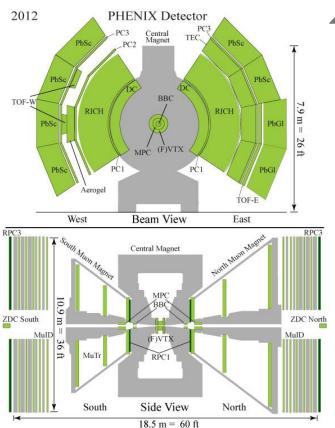
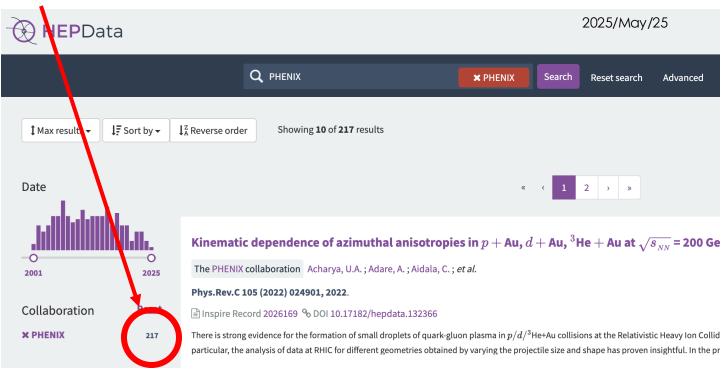


Recent Highlights From the PHENIX Experiment


Maya Shimomura for the PHENIX Collaboration
Nara Women's University
May 29, 2025

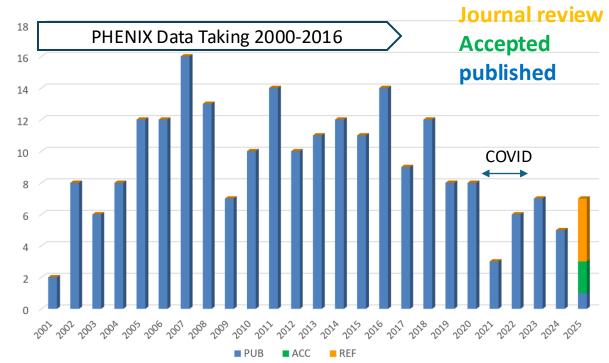
2


- PHENIX had been in operation for 16 years since 2000 at BNL-RHIC.
- Data with 9 collision species and 9 collision energies have been obtained.
- Data taking is completed in 2016
- Collaboration is actively working for data analysis.

PHENIX results are in HEPData!!

- 217 papers are in the database and ready to use!

225 physics papers published


_	Phys. Rev. Lett.	77
_	Phys. Rev. C	95
_	Phys. Rev. D	47
_	Nature Physics	1
_	Phys. Letter B	4
_	Nucl. Phys. A	1

Total citation: ~37000

	iotai citatioiii	3,000
•	Topcite 1000+	3
	- 500-1000	7
	- 250-500	24
	– 100-250	67
	- 50-100	45

PHENIX White Paper: 3797 cites
Jet quenching discovery: 1261 cites
PID hadron in AuAu: 1037 cites
Nature P paper: 345 citations
146 physics papers in topcite 50+
(167 if proceedings and detector
papers are included)

Published PHENIX papers in each year

Recent publications from PHENIX

5

[PRL 134, 022302 (2025)] Disentangling centrality bias and final-state effects in the production of high- $p_{\underline{T}}\pi^0$ using direct γ in d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

[PRC 109, 044912 (2024)] Nonprompt direct-photon production in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

[PRC 109, 054910 (2024)] Identified charged-hadron production in p+Al, 3He+Au, and Cu+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and in U+U collisions at $\sqrt{s_{NN}} = 193$ GeV

[PRC 110, 044901 (2024)] Jet modification via at $\sqrt{s_{NN}}$ = 200 GeV π^0 -hadron correlations in Au+Au collisions

[PRC 110, 064909 (2024)] Centrality dependence of Lévy-stable two-pion Bose-Einstein correlations in $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions

