41
6	Conclusions	43
R	eferences	43
1	Introduction	


The Multi-Purpose Detector (MPD) is one of the two dedicated heavy-ion collision experiments of the Nuclotronbased Ion Collider fAcility (NICA), one of the flagship projects, planned to come into operation at the Joint Institute for Nuclear Research (JINR) in 2022. Its main scientific purpose is to search for novel phenomena in the baryon-rich region of the QCD phase diagram by means


MPD Tasks and Observables:


- Bulk properties, EOS, phase diagram mapping particle yields & spectra, femtoscopy, flow
- *In-Medium modification of hadron properties* LM and IM dilepton production, resonances
- Phase transition at high ρ_{R} (Multi)strangeness production
- **QCD Critical Point** event-by-event fluctuations and correlations


EOS @ NS densities, in-medium Λ -N potentials



^{*}e-mail: avala@nucleares unam.mx

MPD detector: status of subsystems

Magnet: at 4.2 K, under magnetic field measurements

FHCAL: test installation in the magnet pole

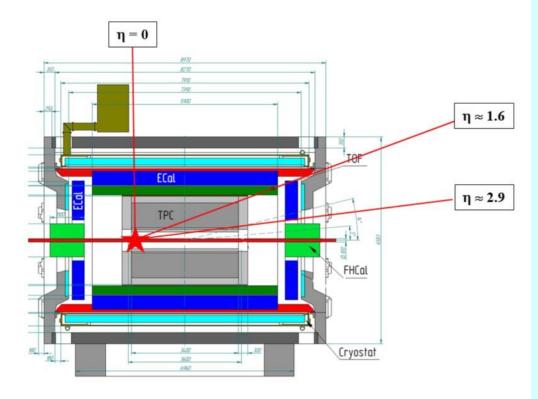
ECAL: 85% of modules will be installed in 2025

TOF: MRPC modules are subject of cosmic ray tests

Fully assembled detector - by the end of 2025, commissioning with beams in 2026

MPD: status of infrastructure and assembling tooling

- Cryogenics, cabling, piping, cooling, electronics etc.
- Tooling for installation of MPD subsystems



NICA/MPD tasks during the commissioning phase (2025-26)

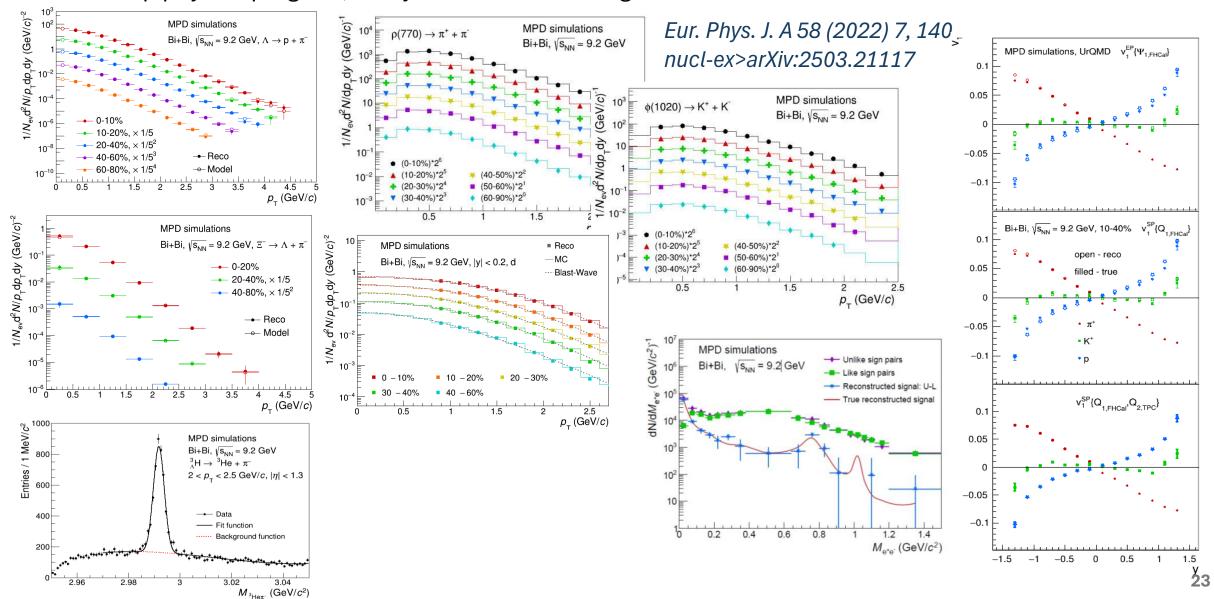
NICA FirstDay parameters:

