Hunting for New physics in Large Scale Structure of the Universe

Salvatore Bottaro

The relevance of LSS today...

+lowE+lensing+BAO 68% limits		TT,TE,EE+lowE+lensing 68% limits	TT,TE,EE+lowE 68% limits	EE+lowE 68% limits	TE+lowE 68% limits	TT+lowE 68% limits	Parameter
2242 ± 0.00014	0.02242 ± 0.0	0.02237 ± 0.00015	0.02236 ± 0.00015	0.0240 ± 0.0012	0.02249 ± 0.00025	0.02212 ± 0.00022	$\Omega_{\mathrm{b}}h^2$
1933 ± 0.00091	0.11933 ± 0.0	0.1200 ± 0.0012	0.1202 ± 0.0014	0.1158 ± 0.0046	0.1177 ± 0.0020	0.1206 ± 0.0021	$\Omega_{\mathrm{c}}h^2$
4101 ± 0.00029	1.04101 ± 0.0	1.04092 ± 0.00031	1.04090 ± 0.00031	1.03999 ± 0.00089	1.04139 ± 0.00049	1.04077 ± 0.00047	$100\theta_{\mathrm{MC}}$
0.0561 ± 0.0071	0.0561 ± 0.0	0.0544 ± 0.0073	$0.0544^{+0.0070}_{-0.0081}$	0.0527 ± 0.0090	0.0496 ± 0.0085	0.0522 ± 0.0080	τ
$.047 \pm 0.014$	3.047 ± 0.0	3.044 ± 0.014	3.045 ± 0.016	3.052 ± 0.022	$3.018^{+0.020}_{-0.018}$	3.040 ± 0.016	$ln(10^{10}A_s)$
9665 ± 0.0038	0.9665 ± 0.0	0.9649 ± 0.0042	0.9649 ± 0.0044	0.980 ± 0.015	0.967 ± 0.011	0.9626 ± 0.0057	$n_{\rm s}$
67.66 ± 0.42	$67.66 \pm 0.$	67.36 ± 0.54	67.27 ± 0.60	69.9 ± 2.7	68.44 ± 0.91	66.88 ± 0.92	$H_0 [\text{km s}^{-1} \text{Mpc}^{-1}] . .$
6889 ± 0.0056	0.6889 ± 0.0	0.6847 ± 0.0073	0.6834 ± 0.0084	$0.711^{+0.033}_{-0.026}$	0.699 ± 0.012	0.679 ± 0.013	Ω_{Λ}
3111 ± 0.0056	0.3111 ± 0.0	0.3153 ± 0.0073	0.3166 ± 0.0084	$0.289^{+0.026}_{-0.033}$	0.301 ± 0.012	0.321 ± 0.013	Ω_m
9	0.9	0.9649 ± 0.0042 67.36 ± 0.54 0.6847 ± 0.0073	0.9649 ± 0.0044 67.27 ± 0.60 0.6834 ± 0.0084	0.980 ± 0.015 69.9 ± 2.7 $0.711^{+0.033}_{-0.026}$	0.967 ± 0.011 68.44 ± 0.91 0.699 ± 0.012	0.9626 ± 0.0057 66.88 ± 0.92 0.679 ± 0.013	$n_{\rm s}$

The relevance of LSS today...

Parameter	TT+lowE 68% limits	TE+lowE 68% limits	EE+lowE 68% limits	TT,TE,EE+lowE 68% limits	TT,TE,EE+lowE+lensing 68% limits	TT,TE,EE+lowE+lensing+BAO 68% limits
$\Omega_{ m b} h^2$	0.02212 ± 0.00022	0.02249 ± 0.00025	0.0240 ± 0.0012	0.02236 ± 0.00015	0.02237 ± 0.00015	0.02242 ± 0.00014
$\Omega_{ m c} h^2$	0.1206 ± 0.0021	0.1177 ± 0.0020	0.1158 ± 0.0046	0.1202 ± 0.0014	0.1200 ± 0.0012	0.11933 ± 0.00091
$100\theta_{\mathrm{MC}}$	1.04077 ± 0.00047	1.04139 ± 0.00049	1.03999 ± 0.00089	1.04090 ± 0.00031	1.04092 ± 0.00031	1.04101 ± 0.00029
τ	0.0522 ± 0.0080	0.0496 ± 0.0085	0.0527 ± 0.0090	$0.0544^{+0.0070}_{-0.0081}$	0.0544 ± 0.0073	0.0561 ± 0.0071
$\ln(10^{10}A_{\rm s})$	3.040 ± 0.016	$3.018^{+0.020}_{-0.018}$	3.052 ± 0.022	3.045 ± 0.016	3.044 ± 0.014	3.047 ± 0.014
n_{s}	0.9626 ± 0.0057	0.967 ± 0.011	0.980 ± 0.015	0.9649 ± 0.0044	0.9649 ± 0.0042	0.9665 ± 0.0038
$H_0 [{\rm km s^{-1} Mpc^{-1}}] . .$	66.88 ± 0.92	68.44 ± 0.91	69.9 ± 2.7	67.27 ± 0.60	67.36 ± 0.54	67.66 ± 0.42
Ω_{Λ}	0.679 ± 0.013	0.699 ± 0.012	$0.711^{+0.033}_{-0.026}$	0.6834 ± 0.0084	0.6847 ± 0.0073	0.6889 ± 0.0056
Ω_{m}	0.321 ± 0.013	0.301 ± 0.012	$0.289^{+0.026}_{-0.033}$	0.3166 ± 0.0084	0.3153 ± 0.0073	0.3111 ± 0.0056

CMB already measures the cosmological parameters at the sub percent level

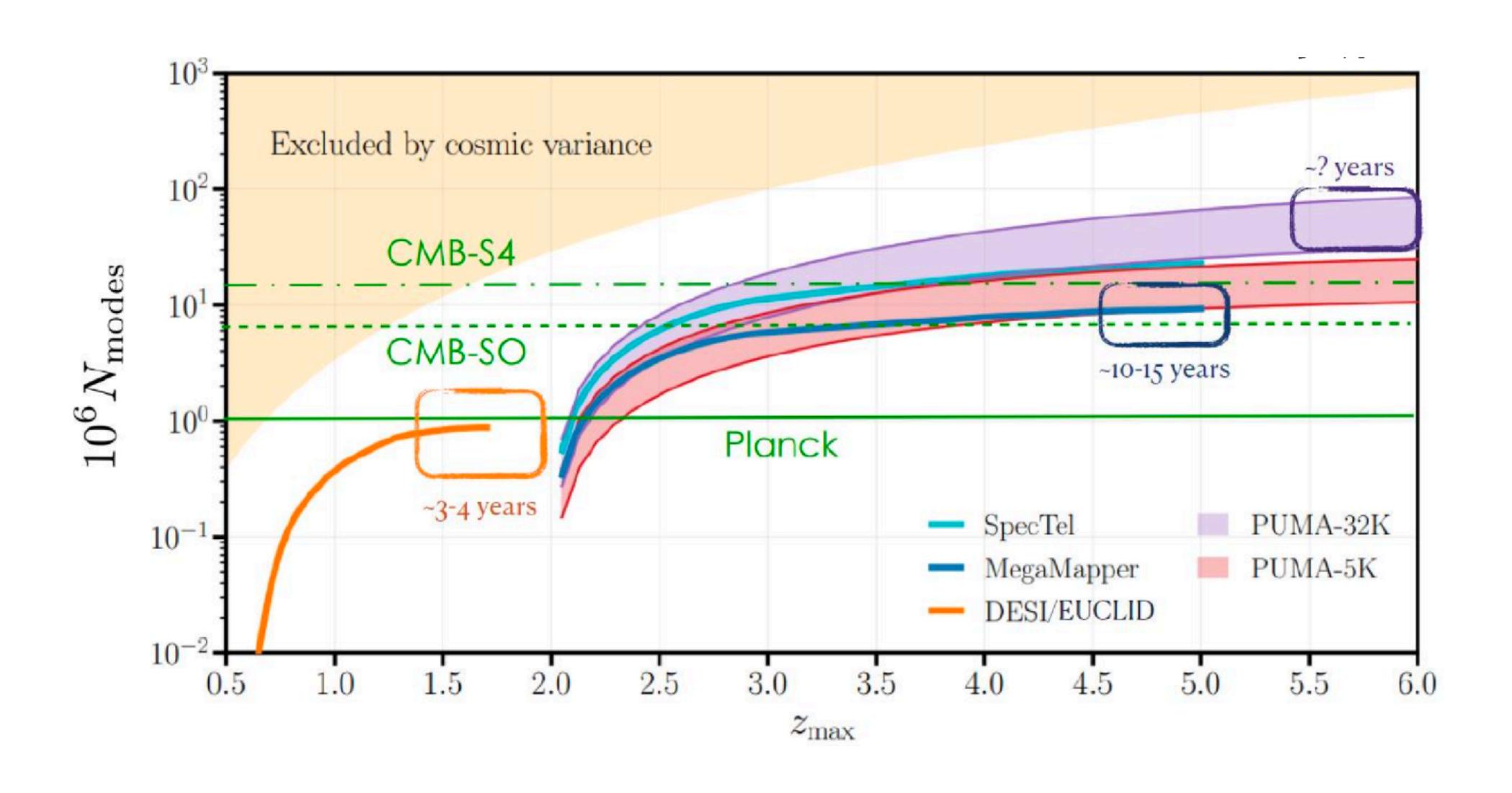
The relevance of LSS today...

Parameter	TT+lowE 68% limits	TE+lowE 68% limits	EE+lowE 68% limits	TT,TE,EE+lowE 68% limits	TT,TE,EE+lowE+lensing 68% limits	TT,TE,EE+lowE+lensing+BAO 68% limits
$\Omega_{\mathrm{b}}h^2$	0.02212 ± 0.00022	0.02249 ± 0.00025	0.0240 ± 0.0012	0.02236 ± 0.00015	0.02237 ± 0.00015	0.02242 ± 0.00014
$\Omega_{ m c} h^2$	0.1206 ± 0.0021	0.1177 ± 0.0020	0.1158 ± 0.0046	0.1202 ± 0.0014	0.1200 ± 0.0012	0.11933 ± 0.00091
$100\theta_{\mathrm{MC}}$	1.04077 ± 0.00047	1.04139 ± 0.00049	1.03999 ± 0.00089	1.04090 ± 0.00031	1.04092 ± 0.00031	1.04101 ± 0.00029
τ	0.0522 ± 0.0080	0.0496 ± 0.0085	0.0527 ± 0.0090	$0.0544^{+0.0070}_{-0.0081}$	0.0544 ± 0.0073	0.0561 ± 0.0071
$\ln(10^{10}A_{\rm s})$	3.040 ± 0.016	$3.018^{+0.020}_{-0.018}$	3.052 ± 0.022	3.045 ± 0.016	3.044 ± 0.014	3.047 ± 0.014
n_{s}	0.9626 ± 0.0057	0.967 ± 0.011	0.980 ± 0.015	0.9649 ± 0.0044	0.9649 ± 0.0042	0.9665 ± 0.0038
$H_0 [{\rm km s^{-1} Mpc^{-1}}] . .$	66.88 ± 0.92	68.44 ± 0.91	69.9 ± 2.7	67.27 ± 0.60	67.36 ± 0.54	67.66 ± 0.42
Ω_{Λ}	0.679 ± 0.013	0.699 ± 0.012	$0.711^{+0.033}_{-0.026}$	0.6834 ± 0.0084	0.6847 ± 0.0073	0.6889 ± 0.0056
Ω_m	0.321 ± 0.013	0.301 ± 0.012	$0.289^{+0.026}_{-0.033}$	0.3166 ± 0.0084	0.3153 ± 0.0073	0.3111 ± 0.0056

CMB already measures the cosmological parameters at the sub percent level

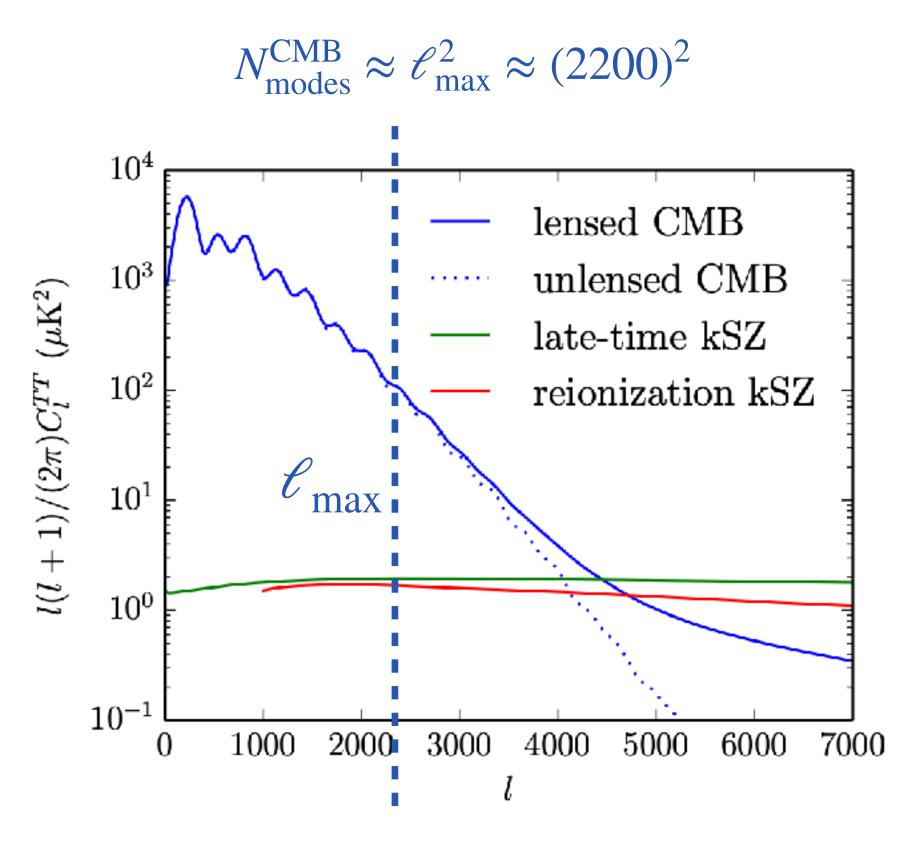
Information from matter power spectrum breaks degeneracies

... and in the (very) near future!



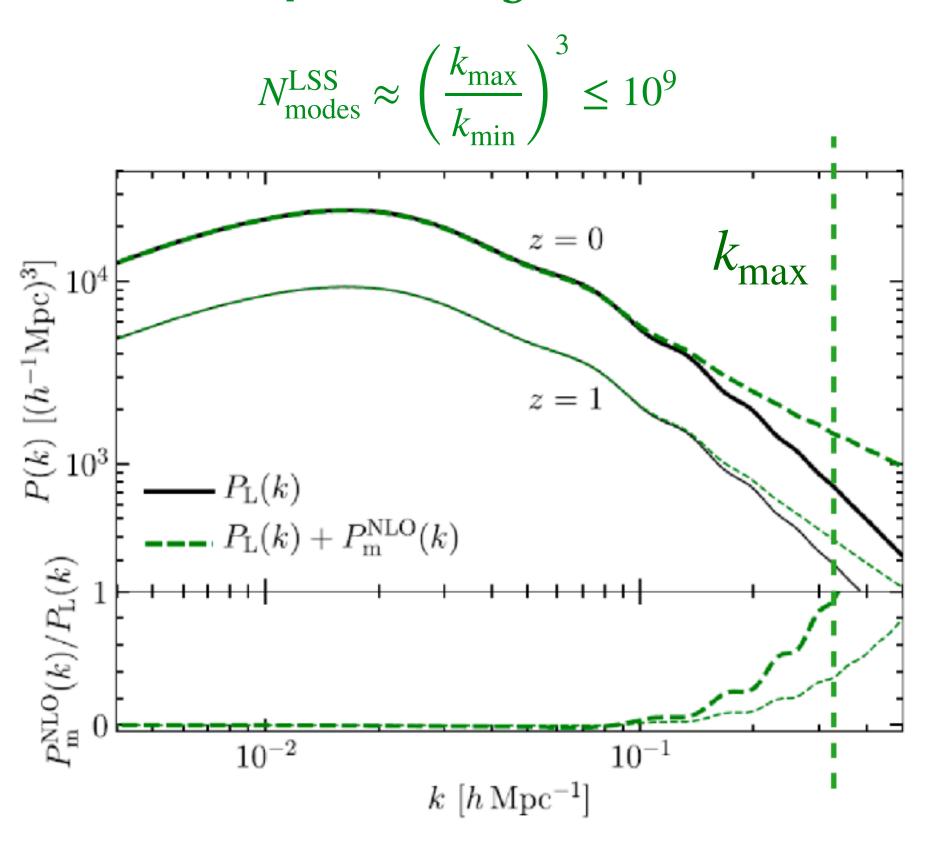
... and in the (very) near future!

CMB is a 2D surface



Limited by small-scale fluctuations

LSS probes a 3D volume



Limited by convergence of perturbative series

Theory predicts
$$\delta_m = \frac{\delta \rho_m}{\bar{\rho}_m}$$

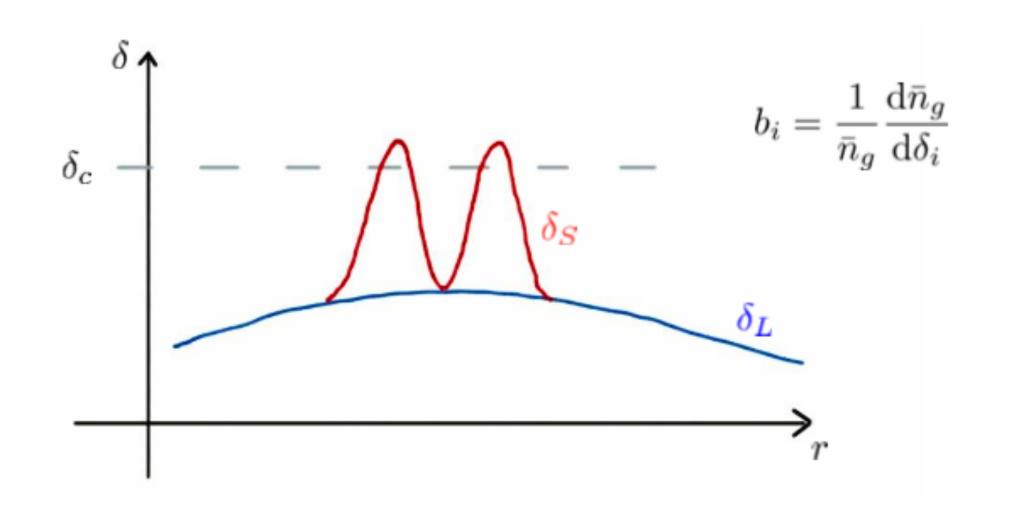
Theory predicts
$$\delta_m = \frac{\delta \rho_m}{\bar{\rho}_m}$$

Theory predicts
$$\delta_m = \frac{\delta \rho_m}{\bar{\rho}_m}$$
We observe galaxies $\delta_g = \frac{\delta n_g}{\bar{n}_g} = b_1 \delta_m + \frac{b_2}{2} \delta_m^2 + b_K K_{ij} K^{ij} + \dots$

Theory predicts
$$\delta_m = \frac{\delta \rho_m}{\bar{\rho}_m}$$

Bias expansion

We observe galaxies $\delta_g = \frac{\delta n_g}{\bar{n}_g} = b_1 \delta_m + \frac{b_2}{2} \delta_m^2 + b_K K_{ij} K^{ij} + \dots$



Long-range fluctuations affect collapse

Theory predicts
$$\delta_m = \frac{\delta \rho_m}{\bar{\rho}_m}$$

We observe galaxies
$$\delta_g = \frac{\delta n_g}{\bar{n}_g} = b_1 \delta_m + \frac{b_2}{2} \delta_m^2 + b_K K_{ij} K^{ij} + \dots$$

Galaxies have proper
$$\delta_g^{\rm RSD}(\vec{k}) = (b_1 + f\mu_k^2)\delta_m(\vec{k}) + \dots$$