[PRC 109, 044907 (2024)] Charm- and bottom- quark production in AuAu collisions at \sqrt{s}_{NN} = 200GeV

[PRC 107, 014907 (2023)] Measurement of ϕ -meson production in Cu+Au collisions at \sqrt{s}_{NN} = 200 GeV and U+U collisions at \sqrt{s}_{NN} = 193 GeV

PRC accepted ![arXiv:2409.12756] Measurement of J/ψ elliptic flow in $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions at forward rapidity

PRD accepted ![arXiv:2408.11144] Measurement of inclusive jet cross-section and substructure in p + p collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

[arXiv:2409.12715] Measurements at forward rapidity of elliptic flow of charged hadrons and open-heavy flavor muons in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

[arXiv:2409.03728] Multiplicity dependent J/ψ and ψ (2S) production at forward and backward rapidity in p + p in collisions at $\sqrt{s_{NN}} = 200$ GeV

[arXiv:2504.02955] Azimuthal anisotropy of direct-photons in Au+Au collisions at sNN = 200GeV

DOE highlight and Editor's suggestion

DOE highlight!

[PRL 134, 022302 (2025)]

Disentangling centrality bias and final-state effects in the production of high- $p_T \pi^0$ using direct γ in d+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Office of Science > Science & Innovation > Science Highlights

Science Highlights

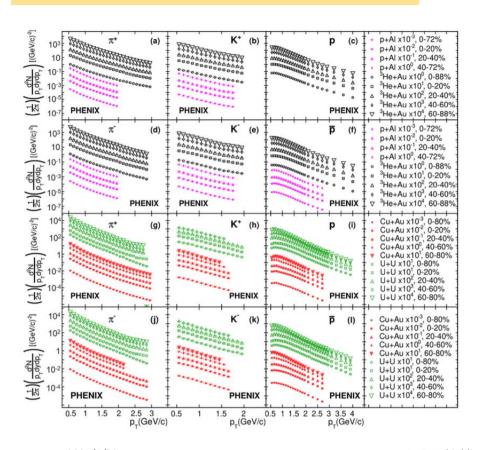
Fresh Direct Evidence for Tiny Drops of Quark-Gluon

<u>Plasma</u>

Particles of light from collisions of deuterons with gold ions provide direct evidence that energetic jets get stuck.

Editor's suggestion!

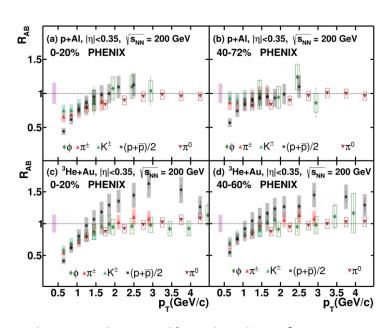
[PRC 110, 064909 (2024)]


Centrality dependence of Lévy-stable two-pion Bose-Einstein correlations in $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions

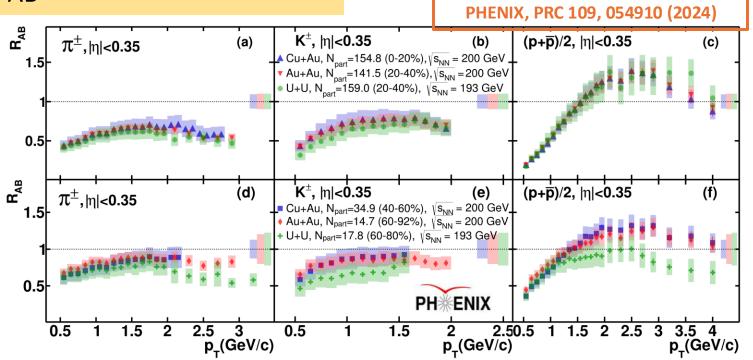
(1)PID Charged hadron measurement at various collision systems