- 124Xe, E_{beam} 3.4A GeV, Luminosity up to 10²⁶
- Collider (CLD) and Fixed target (FXT) operation modes at MPD start-up $\sqrt{s} = 7$ (CLD) 3 (FXT) GeV

Estimated data set volume 50-100 MEvents

- After MPD assembly, specific calibration and alignment runs (laser and cosmic data for TPC, TOF, ECAL) start.
- MPD in the RUN position beam tuning and start of data taking

MPD tasks during the First Day data taking:

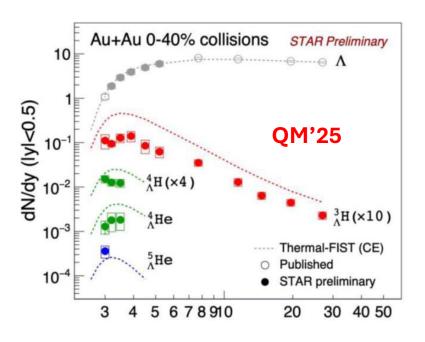

- Estimation of the triggering efficiency, event centrality classes, momentum resolution, reaction plane
- Estimate of total charged particle multiplicity density and total transverse energy
- Measurement of basic observables robust against less precise particle ID: elliptic and directed flow, particle/antiparticle ratios, two-pion interferometry, spectra and yield of hyperons via secondary vertex reconstruction w/o PID

After calibration of the PID response and TPC-TOF matching:

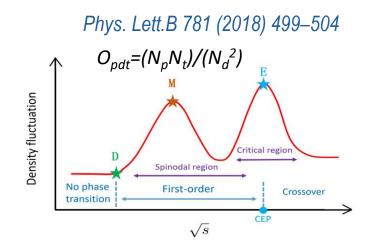
Continuation with the complete physics program of MPD with identified hadrons: identified particle spectra, yields and ratios, reconstruction of hyperons and resonances with final efficiency, correlation and fluctuation measurements, etc.

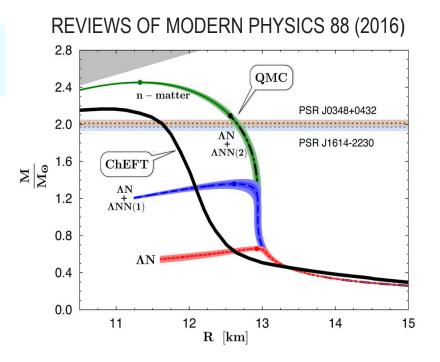
MPD feasibility study (CLD)

- Physics feasibility studies using large-scale Monte Carlo productions
- Develop physics program, analysis methods and algorithms

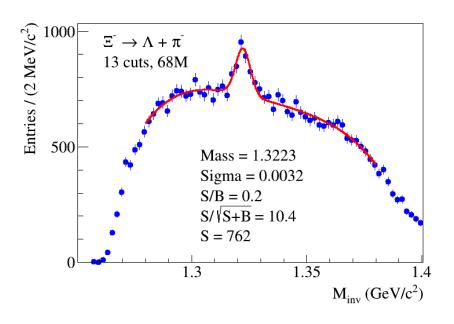

Summary

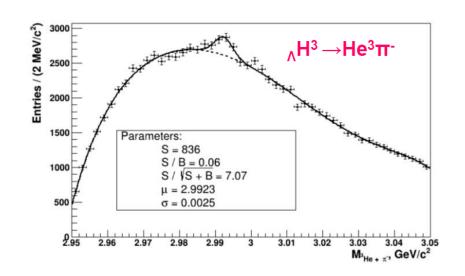
- NICA collider and MPD detector is close to the commissioning phase
- Experimental data for C+A, Ar+A, Xe+CsI collisions are recorded by the BM@N experiment at the Nuclotron accelerator (NICA complex, JINR). Production of charged hadrons, hyperons and light nuclei is under study.
- 40Ar+A collisions: pT-spectra, rapidity distributions, ratios of hadrons are obtained in centrality selected events over the forward rapidity range:
 - K^+/π^+ ratio indicates a weak system-size dependence in Ar+A collisions
 - $<\delta y>$ for baryons grows with the system size and scales with y_{beam} within the NICA energy range
 - d/p-ratio indicates a saturation near midrapidity, entropy per baryon S/A is estimated
 - Coalescence parameters and source radii for deuterons and tritons are compared to world data
 - O_{pdt} ratio in Ar+A collisions at 3.1 GeV follows the overall excitation function trend
- 124Xe+CsI collisions (BM@N prelim.):
 - v_1 increases with particle mass for p,d and follows the scaling with mass number (coalescence)
 - dv_1/dy is close to a linear scaling with mass, BM@N results follow the world data trend
 - <n $_{\Lambda}>$ increases stronger than linear with N_{part}