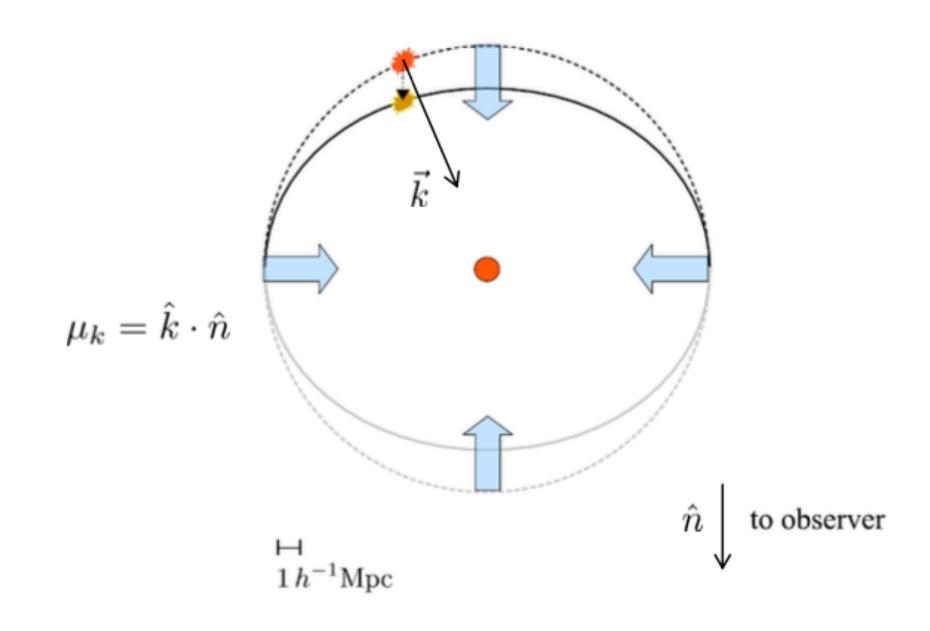
Theory predicts
$$\delta_m = \frac{\delta \rho_m}{\bar{\rho}_m}$$

We observe galaxies
$$\delta_g = \frac{\delta n_g}{\bar{n}_g} = b_1 \delta_m + \frac{b_2}{2} \delta_m^2 + b_K K_{ij} K^{ij} + \dots$$

Galaxies have proper motion

$$\delta_g^{\text{RSD}}(\vec{k}) = (b_1 + f\mu_k^2)\delta_m(\vec{k}) + \dots$$

Redshift-space distortions



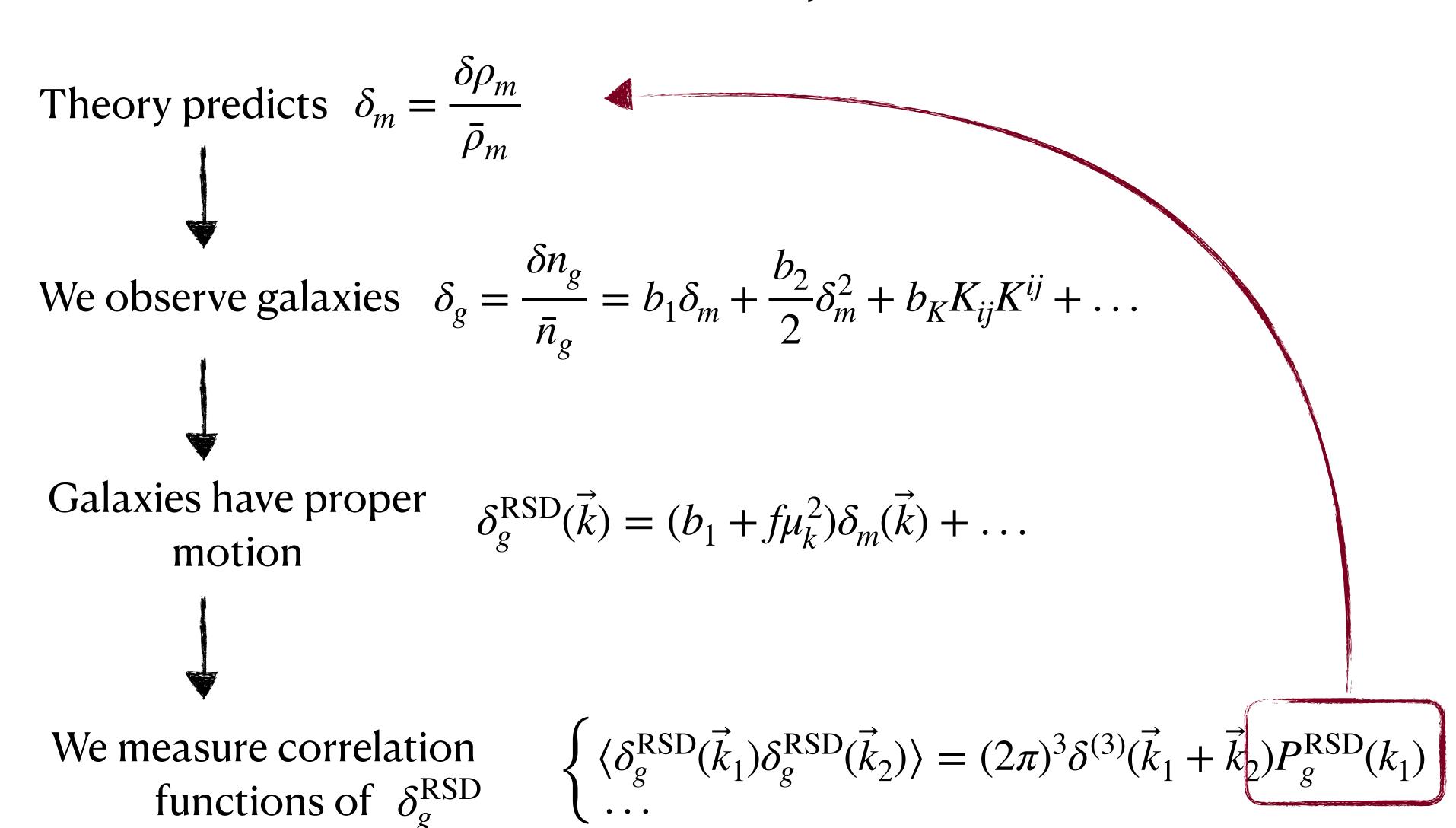
Theory predicts
$$\delta_m = \frac{\delta \rho_m}{\bar{\rho}_m}$$

We observe galaxies
$$\delta_g = \frac{\delta n_g}{\bar{n}_g} = b_1 \delta_m + \frac{b_2}{2} \delta_m^2 + b_K K_{ij} K^{ij} + \dots$$

Galaxies have proper motion
$$\delta_g^{\rm RSD}(\vec{k}) = (b_1 + f\mu_k^2)\delta_m(\vec{k}) + \dots$$

We measure correlation functions of $\delta_g^{
m RSD}$

$$\begin{cases} \langle \delta_g^{\text{RSD}}(\vec{k}_1) \delta_g^{\text{RSD}}(\vec{k}_2) \rangle = (2\pi)^3 \delta^{(3)}(\vec{k}_1 + \vec{k}_2) P_g^{\text{RSD}}(k_1) \\ \dots \end{cases}$$



Continuity
$$\begin{cases} \delta'_m + \theta_m + \overrightarrow{\nabla} (\delta_m \vec{v}_m) = 0, & \theta_m = \overrightarrow{\nabla} \vec{v}_m \\ \theta'_m + \mathcal{H} \theta_m + \frac{3}{2} \mathcal{H}^2 \delta_m + \partial_i (v_m^j \partial_j v_m^i) = 0 \end{cases}$$
Euler

Continuity
$$\begin{cases} \delta'_m + \theta_m + \overrightarrow{\nabla}(\delta_m \vec{v}_m) = 0, & \theta_m = \overrightarrow{\nabla} \vec{v}_m \\ \theta'_m + \mathcal{H}\theta_m + \frac{3}{2}\mathcal{H}^2 \delta_m + \partial_i (v_m^j \partial_j v_m^i) = 0 \end{cases}$$
Euler

Solved iteratively, order by order

$$\delta_m(a,\vec{k}) = D_m(a)\delta_0(\vec{k}) + \sum_{n=2}^{\infty} D_m^n(a) \int \prod_{i=1}^n \frac{d^3k_i}{(2\pi)^3} \delta_0(\vec{k}_i) \delta^{(3)} \left(\vec{k} + \sum_{i=1}^n \vec{k}_i\right) F_n(\vec{k}_1, \dots, \vec{k}_n)$$

Continuity
$$\begin{cases} \delta'_m + \theta_m + \overrightarrow{\nabla}(\delta_m \vec{v}_m) = 0, & \theta_m = \overrightarrow{\nabla} \vec{v}_m \\ \theta'_m + \mathcal{H}\theta_m + \frac{3}{2}\mathcal{H}^2 \delta_m + \partial_i (v_m^j \partial_j v_m^i) = 0 \end{cases}$$
Euler

Solved iteratively, order by order

$$\delta_{m}(a,\vec{k}) = D_{m}(a)\delta_{0}(\vec{k}) + \sum_{n=2}^{\infty} D_{m}^{n}(a) \int \prod_{i=1}^{n} \frac{d^{3}k_{i}}{(2\pi)^{3}} \delta_{0}(\vec{k}_{i})\delta^{(3)} \left(\vec{k} + \sum_{i=1}^{n} \vec{k}_{i}\right) F_{n}(\vec{k}_{1}, \dots, \vec{k}_{n})$$

Linear growth factor

Continuity
$$\begin{cases} \delta'_m + \theta_m + \overrightarrow{\nabla}(\delta_m \vec{v}_m) = 0, & \theta_m = \overrightarrow{\nabla} \vec{v}_m \\ \theta'_m + \mathcal{H}\theta_m + \frac{3}{2}\mathcal{H}^2 \delta_m + \partial_i (v_m^j \partial_j v_m^i) = 0 \end{cases}$$
Euler

Solved iteratively, order by order

$$\delta_m(a,\vec{k}) = D_m(a)\delta_0(\vec{k}) + \sum_{n=2}^{\infty} D_m^n(a) \int \prod_{i=1}^n \frac{d^3k_i}{(2\pi)^3} \delta_0(\vec{k}_i) \delta^{(3)} \begin{pmatrix} \vec{k} + \sum_{i=1}^n \vec{k}_i \end{pmatrix} F_n(\vec{k}_1, ..., \vec{k}_n)$$
Linear growth
factor

Initial
fluctuation at
equality

Non-linear
equality

Continuity
$$\begin{cases} \delta'_m + \theta_m + \overrightarrow{\nabla}(\delta_m \vec{v}_m) = 0, & \theta_m = \overrightarrow{\nabla} \vec{v}_m \\ \theta'_m + \mathcal{H}\theta_m + \frac{3}{2}\mathcal{H}^2 \delta_m + \partial_i (v_m^j \partial_j v_m^i) = 0 \end{cases}$$
Euler

Solved iteratively, order by order

$$\delta_{m}(a,\vec{k}) = D_{m}(a)\delta_{0}(\vec{k}) + \sum_{n=2}^{\infty} D_{m}^{n}(a) \int \prod_{i=1}^{n} \frac{d^{3}k_{i}}{(2\pi)^{3}} \delta_{0}(\vec{k}_{i})\delta^{(3)} \begin{pmatrix} \vec{k} + \sum_{i=1}^{n} \vec{k}_{i} \end{pmatrix} F_{n}(\vec{k}_{1},...,\vec{k}_{n})$$
Linear growth
factor
fluctuation at
equality
Non-linear
equality

Compute correlation functions at any order

Continuity
$$\begin{cases} \delta'_m + \theta_m + \overrightarrow{\nabla}(\delta_m \vec{v}_m) = 0, & \theta_m = \overrightarrow{\nabla} \vec{v}_m \\ \theta'_m + \mathcal{H}\theta_m + \frac{3}{2}\mathcal{H}^2 \delta_m + \partial_i (v_m^j \partial_j v_m^i) = 0 \end{cases}$$
Euler

Solved iteratively, order by order

$$\delta_{m}(a,\vec{k}) = D_{m}(a)\delta_{0}(\vec{k}) + \sum_{n=2}^{\infty} D_{m}^{n}(a) \int \prod_{i=1}^{n} \frac{d^{3}k_{i}}{(2\pi)^{3}} \delta_{0}(\vec{k}_{i})\delta^{(3)} \begin{pmatrix} \vec{k} + \sum_{i=1}^{n} \vec{k}_{i} \end{pmatrix} F_{n}(\vec{k}_{1},...,\vec{k}_{n})$$
Linear growth factor fluctuation at kernels equality

Continuity
$$\begin{cases} \delta'_m + \theta_m + \overrightarrow{\nabla} (\delta_m \vec{v}_m) = 0, & \theta_m = \overrightarrow{\nabla} \vec{v}_m \\ \theta'_m + \mathcal{H} \theta_m + \frac{3}{2} \mathcal{H}^2 \delta_m + \partial_i (v_m^j \partial_j v_m^i) = 0 \end{cases}$$
Euler

Wrong model!

Continuity
$$\begin{cases} \delta'_m + \theta_m + \overrightarrow{\nabla}(\delta_m \vec{v}_m) = 0, & \theta_m = \overrightarrow{\nabla} \vec{v}_m \\ \theta'_m + \mathcal{H}\theta_m + \frac{3}{2}\mathcal{H}^2 \delta_m + \partial_i (v_m^j \partial_j v_m^i) = \left[-\frac{1}{\bar{\rho}_m} \partial_i \partial_j \tau_{\text{eff}}^{ij} \right] \end{cases}$$

DM is not collisionless at small scales!

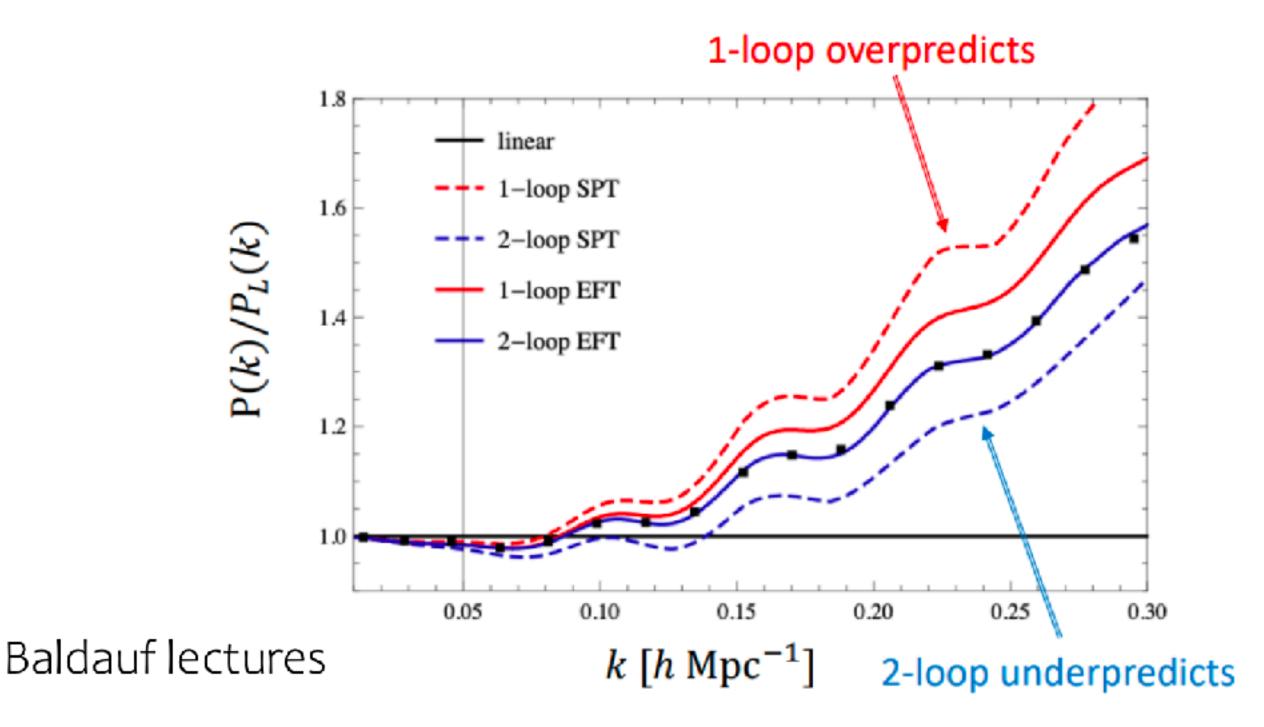
$$\partial_i \partial_j \tau_{\text{eff}}^{ij} = c_s^2 \nabla^2 \delta_m + \cdots$$

Encodes shortscale backreaction on long modes New expansion in powers of $\frac{k^2}{k_{\rm NL}^2}$

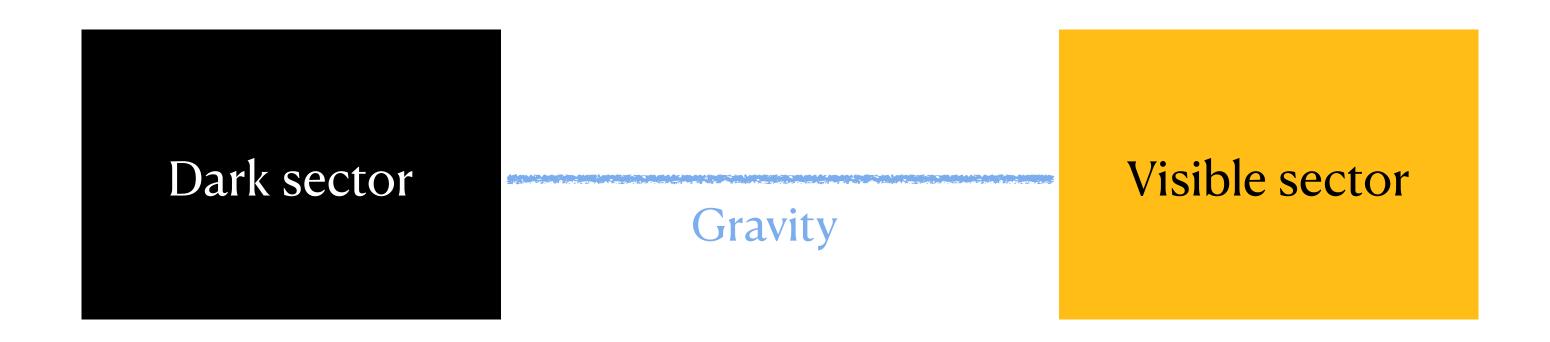
Counterterms extracted from data

Continuity
$$\begin{cases} \delta'_m + \theta_m + \overrightarrow{\nabla}(\delta_m \vec{v}_m) = 0, & \theta_m = \overrightarrow{\nabla} \vec{v}_m \\ \theta'_m + \mathcal{H}\theta_m + \frac{3}{2}\mathcal{H}^2 \delta_m + \partial_i (v_m^j \partial_j v_m^i) = -\frac{1}{\bar{\rho}_m} \partial_i \partial_j \tau_{\text{eff}}^{ij} \end{cases}$$
Euler

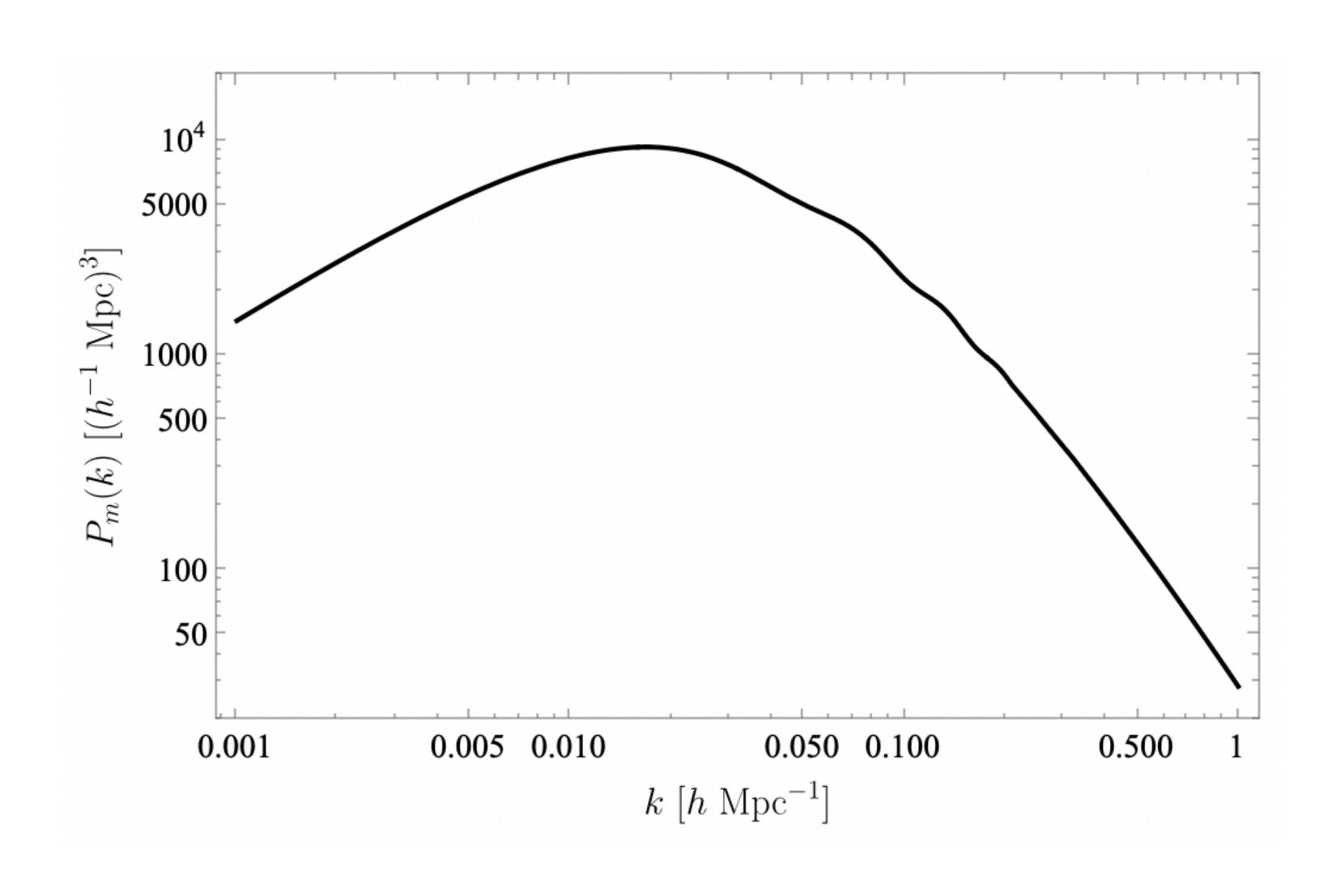
DM is not collisionless at small scales!