- π^0 R_{AA} with experimental N_{coll} at small system
- Centrality Dependence of Lévy-stable Two-Pion Correlations (HBT)
- (2)Heavy flavor at mid and forward rapidity(3)Direct photon with large statistics

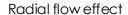
(1)PID Charged hadron measurement at various collision systems

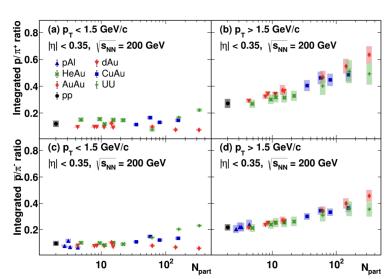

PID Charged hadrons

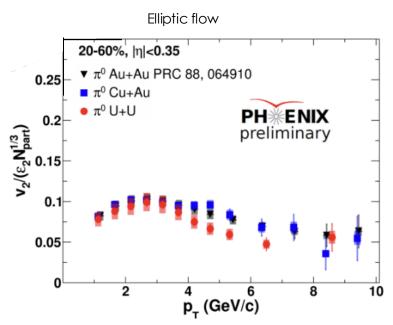
PHENIX, PRC 107, 014907 (2023)


PHENIX, PRC 109, 054910 (2024)

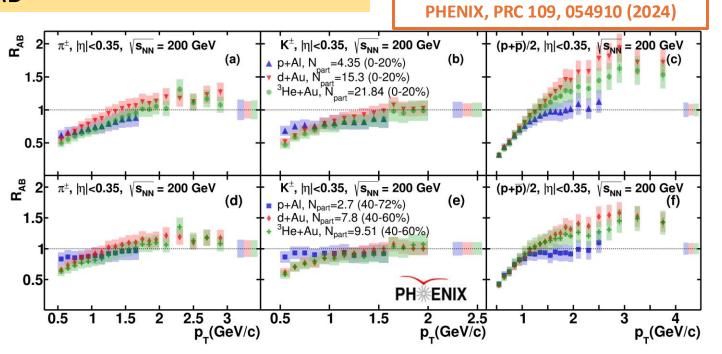
The systematic study of various collision systems are preformed.

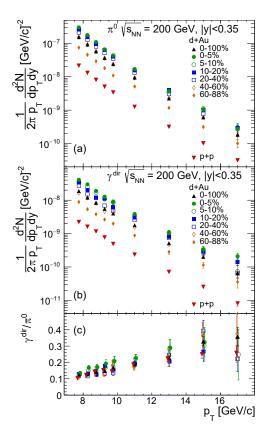





 R_{AA} in large system depends on collision overlap size (N_{part}) but not collision systems

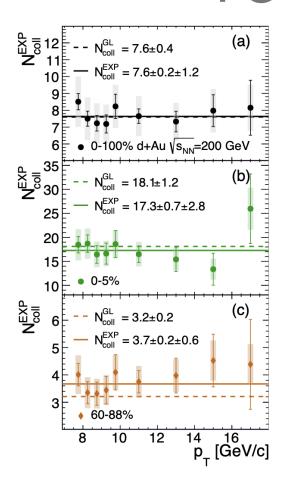
Flow measurements

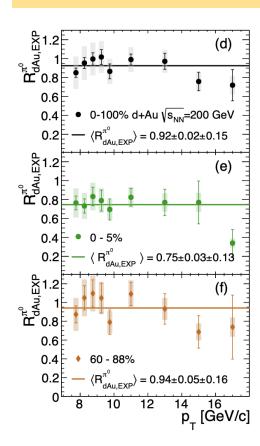


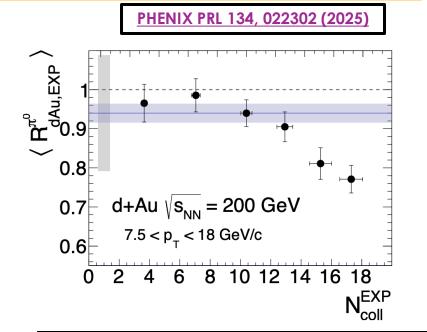


- Baryon enhancement is stronger in larger system.
- v₂ is consistent with N_{part}^{1/3} scaling.