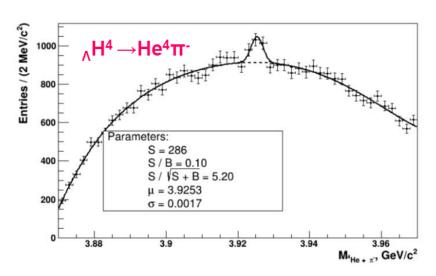

Spares


Nuclear matter in the high- μ_B region : (hyper)nuclei

- Light (hyper)nuclei : weekly bound objects are copiously formed in hot and dense matter, max. production rates at 3 GeV
- Yields and ratios allow testing reaction dynamics, momentum-space correlations, and dynamical fluctuations (CEP)
- YN and YY potential are crucial for the nuclear matter EOS at high density (nuclear physics and astrophysics)
- Models reproduce the trend of the hypernuclei excitation function, but overestimate the yields
- Hyperon dof makes EoS for neutron stars softer and the max NS radius smaller → in contradiction with observations

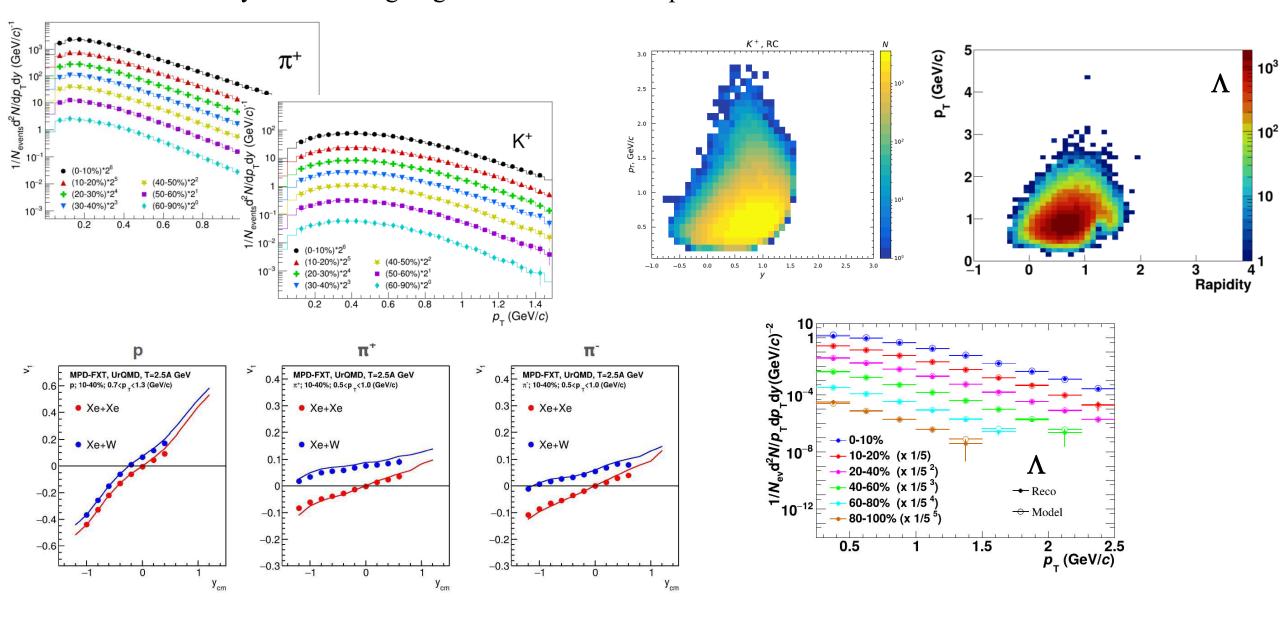

 Relative neutron density fluctuation related to spinodal instability at CEP

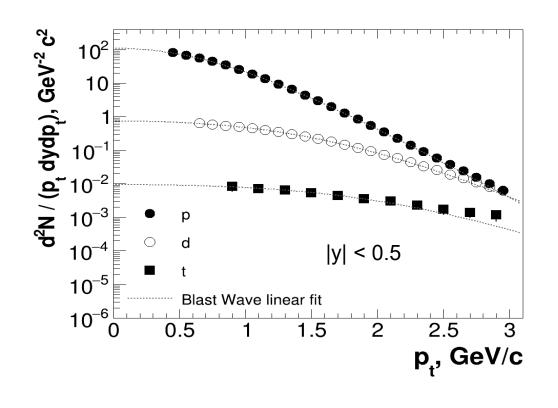




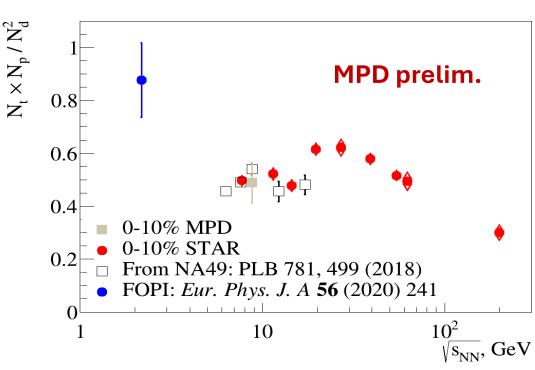
New data on (hyper)nuclei yields and ratios, binding energies, lifetimes, branching ratios are needed to provide tighter constrains to EOS, to observe signals on critical phenomena and provide input for models