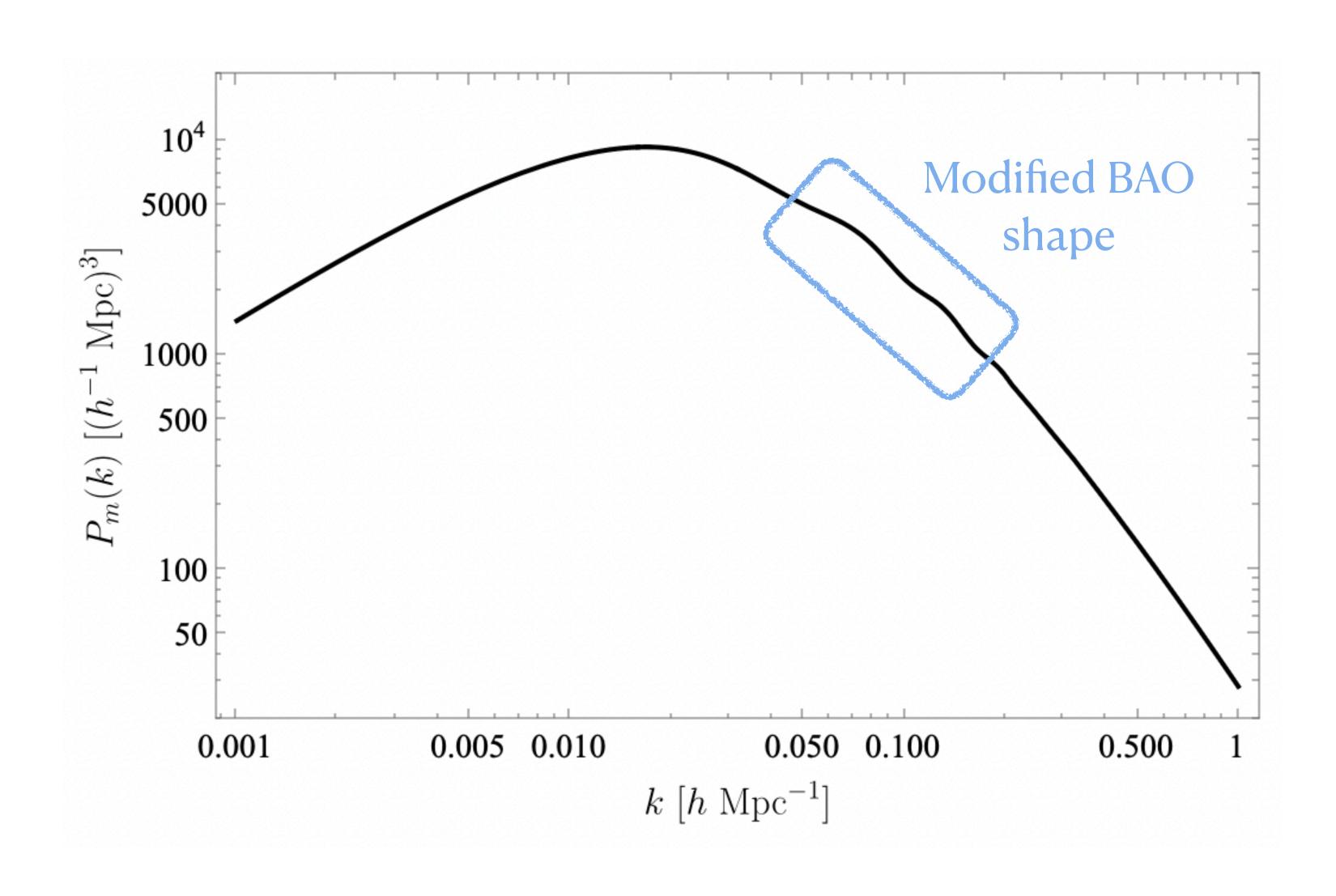


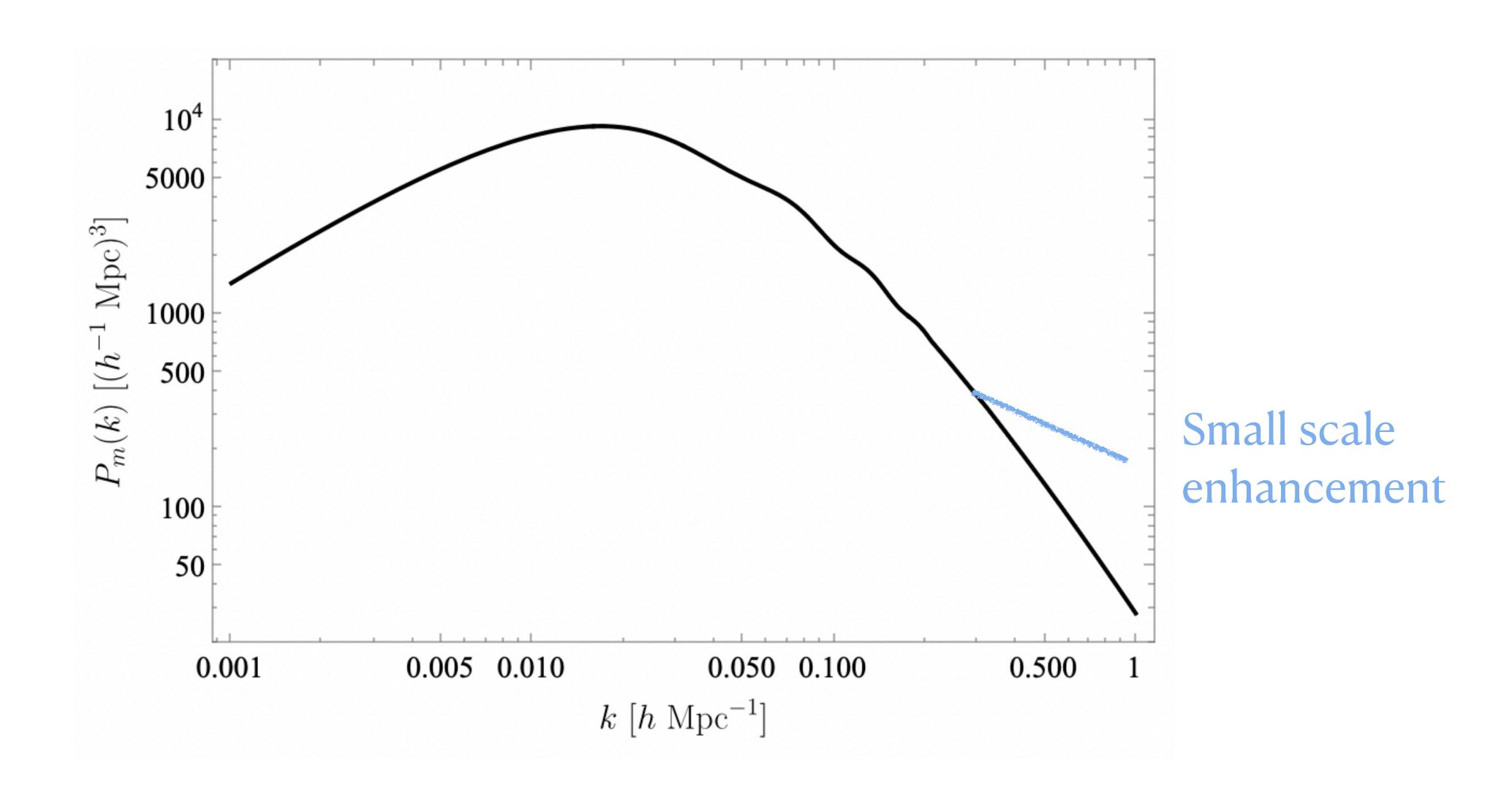
Can we see in the dark?

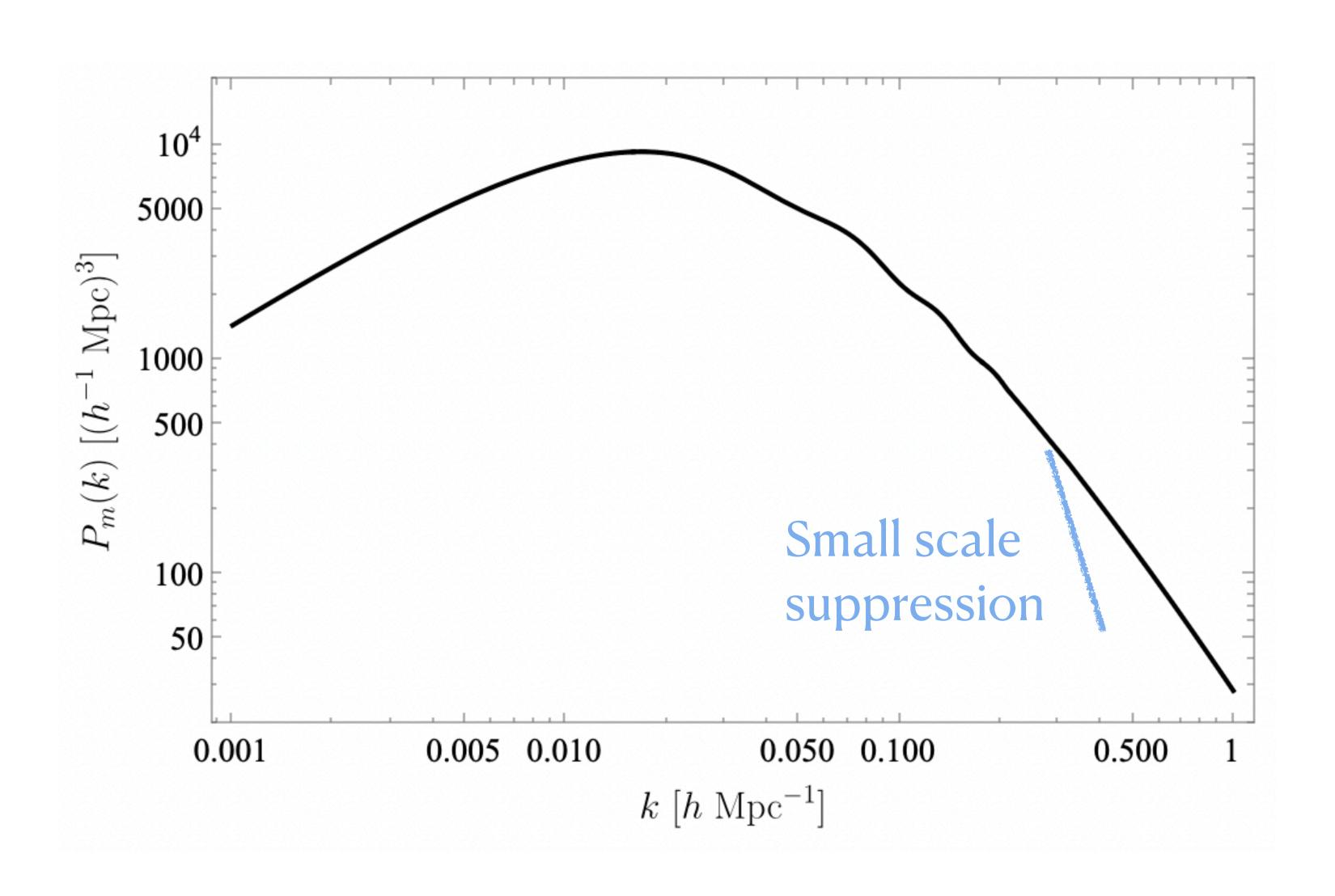


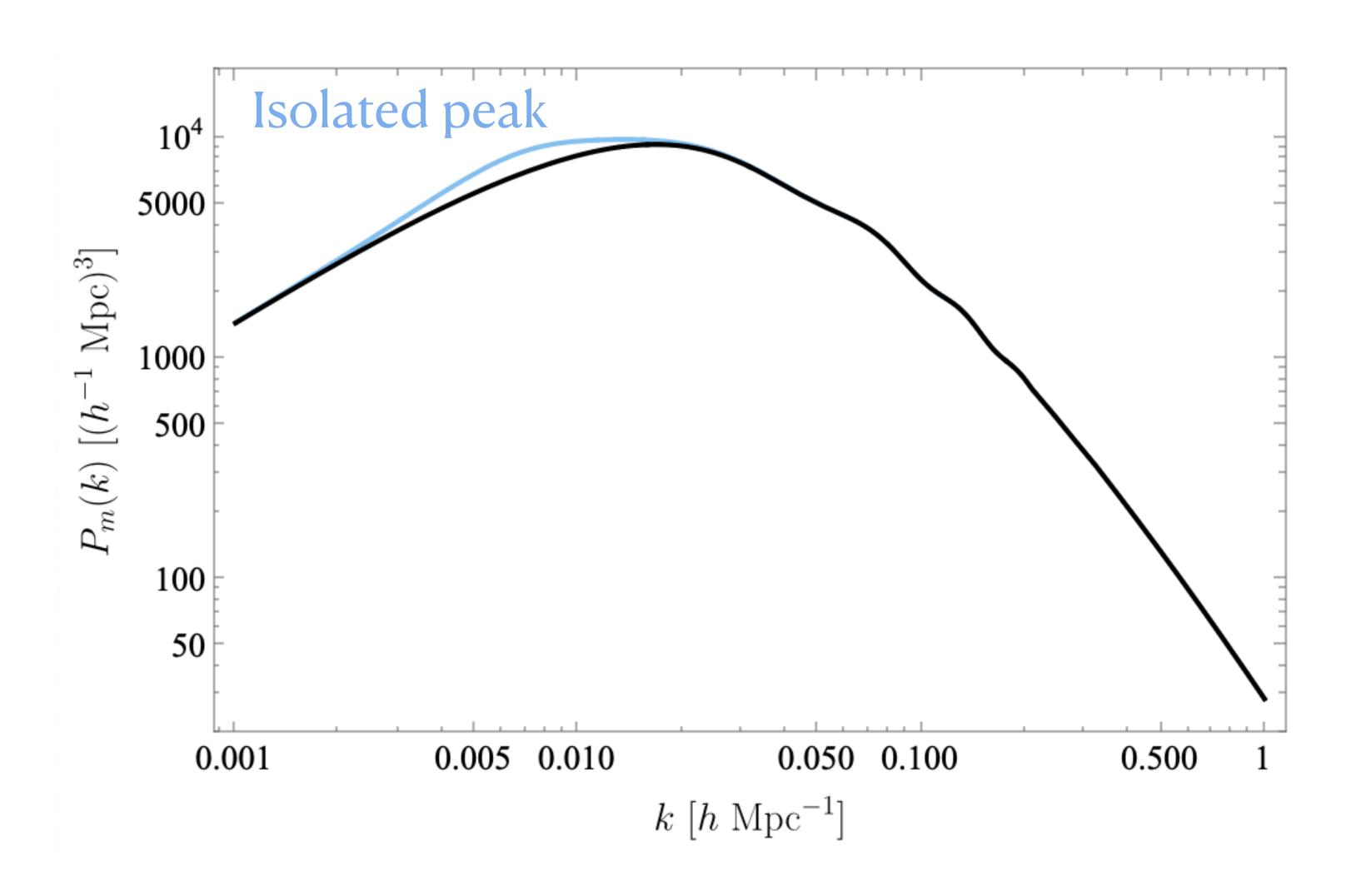
Cosmology is the only way to probe completely secluded dark sectors!