R_{AB} in small systems

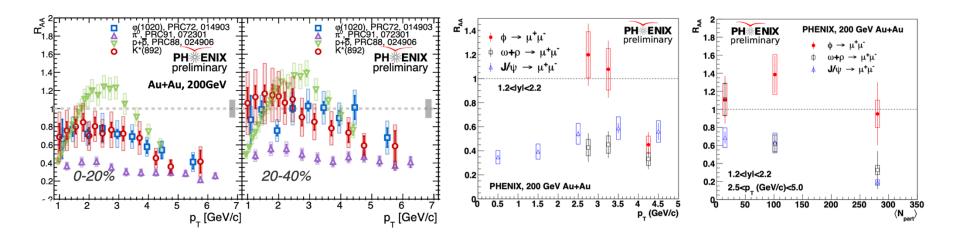



- Small system also has dependence of the collision overlap size (N_{part})
- Proton R_{AB} at high p_T is not ordering of N_{part}
 - d+Au is imbalanced most



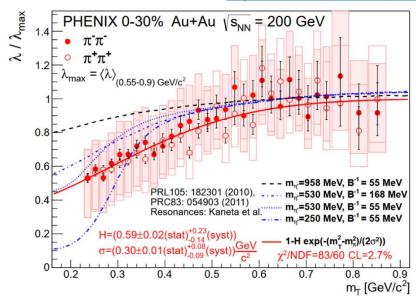
Since γ^{dir} is not suppressed, N_{coll} can be redefined by γ^{dir} ratio of d+Au to pp experimentally

$$N_{\text{coll}}^{\text{EXP}}(p_T) = rac{Y_{d\text{Au}}^{\gamma^{dir}}(p_T)}{Y_{pp}^{\gamma^{dir}}(p_T)}$$



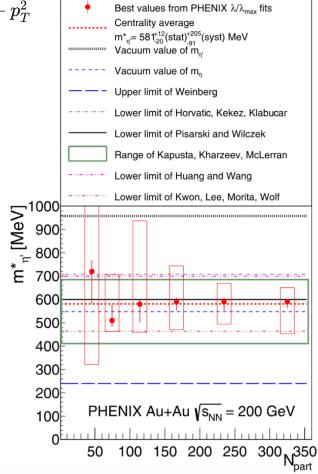
Clear suppression can be seen at central in d+Au while it's consistent to 1 at peripheral

Fresh direct evidence of **the tiny droplet QGP**

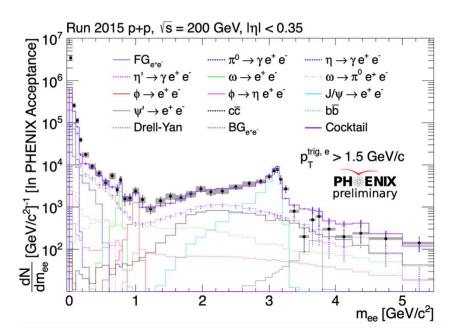

 R_{AA} for φ is measured. Evidence of strangeness enhancement at mid- and forward rapidity