BM@N: reconstruction of cascades and hypertritons in Xe+CsI



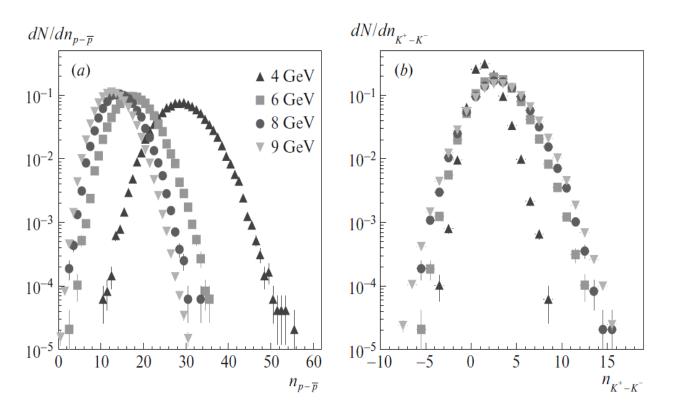

MPD feasibility study (FXT)

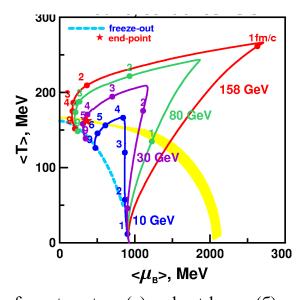
MPD feasibility studies using large-scale Monte Carlo productions for Xe+W at 3 GeV

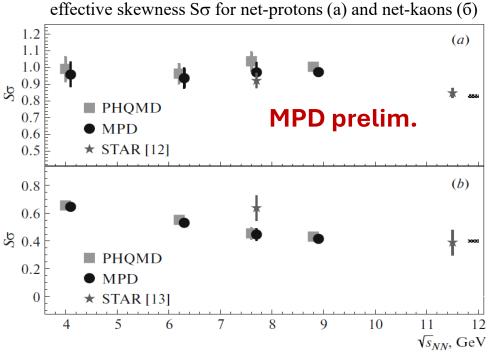


MPD: particle yields ratio in the analysis of density fluctuations

■ A peak structure in the excitation function of relative neutron density fluctuations as a probe of the QCD phase diagram structure – *K.J.Sun et al, Phys. Lett. B 781, 499 (2018)*







MPD: prospects for CEP search in net-proton and net-strangeness fluctuations

- Moments of event-by-event multiplicity distributions or cumulant ratios are directly compared to susceptibilities, which diverge in the proximity of CEP
- MPD has a large uniform acceptance for hadrons and good per-event PID
 capability → good prospects for the study strangeness and baryon number fluctuations