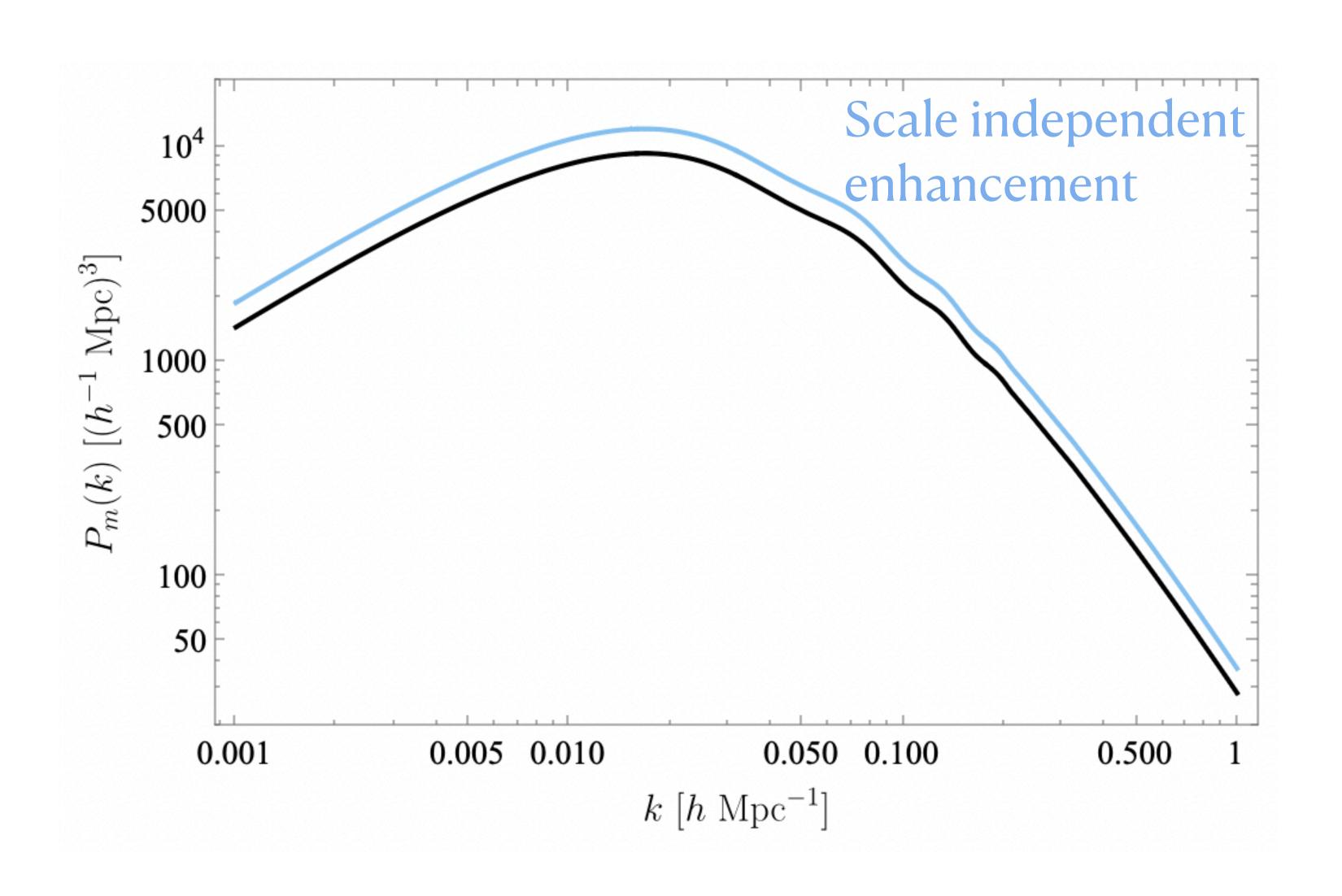


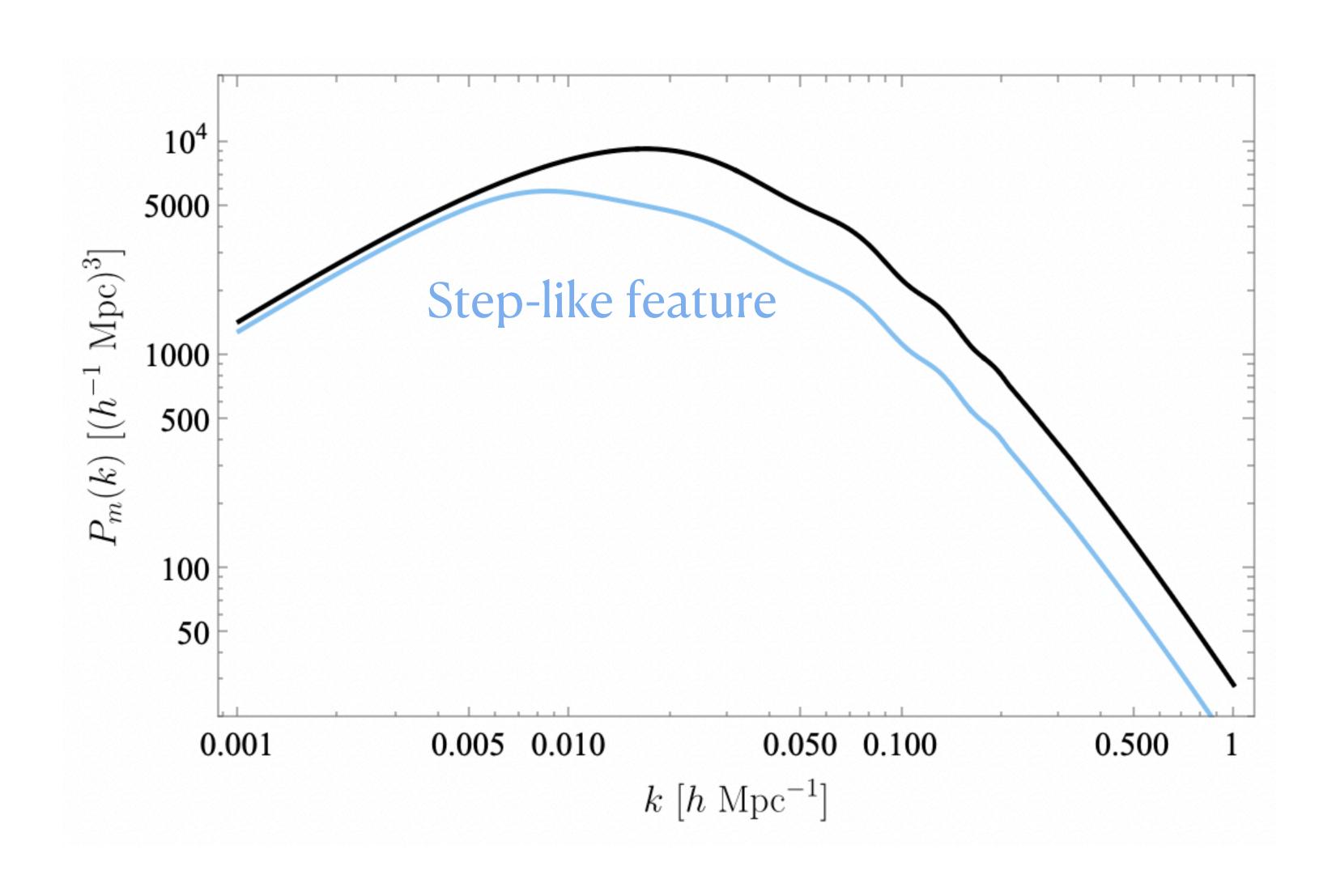




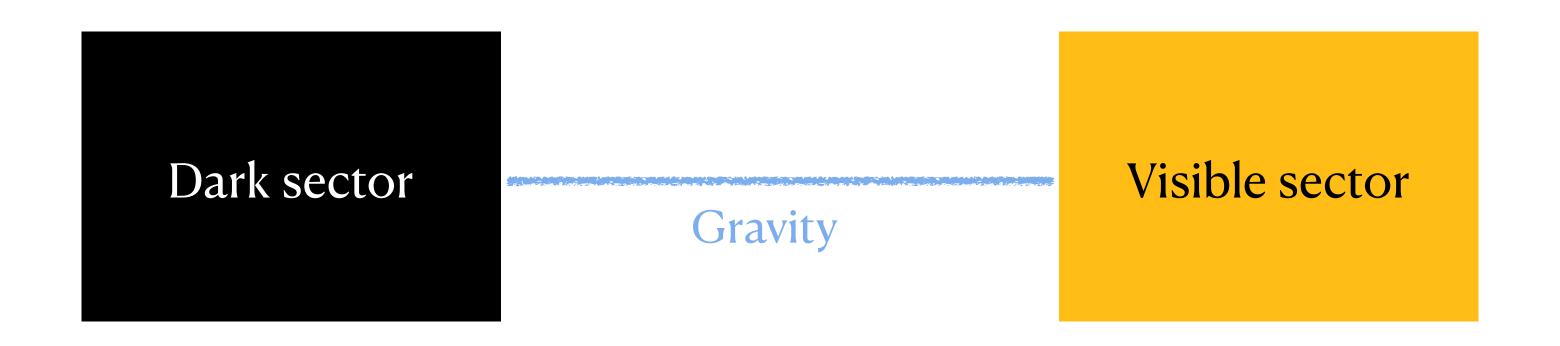




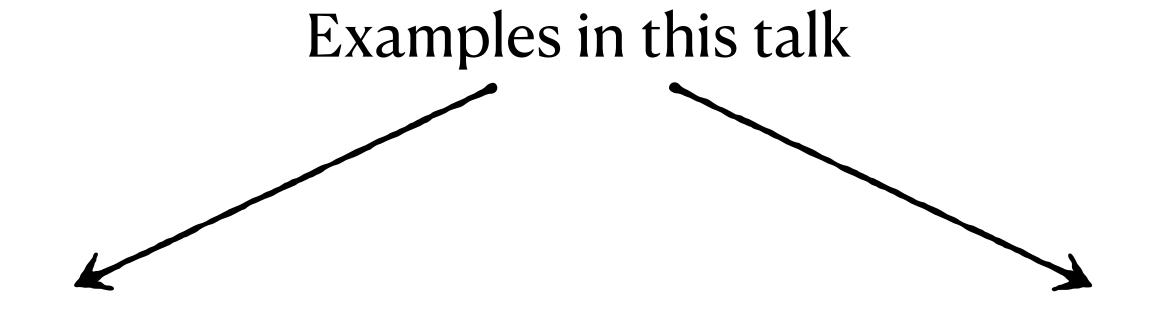




Can we see in the dark?



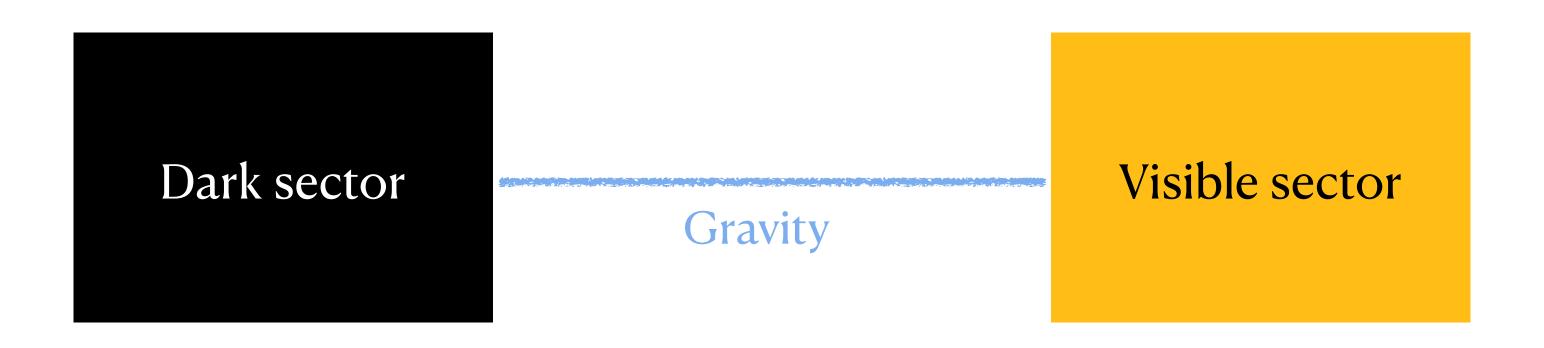
Cosmology is the only way to probe completely secluded dark sectors!



Long-range dark forces

Late-time dark phase transitions

Can we see in the dark?



Cosmology is the only way to probe completely secluded dark sectors!

SB et al. 2309.11496 SB et al. 2407.18252 Just al. 2204.08484

Long-range dark forces

Late-time dark phase transitions

A simple model

$$\mathscr{L} = \boxed{\frac{1}{2} (\partial_{\mu} \chi)^{2}} + \boxed{\frac{1}{2G_{s}} (\partial_{\mu} s)^{2} + \frac{1}{2G_{s}} m_{s}^{2} s^{2}} + \boxed{\frac{1}{2} m_{\chi}^{2} (1 + 2s) \chi^{2}}, \quad G_{s} = \frac{\kappa^{2}}{m_{\chi}^{4}}$$

Dark matter

Scalar dark force mediator

Interaction term: s-dependent DM mass

A simple model

$$\mathcal{L} = \boxed{\frac{1}{2}(\partial_{\mu}\chi)^2 + \boxed{\frac{1}{2G_s}(\partial_{\mu}s)^2 + \frac{1}{2G_s}m_s^2s^2} + \boxed{\frac{1}{2}m_{\chi}^2(1+2s)\chi^2}, \quad G_s = \frac{\kappa^2}{m_{\chi}^4}}$$
Dark matter Scalar dark force mediator Interaction term: s-dependent DM mass

Dynamics determined by three parameters

- 1. Scalar mass m_s
- 2. Dark Matter fraction f_{χ}
- 3. Strength of the dark force $\beta = \frac{G_s}{4\pi G_N}$

Upper bound on
$$m_{\chi}$$
 from naturalness $m_{\chi} \lesssim 0.02 \text{ eV} \left(\frac{0.01}{\beta}\right)^{\frac{1}{4}} \left(\frac{m_{s}}{H_{0}}\right)^{\frac{1}{2}}$

A simple model

$$\mathcal{L} = \boxed{\frac{1}{2}(\partial_{\mu}\chi)^2} + \boxed{\frac{1}{2G_s}(\partial_{\mu}s)^2 + \frac{1}{2G_s}m_s^2s^2} + \boxed{\frac{1}{2}m_{\chi}^2(1+2s)\chi^2}, \quad G_s = \frac{\kappa^2}{m_{\chi}^4}$$
Dark matter Scalar dark force mediator Interaction term: s-dependent DM mass

Dynamics determined by three parameters

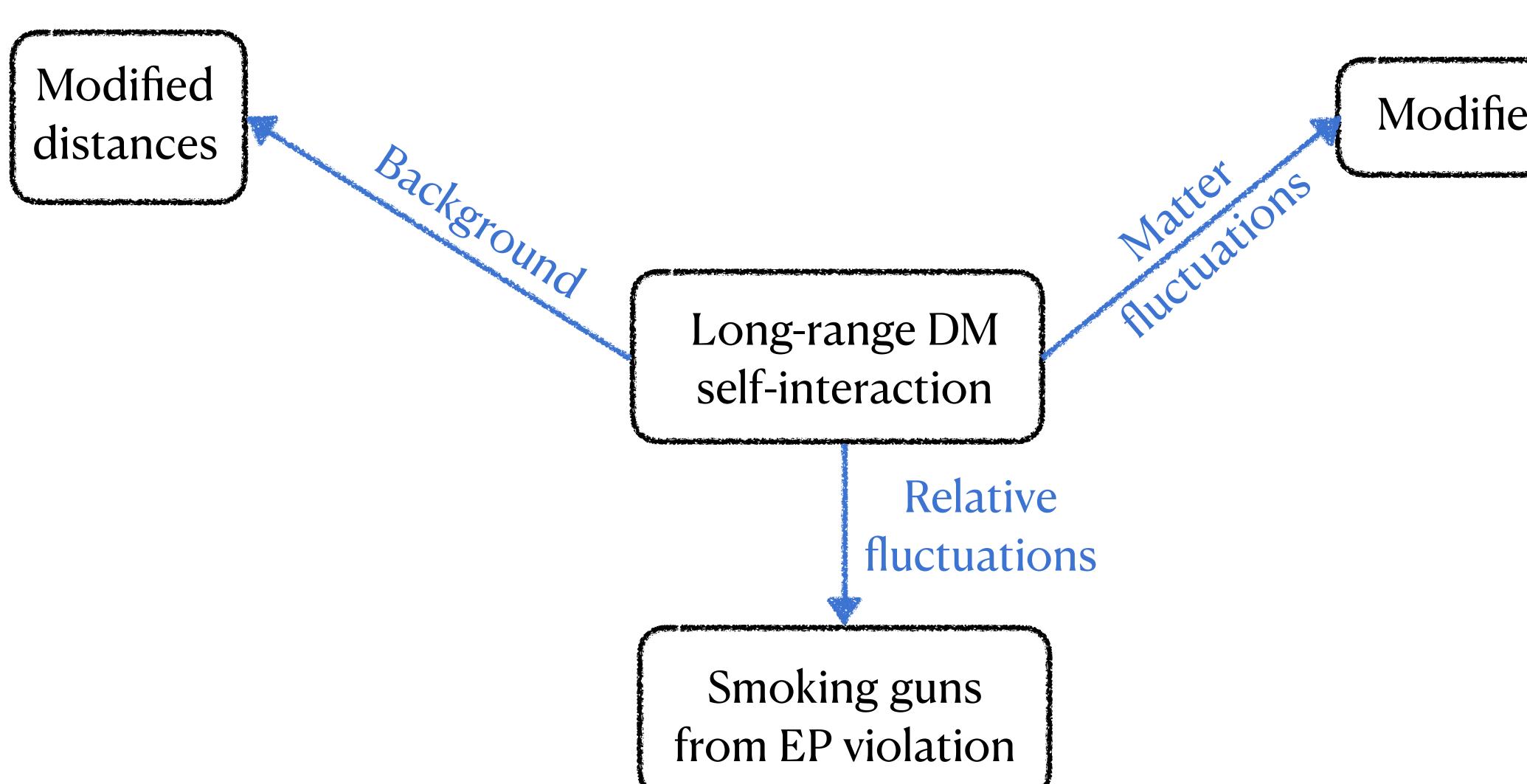
- 1. Scalar mass m_s
- 2. Dark Matter fraction f_{χ}
- 3. Strength of the dark force $\beta = \frac{G_S}{4\pi G_N}$

$$m_s \le H_{\rm eq} \approx 10^{-28} \text{ eV}$$

$$f_{\chi} \approx f_{\rm cdm}$$

Upper bound on
$$m_{\chi}$$
 from naturalness $m_{\chi} \lesssim 0.02 \text{ eV} \left(\frac{0.01}{\beta}\right)^{\frac{1}{4}} \left(\frac{m_{s}}{H_{0}}\right)^{\frac{1}{2}}$

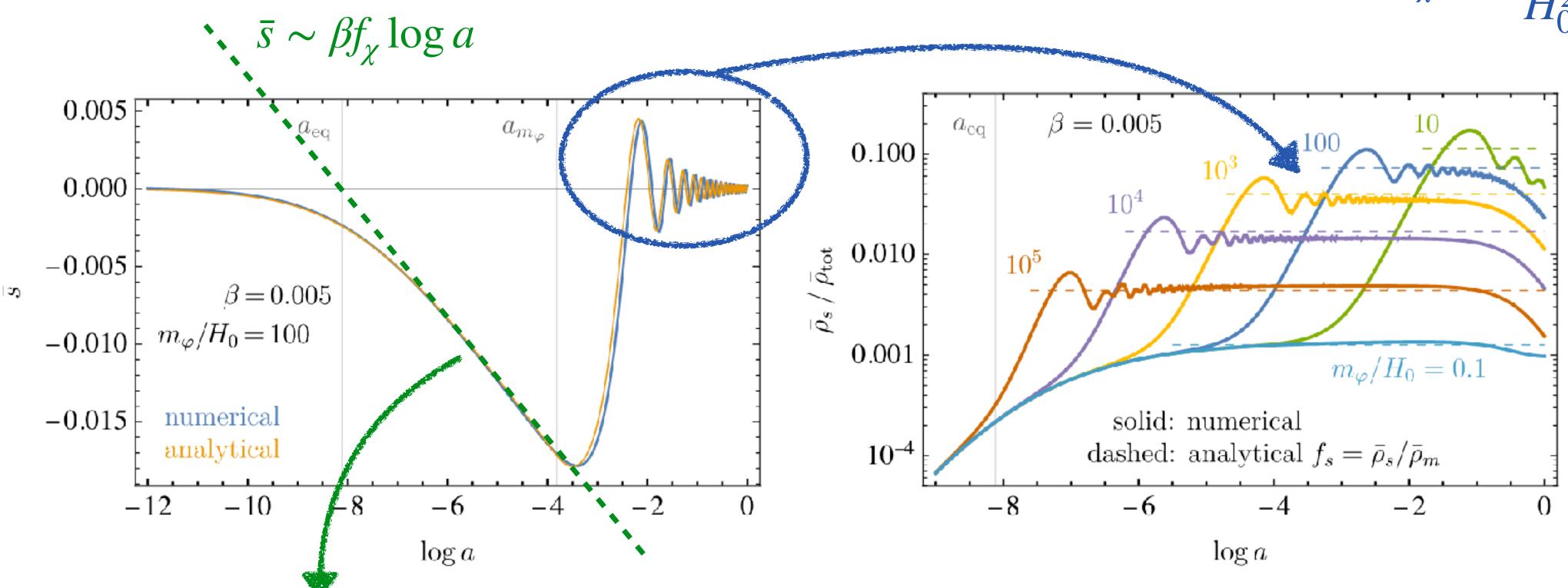
Dark force dynamics



Modified growth

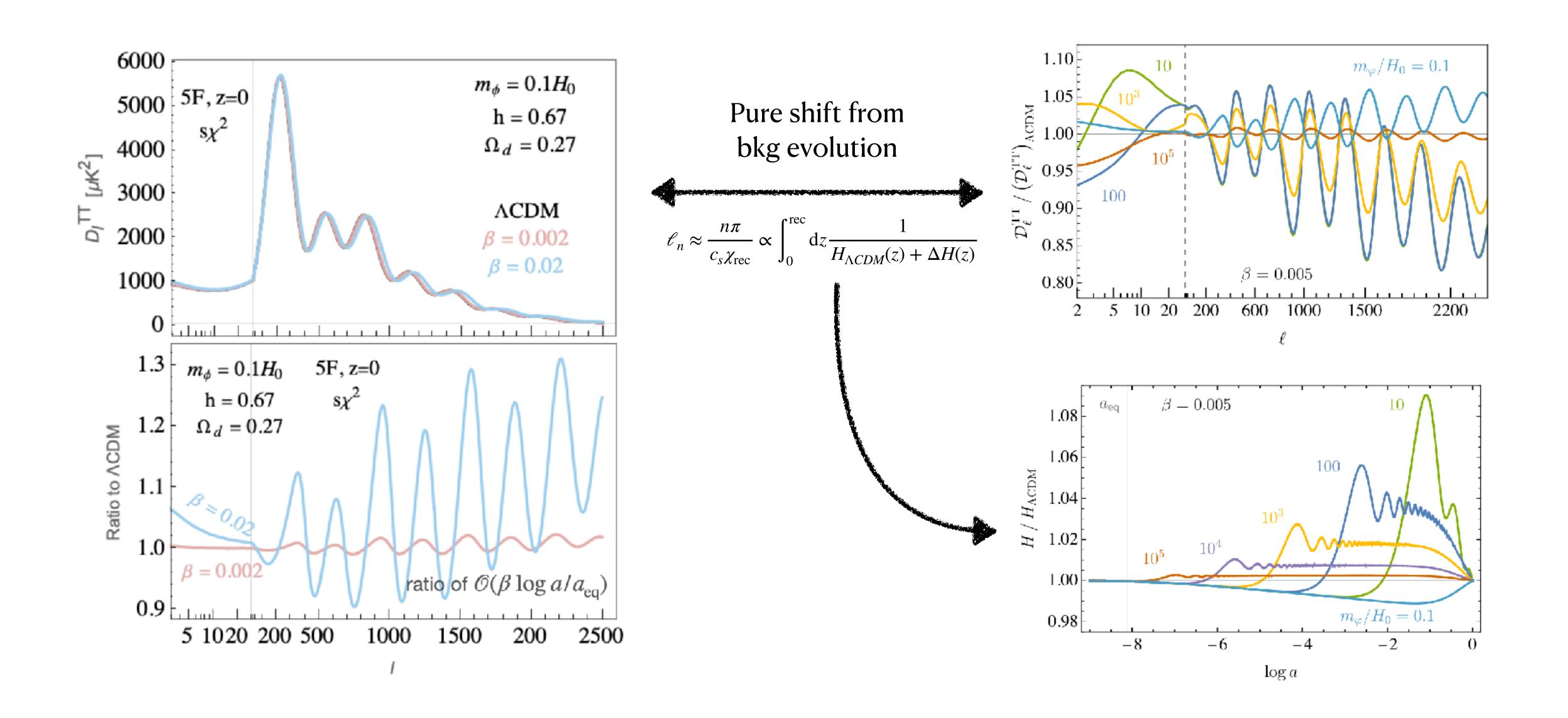
Background dynamics

Behaves as CDM with fraction $f_s \sim \beta f_\chi^2 \log \frac{m_s^2}{H_0^2}$



DM redshifts faster
$$\Omega_{\chi} \simeq a^{-3} \left(1 - \beta f_{\chi} \log \frac{a}{a_{\text{eq}}} \right)$$