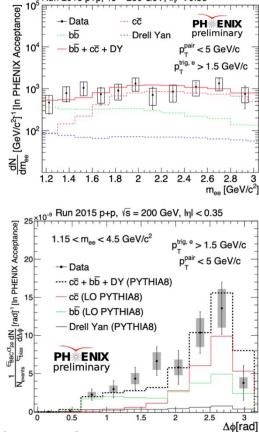
Hint of U(1) transition

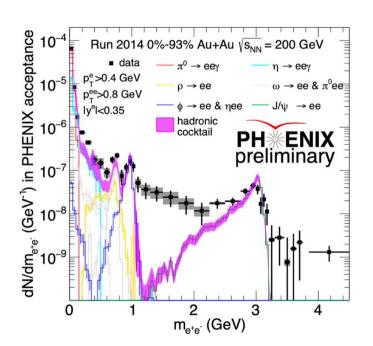
$$m_T = \sqrt{m^2 + p_T^2}$$

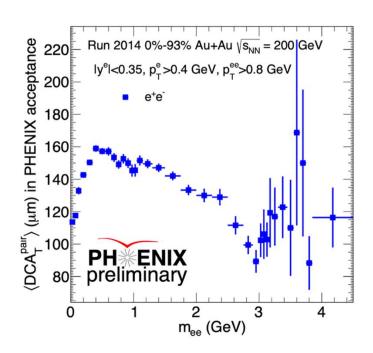

16

Phys. Rev. C 110, 064909 (2024)

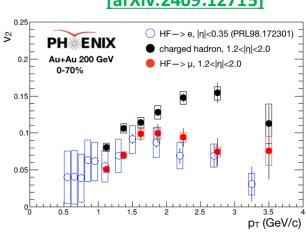

Levy HBT results are not inconsistent with theoretical models including in-medium mass modification of η^\prime


• It calls for direct measurement of n' mass

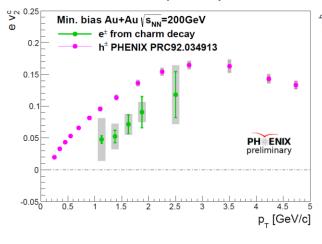

(2)Heavy flavor at mid and forward rapidity


Disentangling charm and bottom in p+p for dileptons

Heavy flavor and Drell-Yan contributions obtained from LO PYTHIA reproduce the data reasonably well


Disentangle the heavy flavor and thermal contribution using the DCA technique in the intermediate mass region

PH ENIX


p_ [GeV/c]

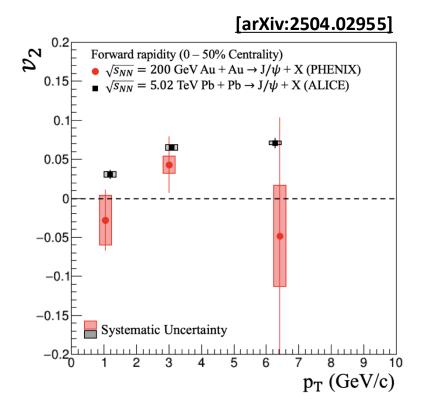
Forward rapidity

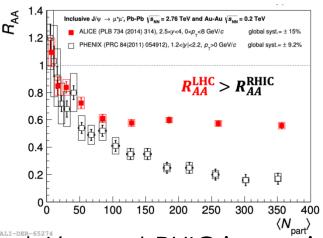
[arXiv:2409.12715]