Effects on CMB



Two contrasting effects

Suppression from mediator Jeans scale

$$k_{Js} \approx 5 \times 10^{-4} \left(\frac{m_s}{H_0}\right)^{\frac{1}{2}} h \text{ Mpc}^{-1}$$

Two contrasting effects

 $m_{\rm s} \leq H_0$

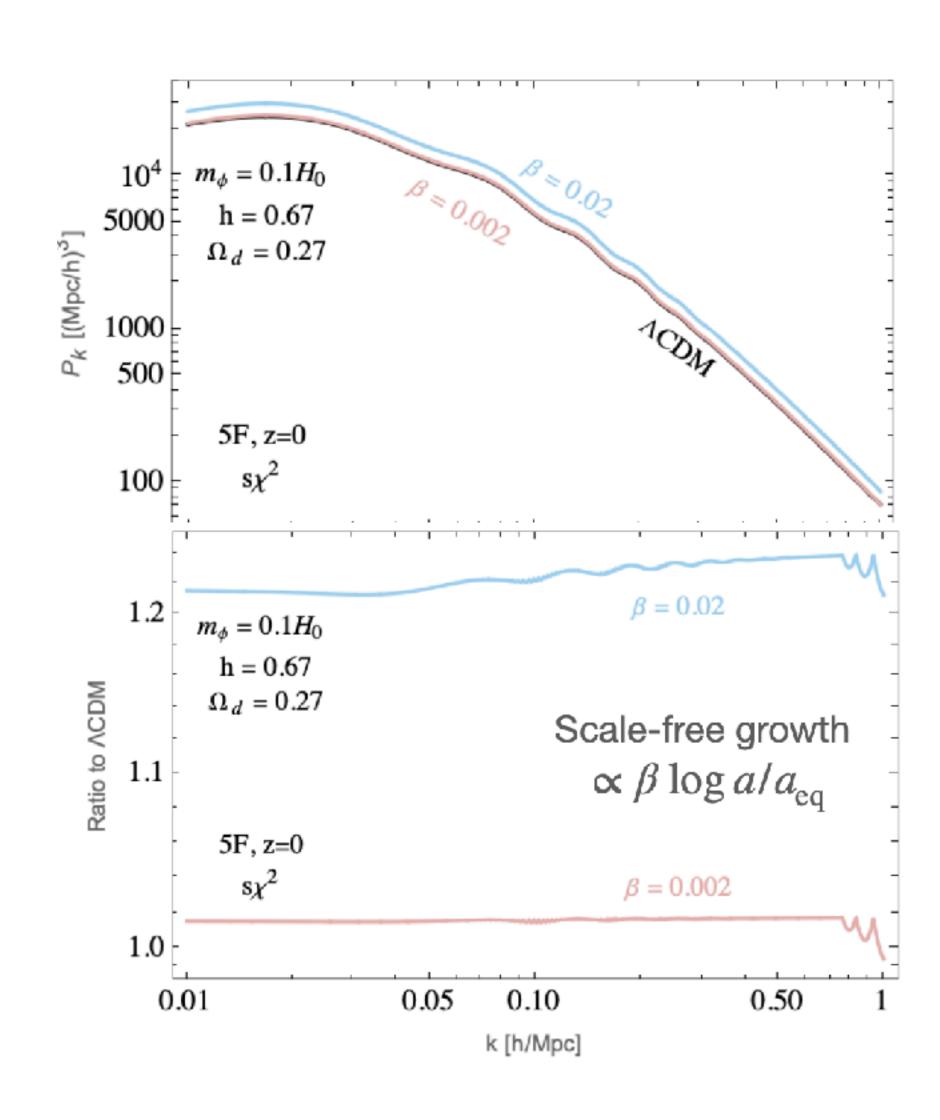
$$\begin{cases} \delta_m' + \theta_m + \overrightarrow{\nabla}(\delta_m \vec{v}_m) = 0, & \theta_m = \overrightarrow{\nabla} \vec{v}_m \\ \theta_m' + \mathcal{H}(1 - \beta f_\chi^2)\theta_m + \frac{3}{2}\mathcal{H}^2(1 + \beta f_\chi^2)\delta_m + \partial_i(v_m^j \partial_j v_m^i) = -\frac{1}{\bar{\rho}_m} \partial_i \partial_j \tau_{\text{eff}}^{ij} \end{cases}$$

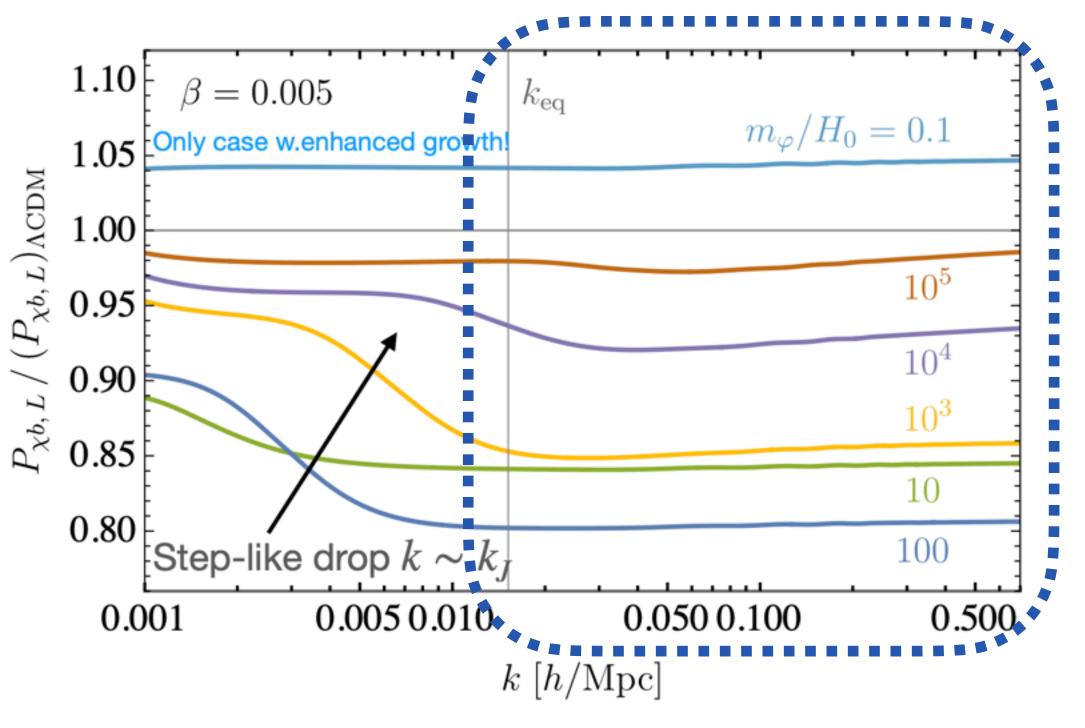
Suppression from mediator Jeans scale

$$k_{Js} \approx 5 \times 10^{-4} \left(\frac{m_s}{H_0}\right)^{\frac{1}{2}} h \text{ Mpc}^{-1}$$

$$k_{Js} \leq k_{\text{eq}} \quad \text{if} \quad m_s \leq H_{\text{eq}}$$

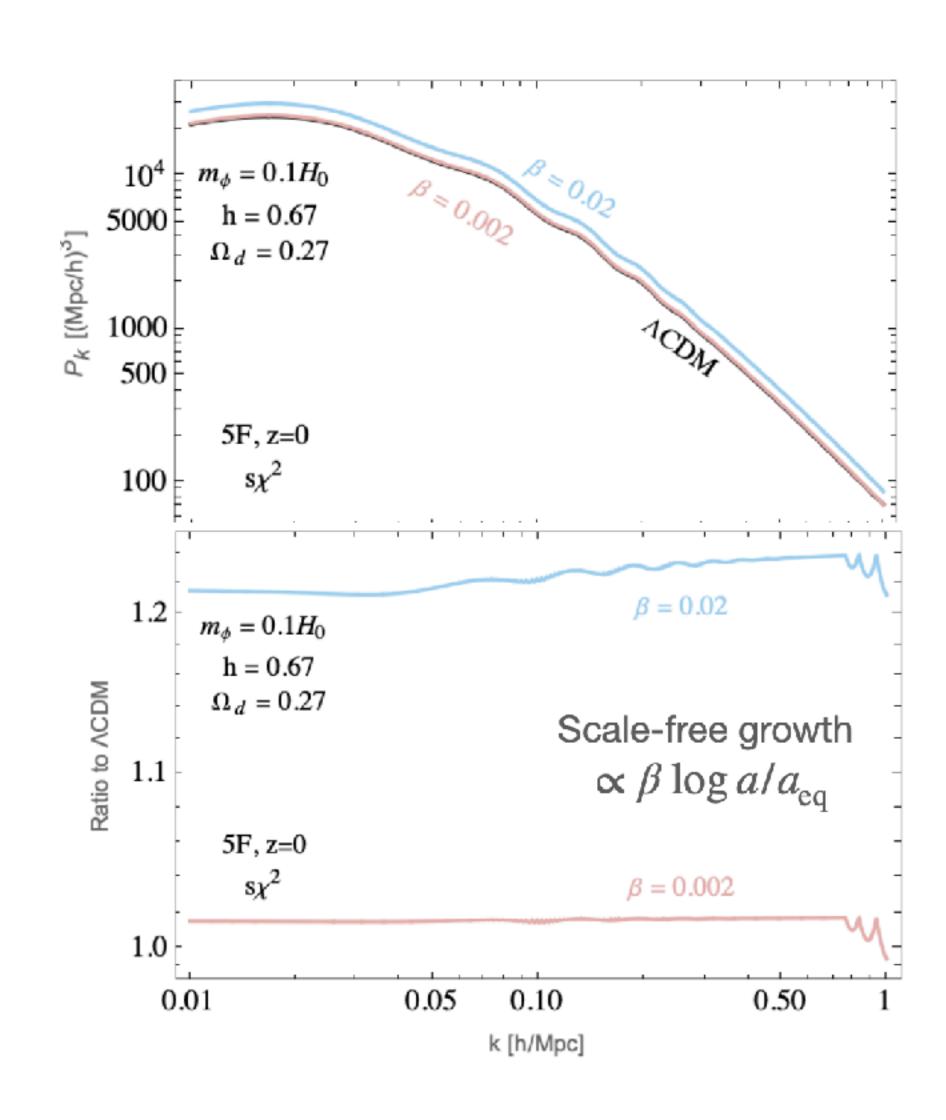
Scale-free growth factor at scales relevant for LSS

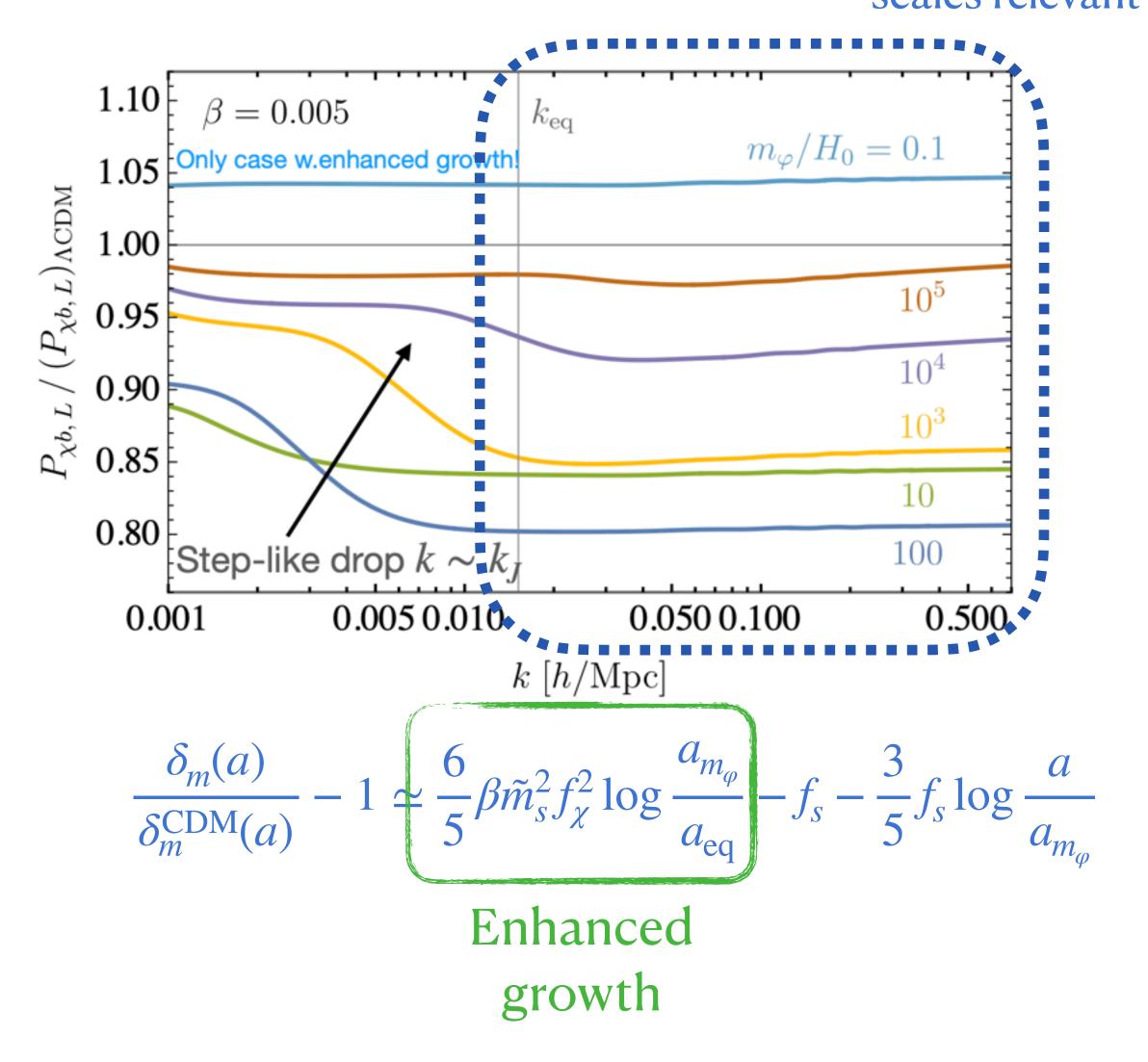




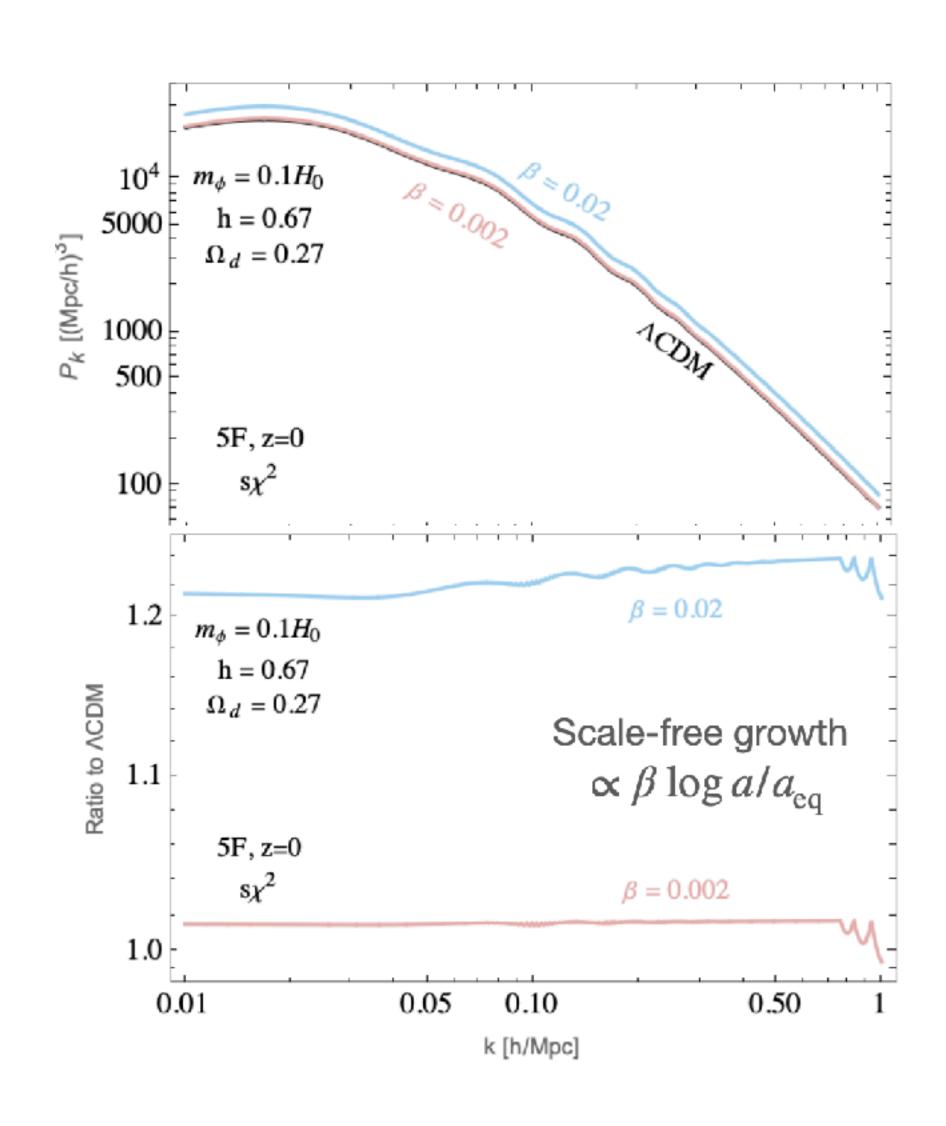
$$\frac{\delta_m(a)}{\delta_m^{\text{CDM}}(a)} - 1 \simeq \frac{6}{5}\beta \tilde{m}_s^2 f_\chi^2 \log \frac{a_{m_\varphi}}{a_{\text{eq}}} - f_s - \frac{3}{5}f_s \log \frac{a}{a_{m_\varphi}}$$

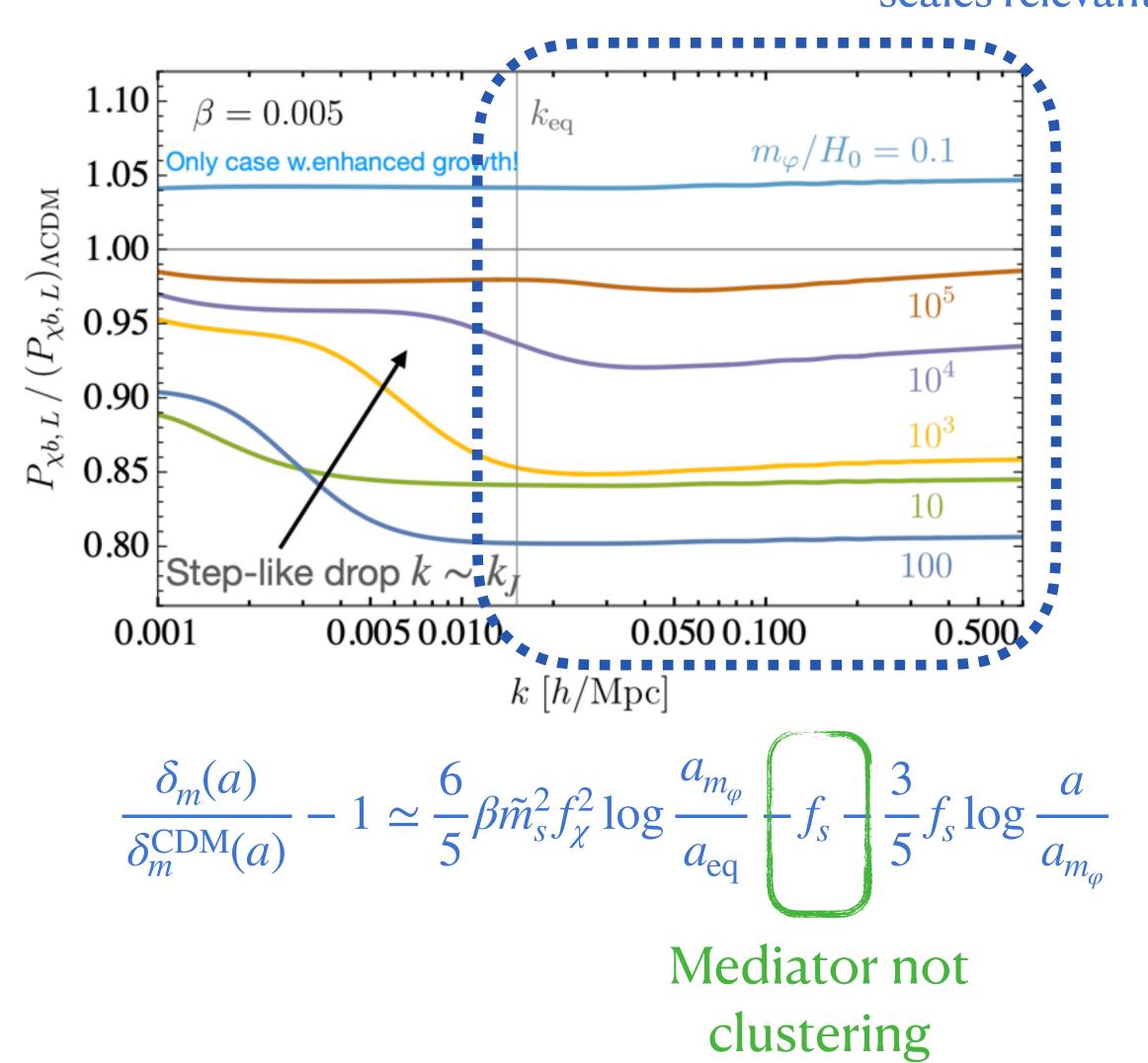
Scale-free growth factor at scales relevant for LSS



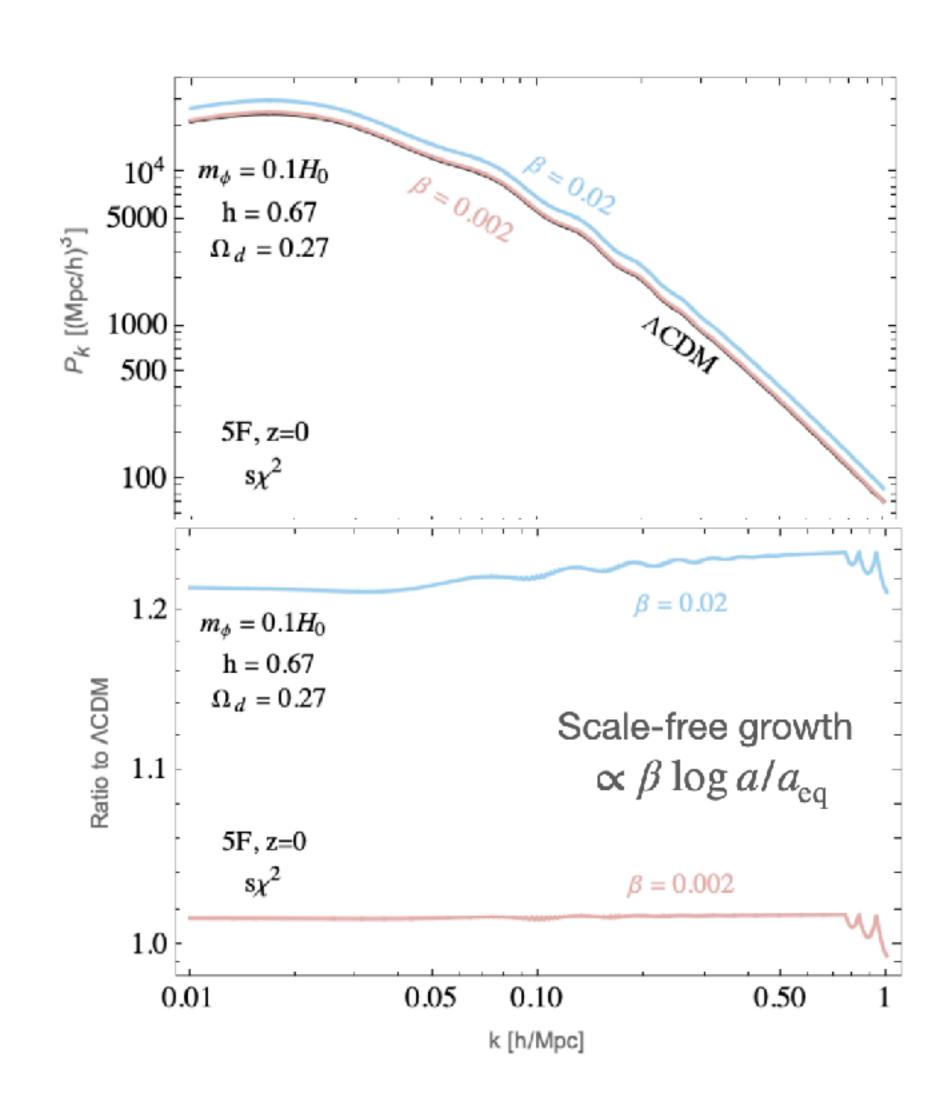


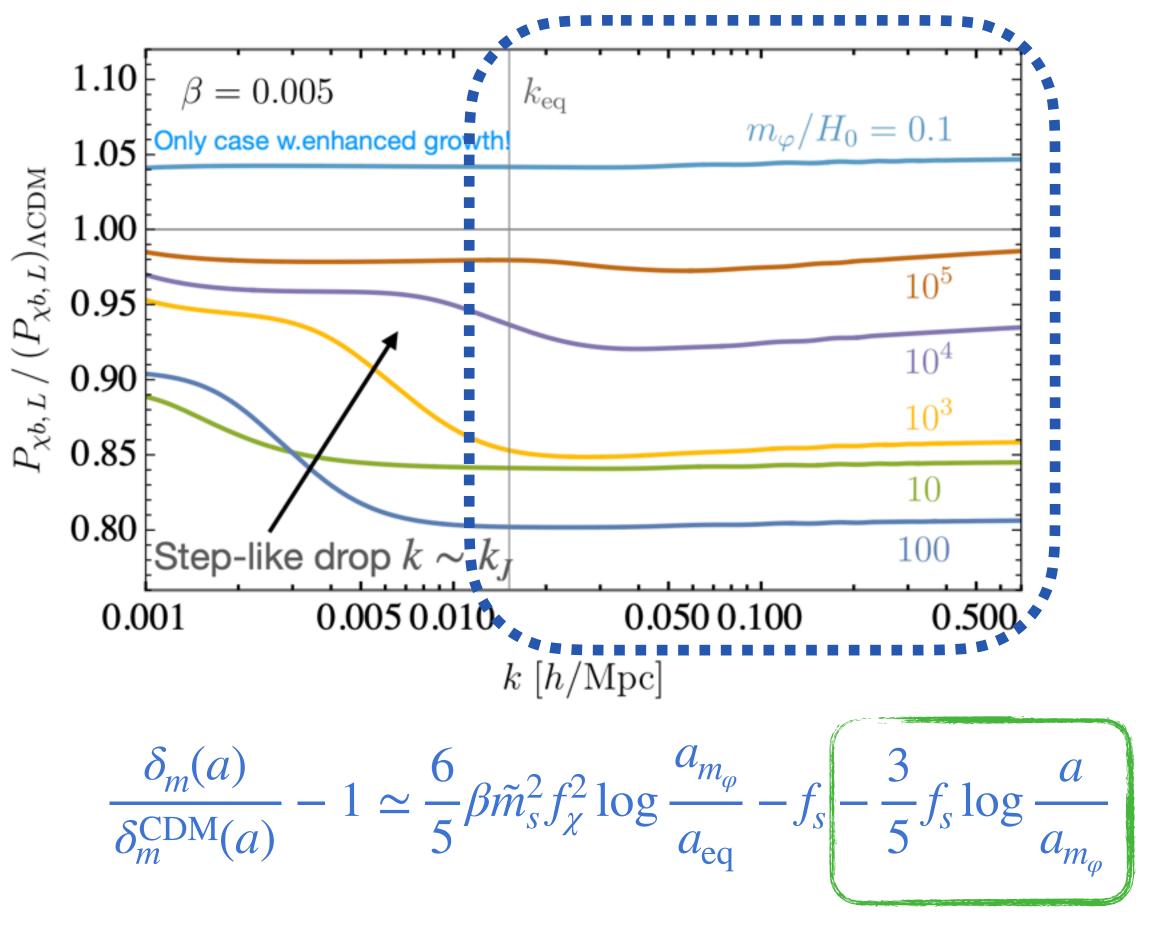
Scale-free growth factor at scales relevant for LSS



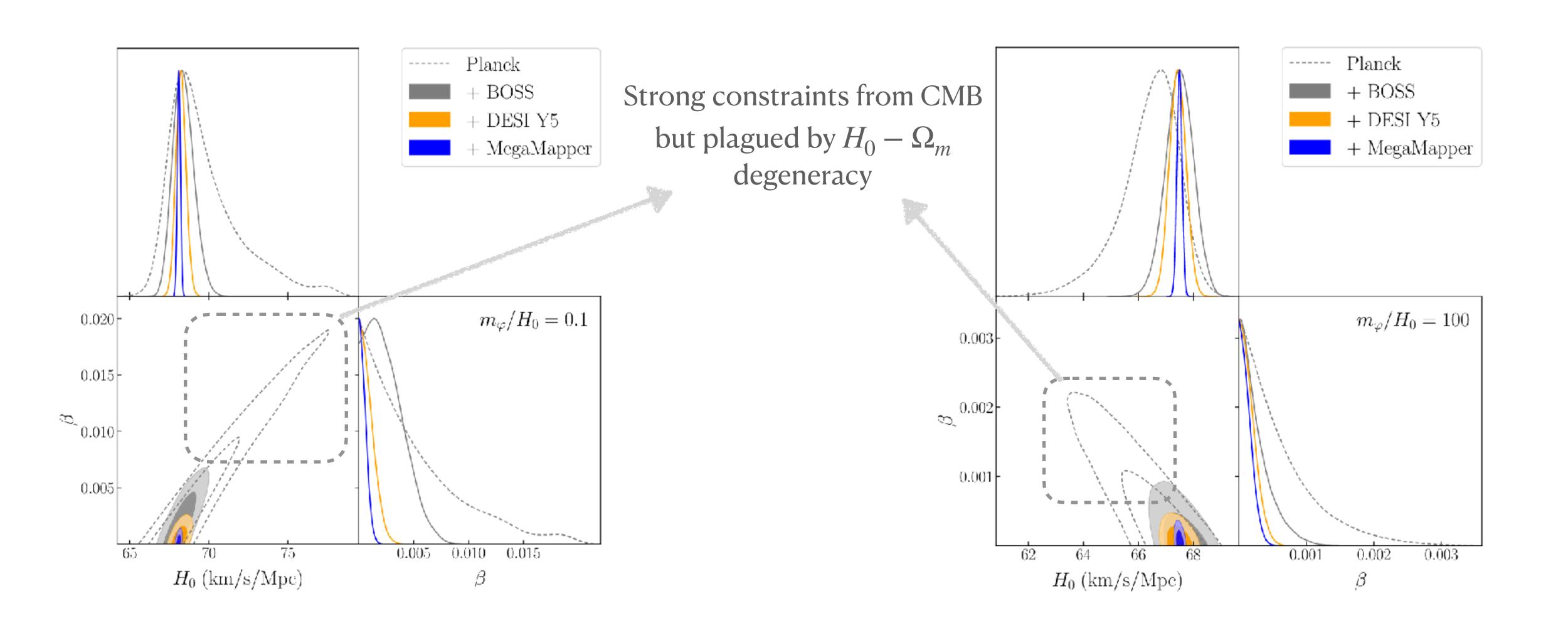


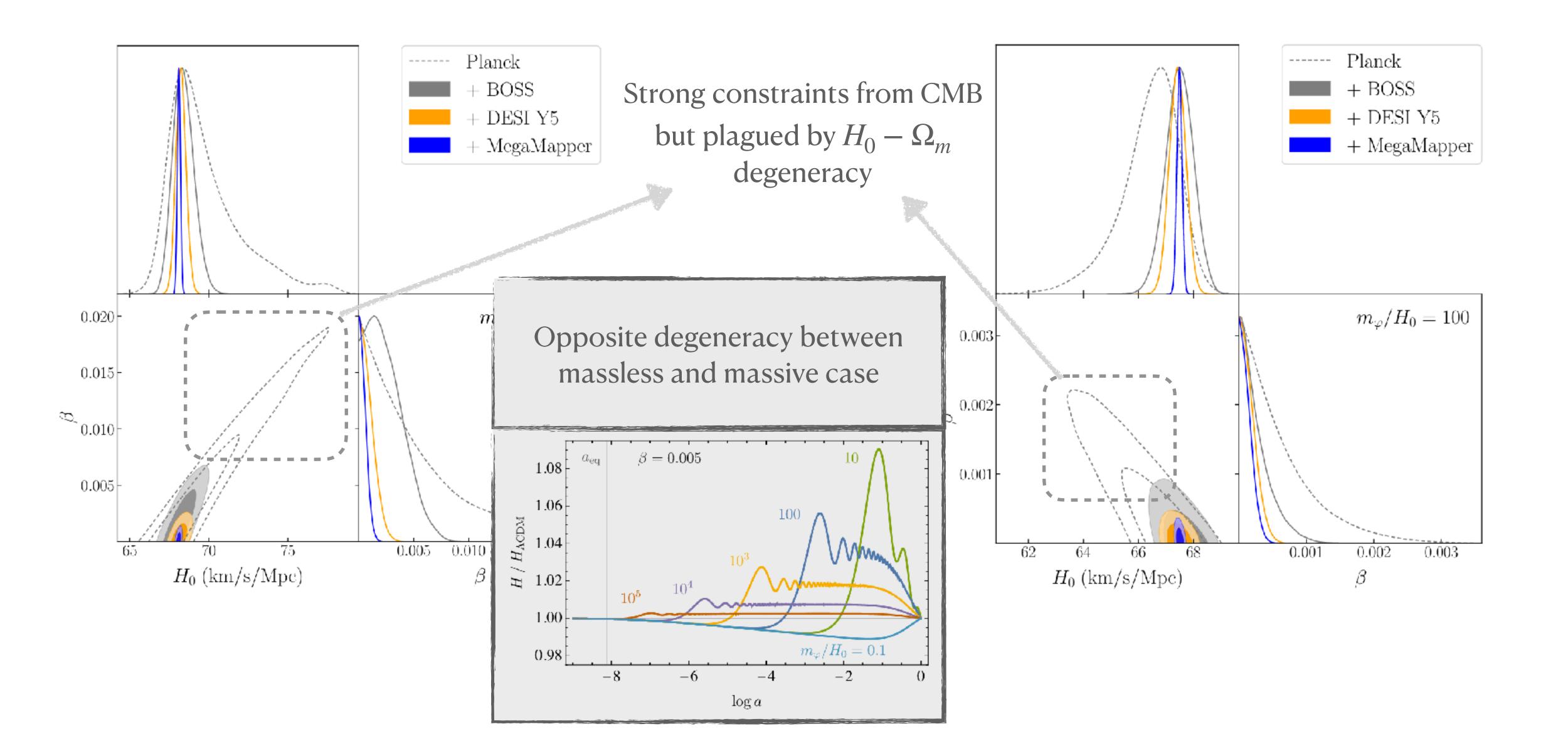
Scale-free growth factor at scales relevant for LSS