Mid rapidity

Mid rapidity

e[±] from bottom decay

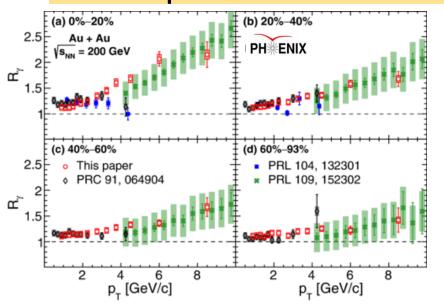

h[±] PHENIX PRC92.034913

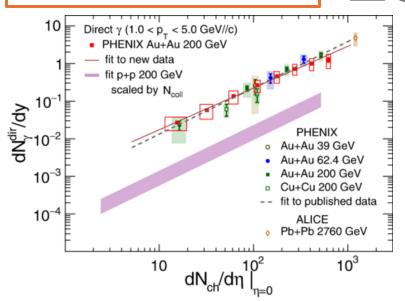

Min. bias Au+Au √s_{NN}=200GeV

 $v_2^b(b\rightarrow e)$

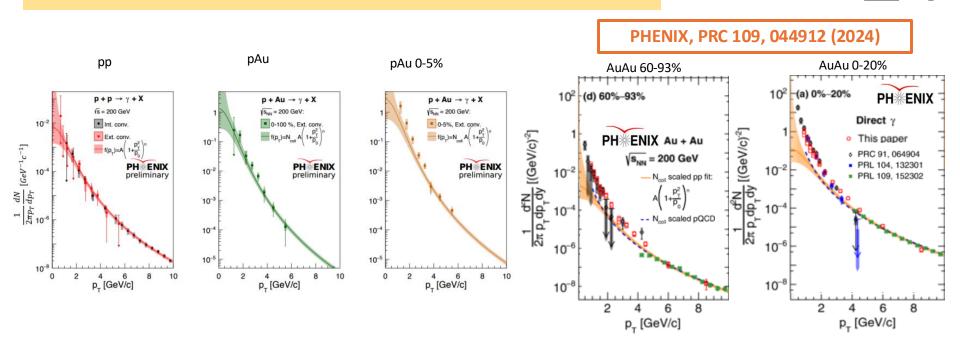
- HF v₂ is positive both at forward and mid rapidity and mostly consistent
- Hadron $v_2 > HF v_2$ and $v_{2c} > v_{2b}$
- Heavier quarks has less flow as expected

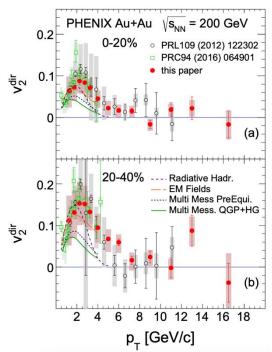
PHENIX, PRC 84, 054912 (2011)



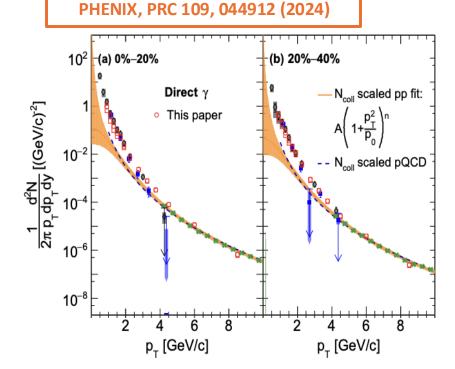


- Forward $J/\psi v_2$ at RHIC is consistent with zero, while it's non-zero at LHC energy
- -> Consistent to the regeneration scenario of charm and anti-charm at LHC energy


(3)Direct photons



- External conversion method and large statistics give precise measurement for wider p_T ranges for all centrality bins
 - The scaling of yields holds for various large systems



Larger system has more enhancement at low p_T compared with N_{coll} scaled pp
 → seems to relate to QGP size ?

[arXiv:2504.02955]

Low $p_T v_2$ is large as hadrons. High p_T is consistent with zero.

Yield enhancement and large v_2 at low p_T \rightarrow might be due to hadronization photons ??

Summary

· Charged hadrons

- PHENIX measured charged hadron production at small to large various collision systems and found mostly R_{AA} only depends on overlap volume(N_{part}).
- Experimental N_{coll} methods shows the direct evidence of the tiny droplet QGP.
- Strangeness enhancement is observed at mid- and forward rapidity.
- Levy HBT results are not inconsistent with theoretical models including in-medium mass modification of η'

· Heavy flavor

- c/b separated HF v₂ are successfully measured.
- Heavy flavor and Drell-Yan contributions obtained from LO PYTHIA reproduce the data reasonably well
- Disentangle the heavy flavor and thermal contribution using the DCA technique in the intermediate mass region
- Excellent agreement with FONLL+CEM predictions over a wide rapidity range.
- Heavier quarks has less flow as expected
- Measurement of the forward J/ ψ v₂ are performed and it's consistent to zero unlike LHC result.

Direct photons

- External conversion method and large statistics give precise measurement for wide p_T ranges and all centrality bins, and the scaling of yields holds for various large systems.
- Non-prompt direct photon are extracted and show the T_{eff} has the dependences of the p_T
- Low p_T v₂ is large as hadrons while high p_T v₂ is consistent with zero.

PHENIX is active. New results are coming. Stay tune!