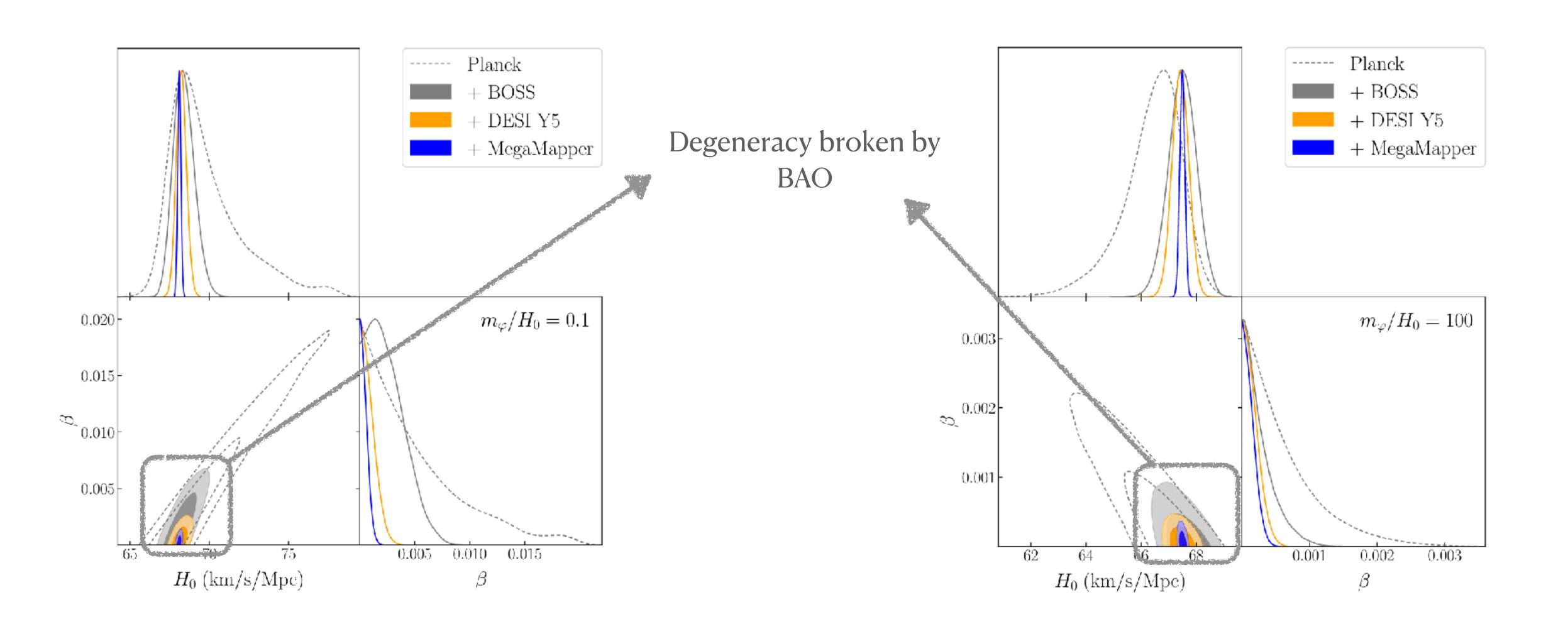


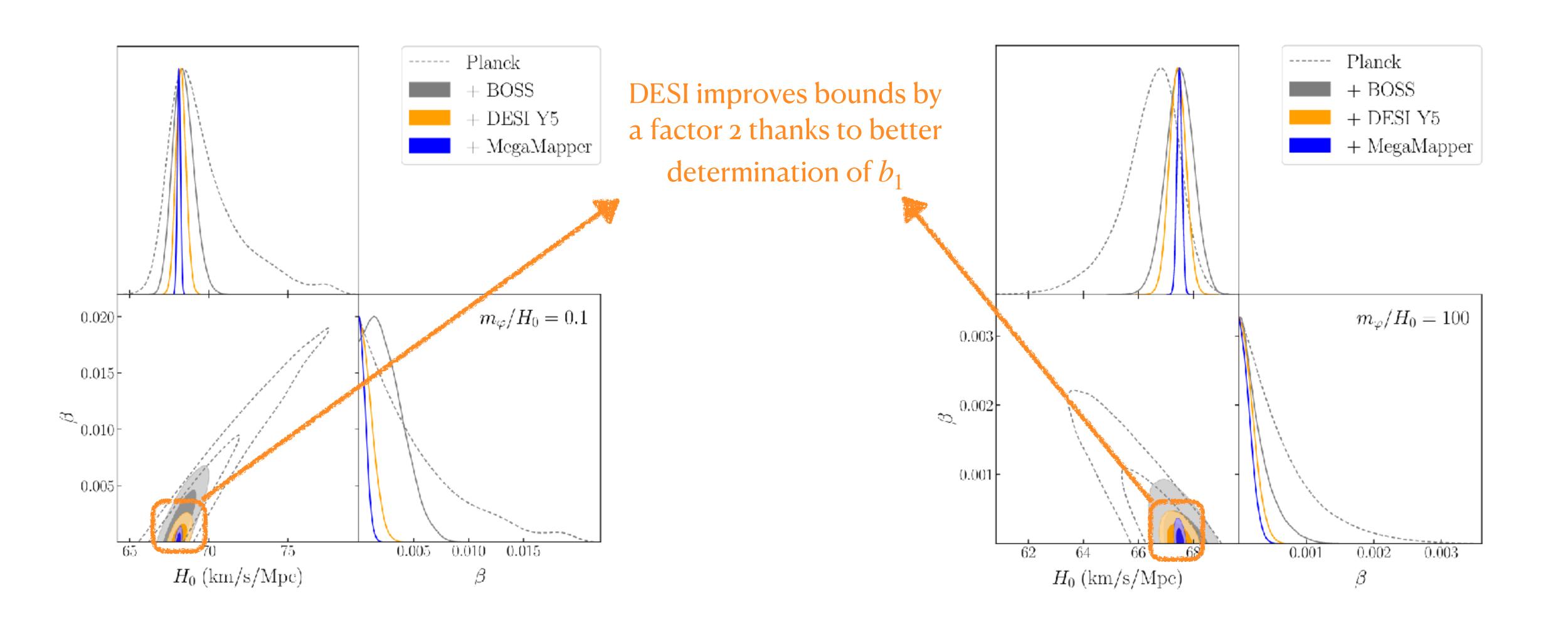


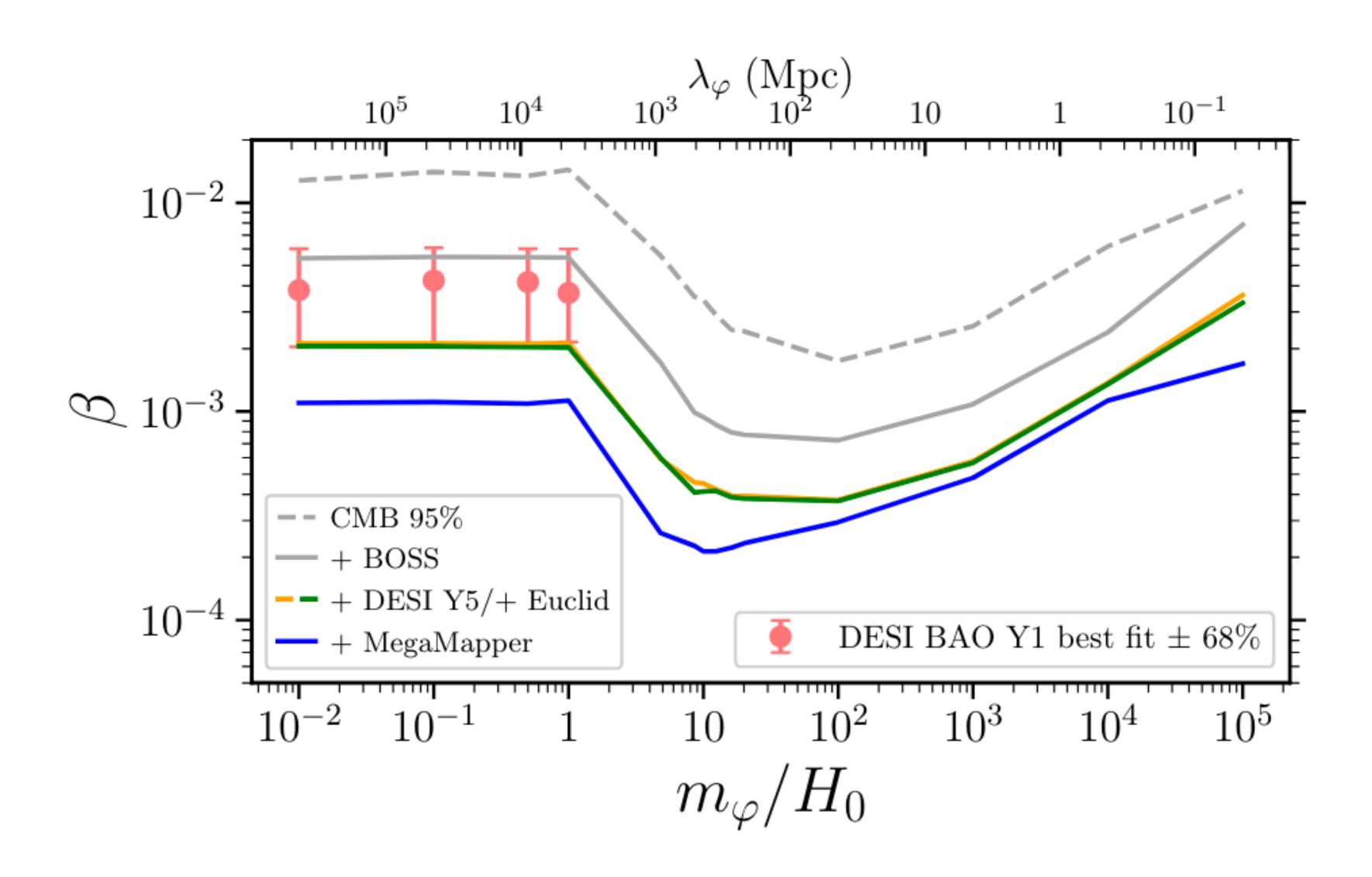
Reduced gravitational potential







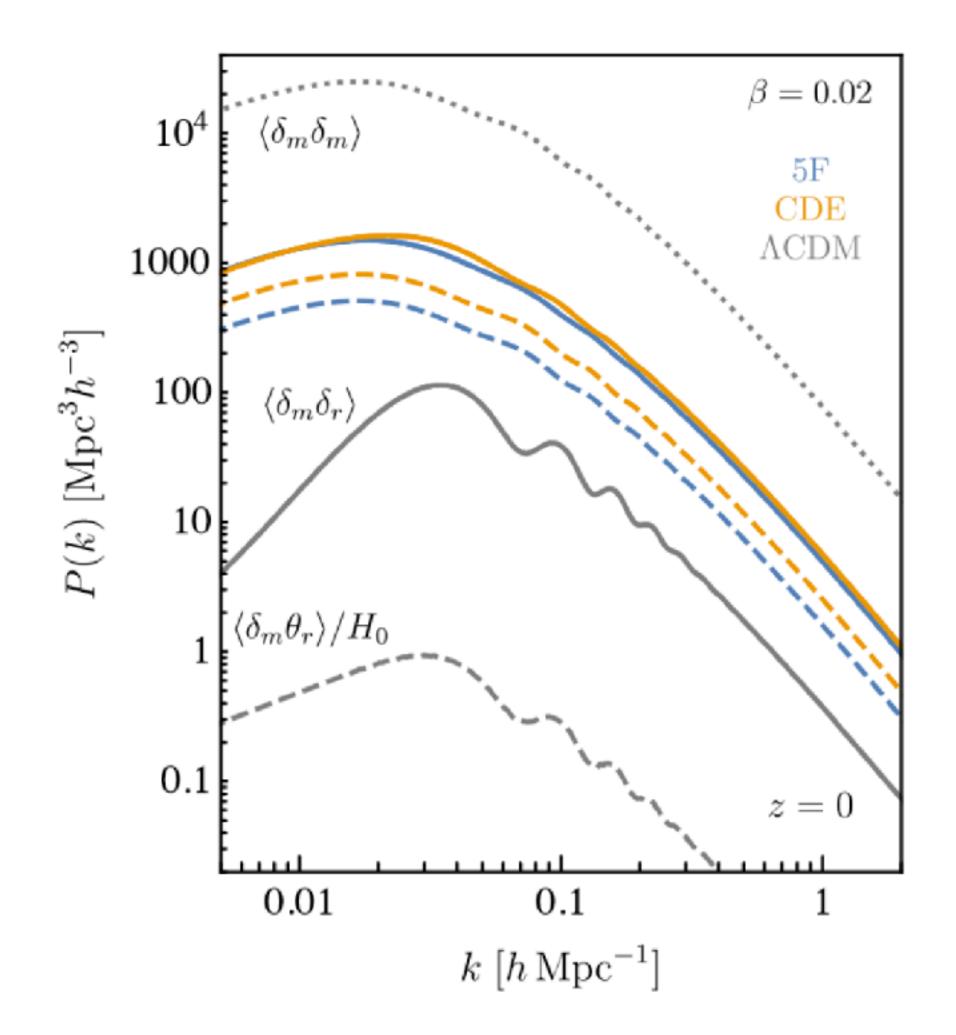


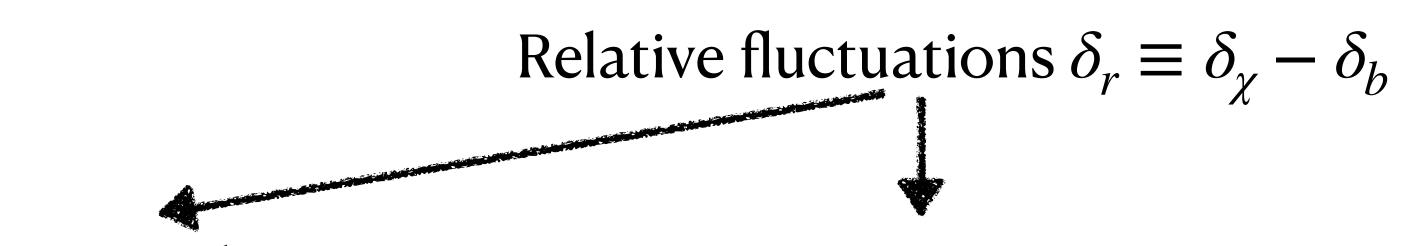


Relative fluctuations
$$\delta_r \equiv \delta_\chi - \delta_b$$

Grow with scale factor

$$\delta_r(a) = \frac{5}{3} \beta f_{\chi} \delta_m^{\Lambda \text{CDM}}(a)$$



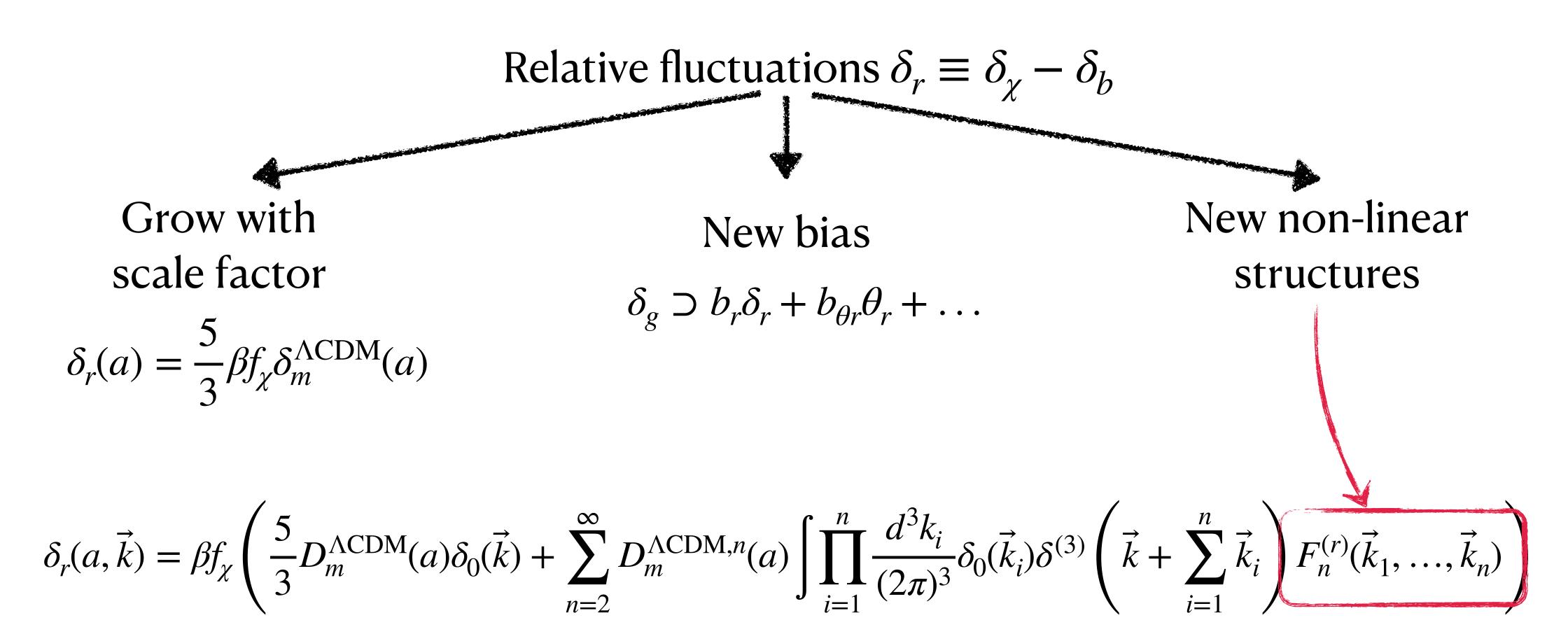


Grow with scale factor

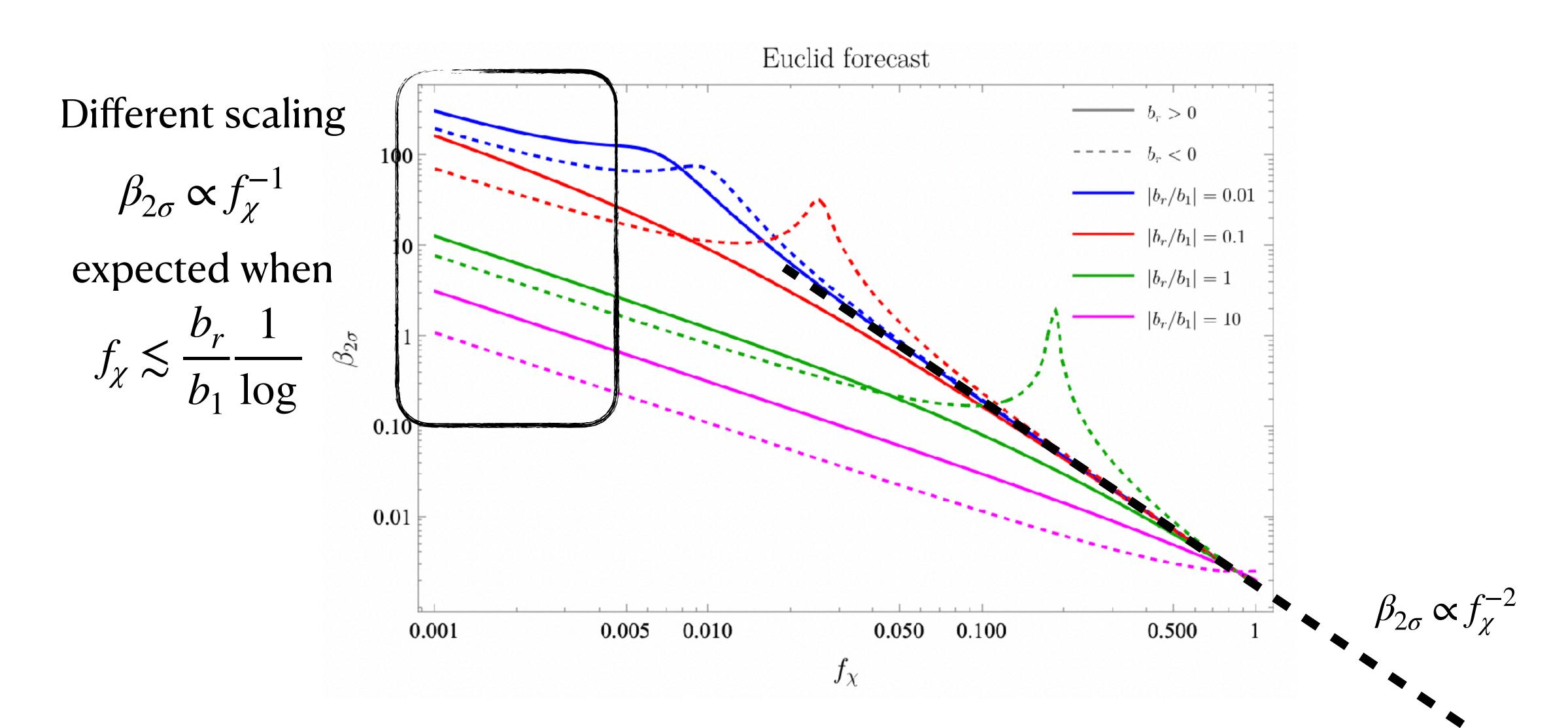
$$\delta_r(a) = \frac{5}{3} \beta f_{\chi} \delta_m^{\Lambda \text{CDM}}(a)$$

New bias

$$\delta_g \supset b_r \delta_r + b_{\theta r} \theta_r + \dots$$

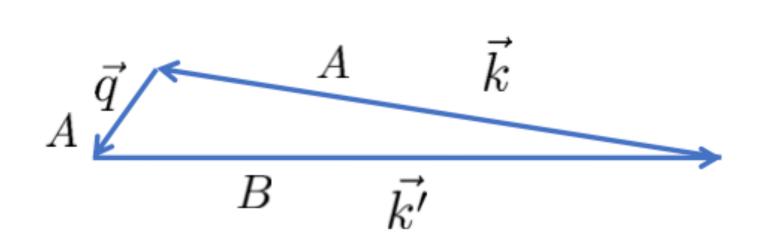


Crucial features: no log enhancement, only linear scaling with f_χ



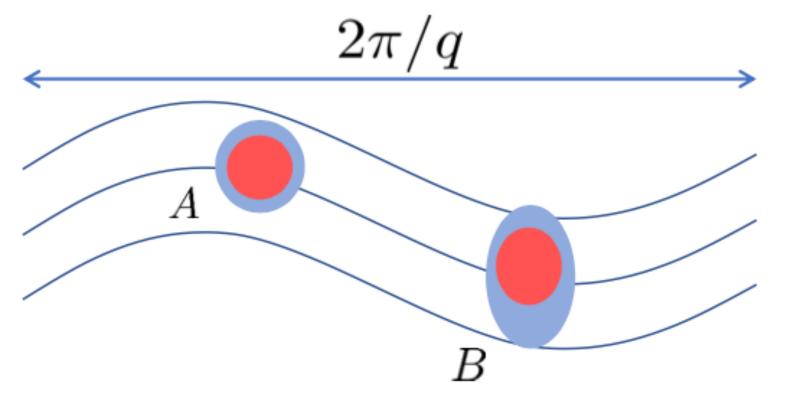
Smoking guns: Pole of the bispectrum

Pole emerging in the squeezed limit of the bispectrum for two different tracers

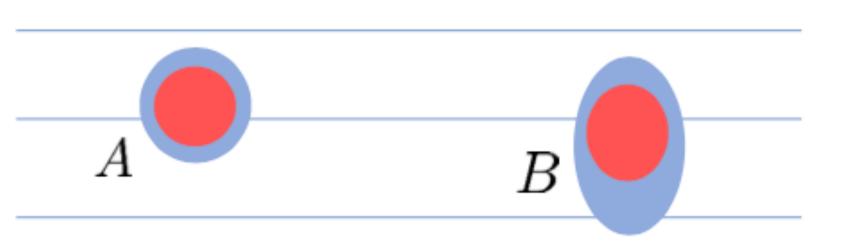


$$\lim_{q \to 0} \Delta B(q, k, k') \propto \Delta_{AB} \frac{\vec{q} \cdot \vec{k}}{q^2} P^{\text{lin}}(k) P^{\text{lin}}(q)$$

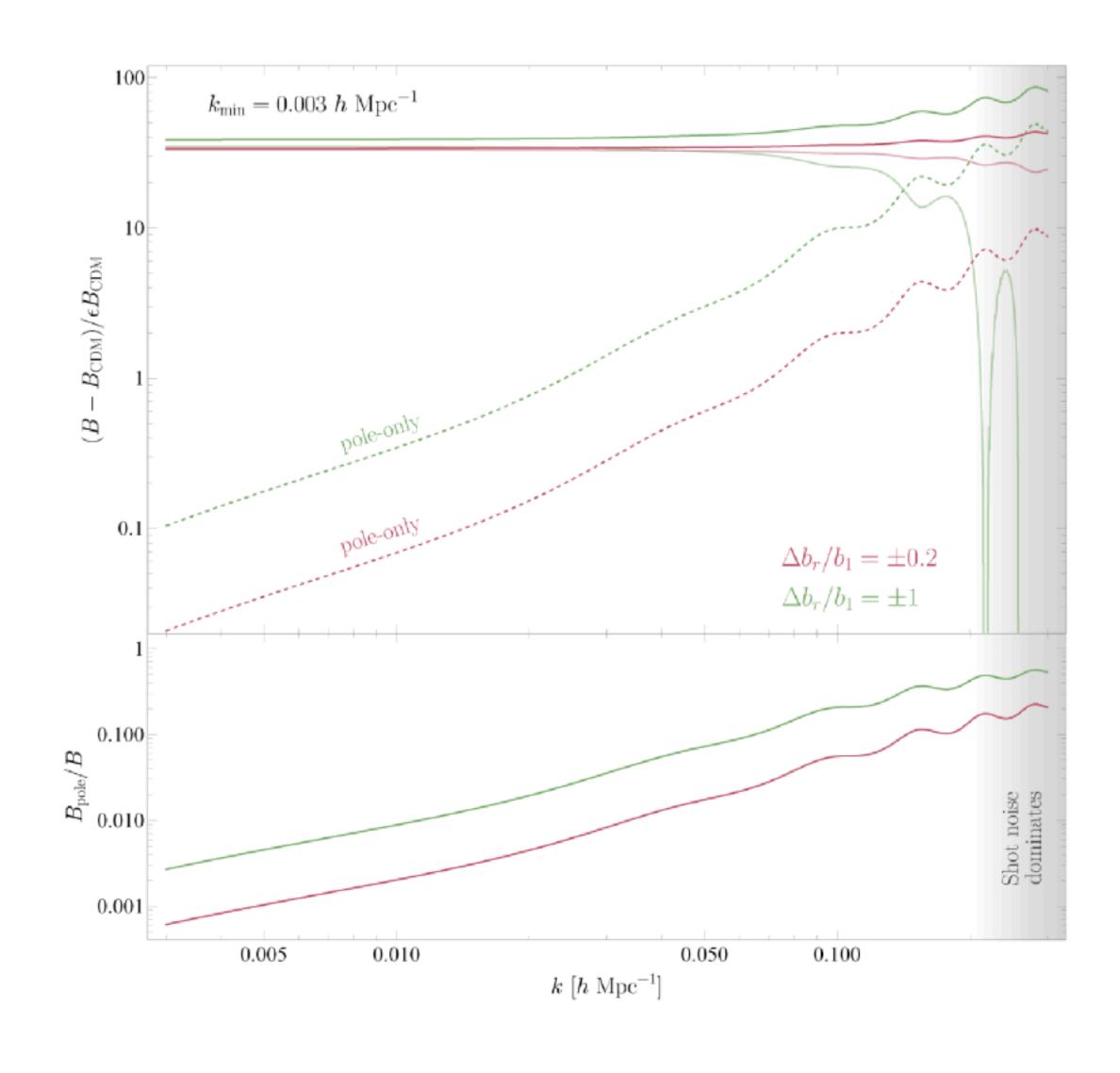
$$\Delta_{AB} = b_1^A (b_1^A b_r^B - b_1^B b_r^A)$$



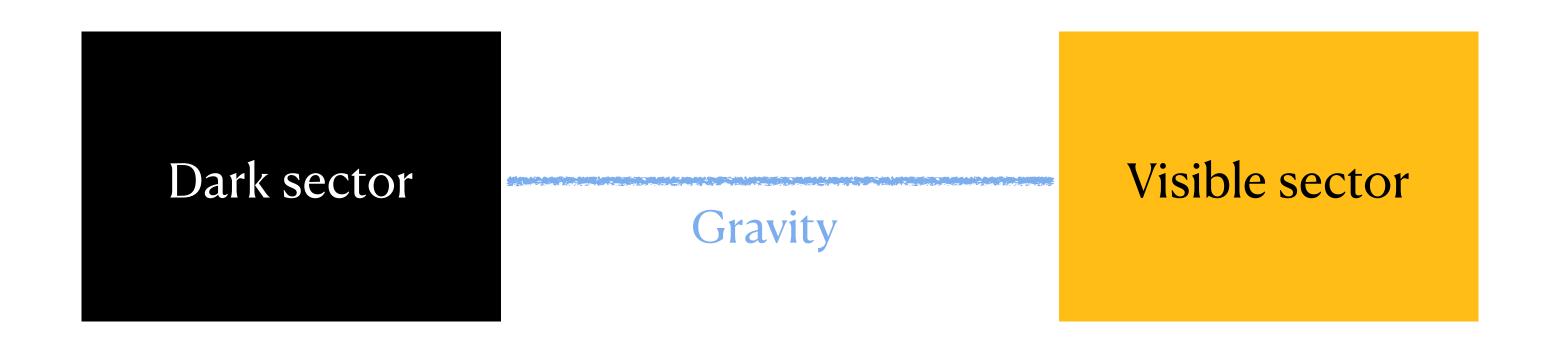
Boost to freefall system Still feel a non-zero potential!



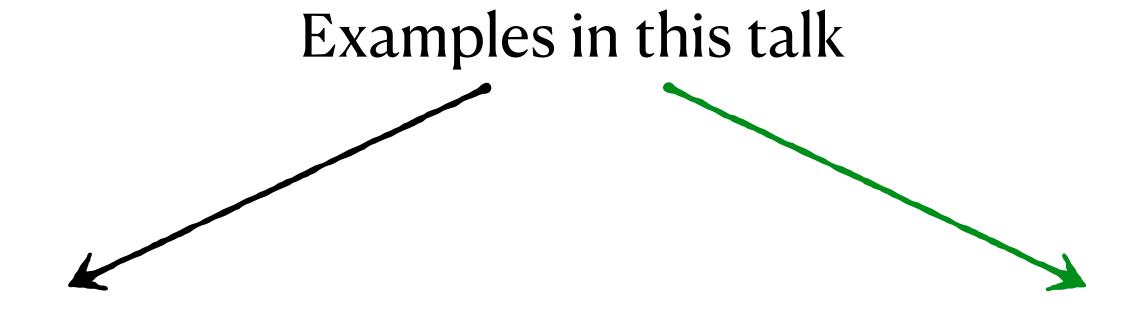
Smoking guns: Pole of the bispectrum



Can we see in the dark?



Cosmology is the only way to probe completely secluded dark sectors!

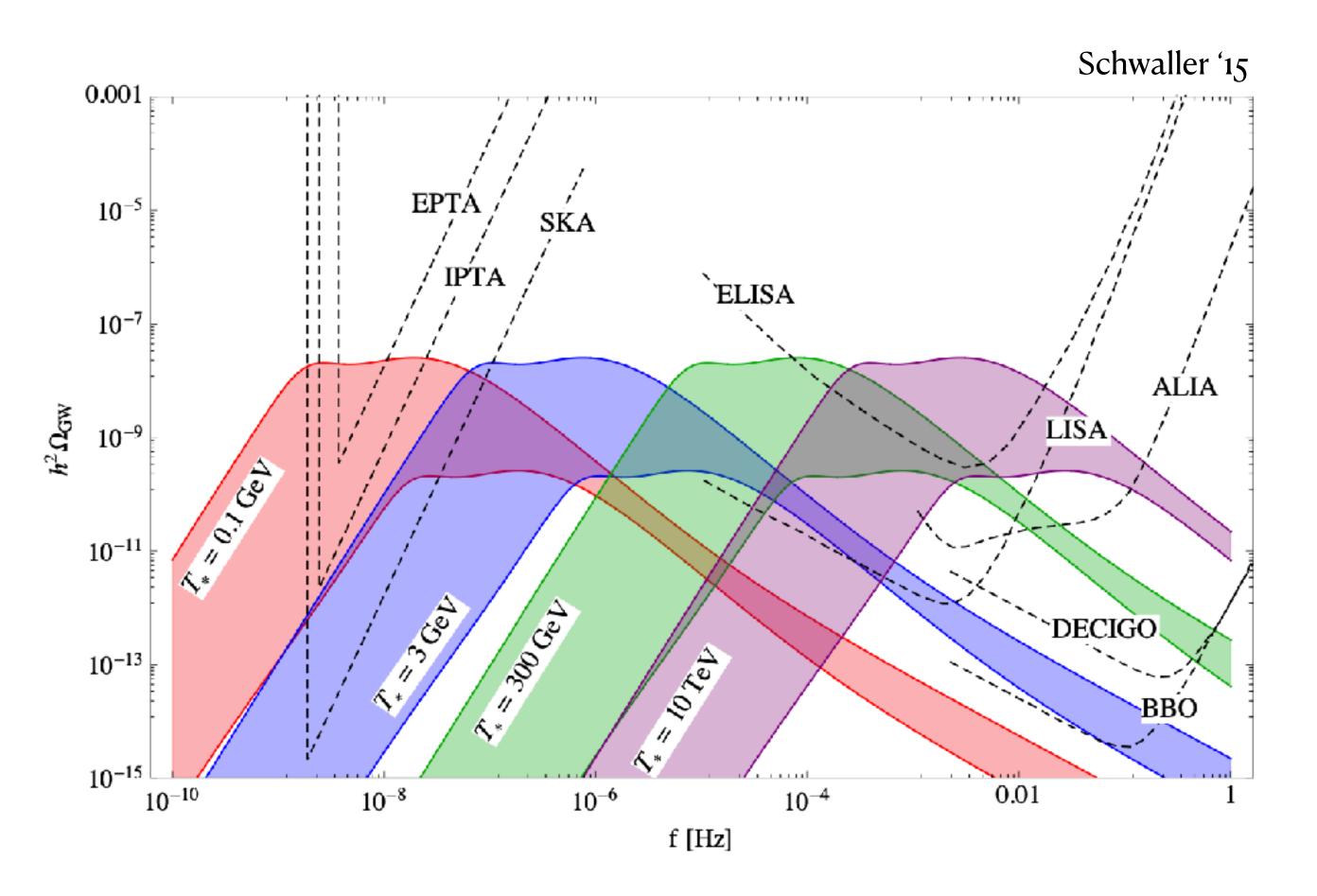


Long-range dark forces

Late-time dark phase transitions

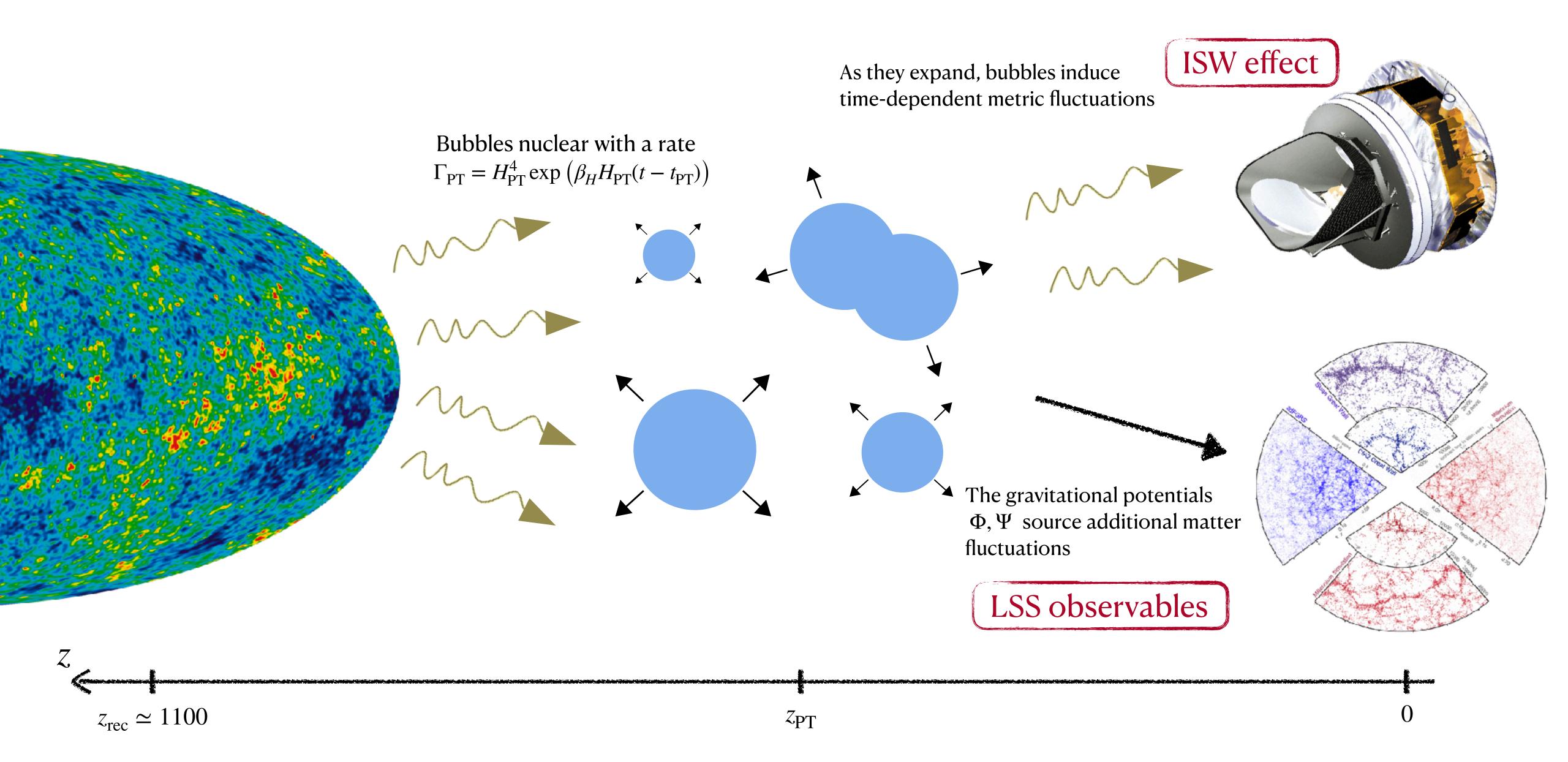
Can we test late-time PT?

PT happening at $T \gtrsim 1$ eV produce GWs in the sensitivity range of future interferometers

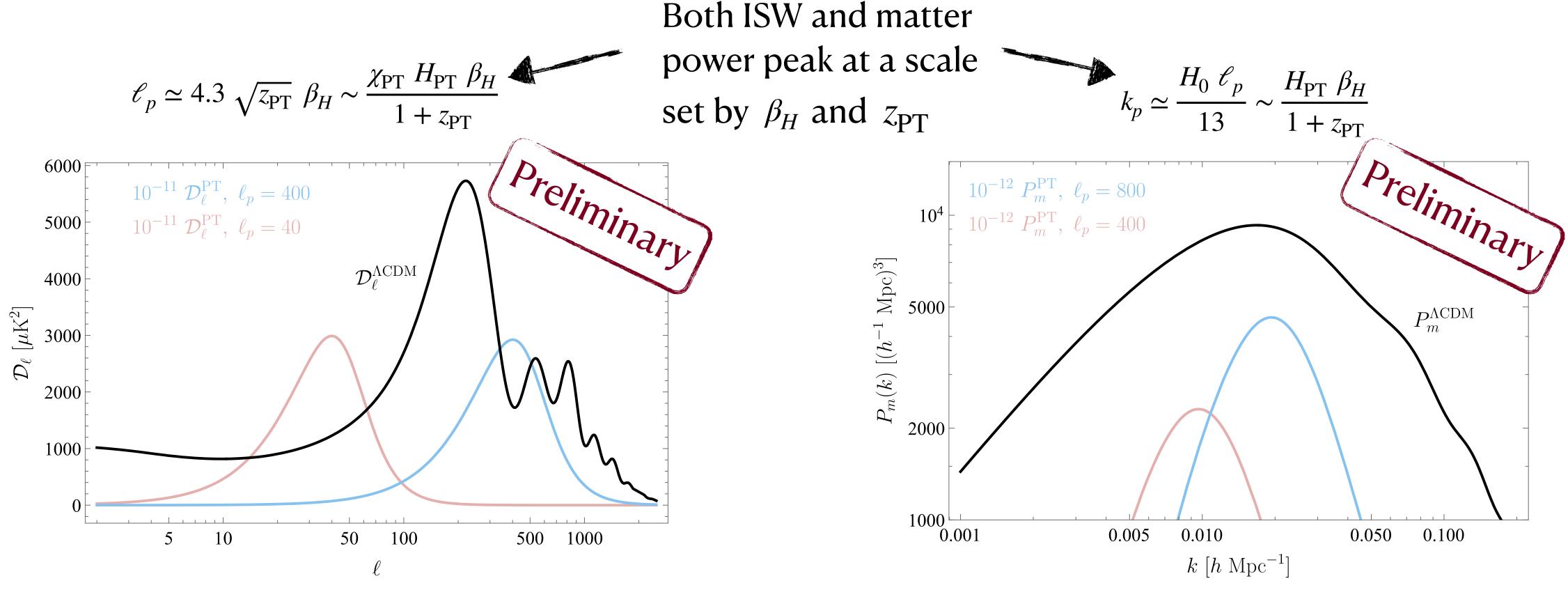


What about later PT? Imprints left on cosmological observables!

Dynamics of a Late PT



Features of the Signal

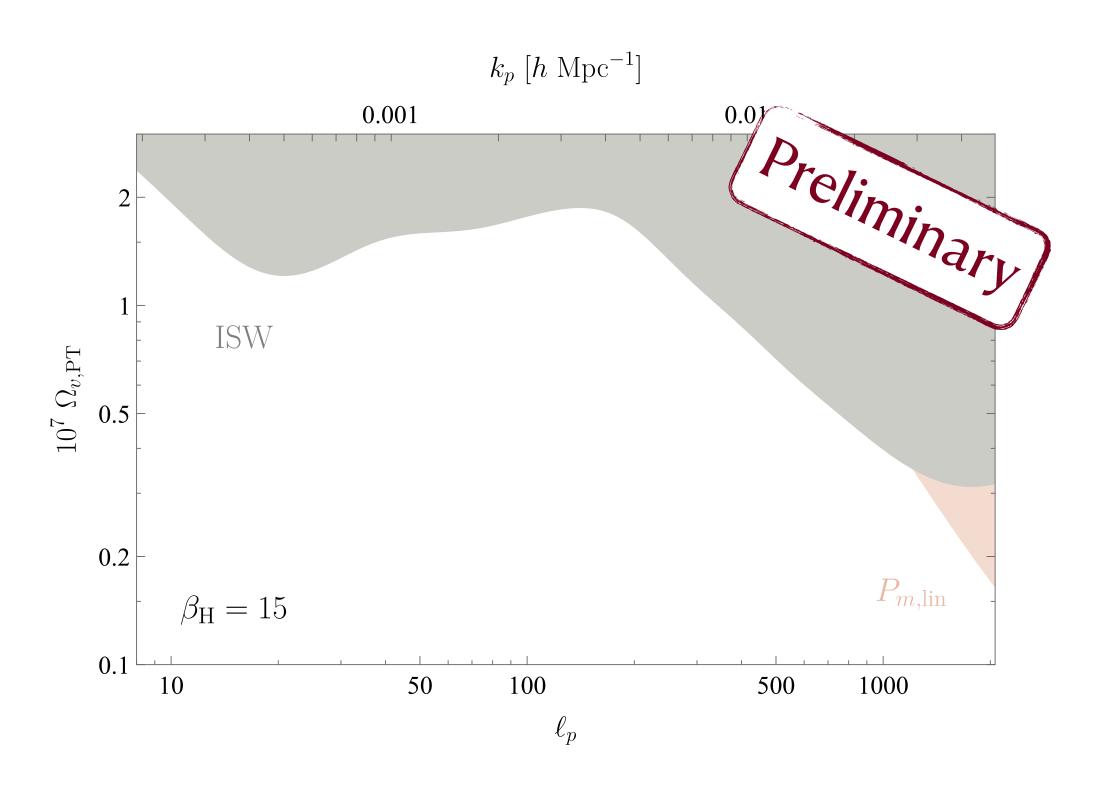


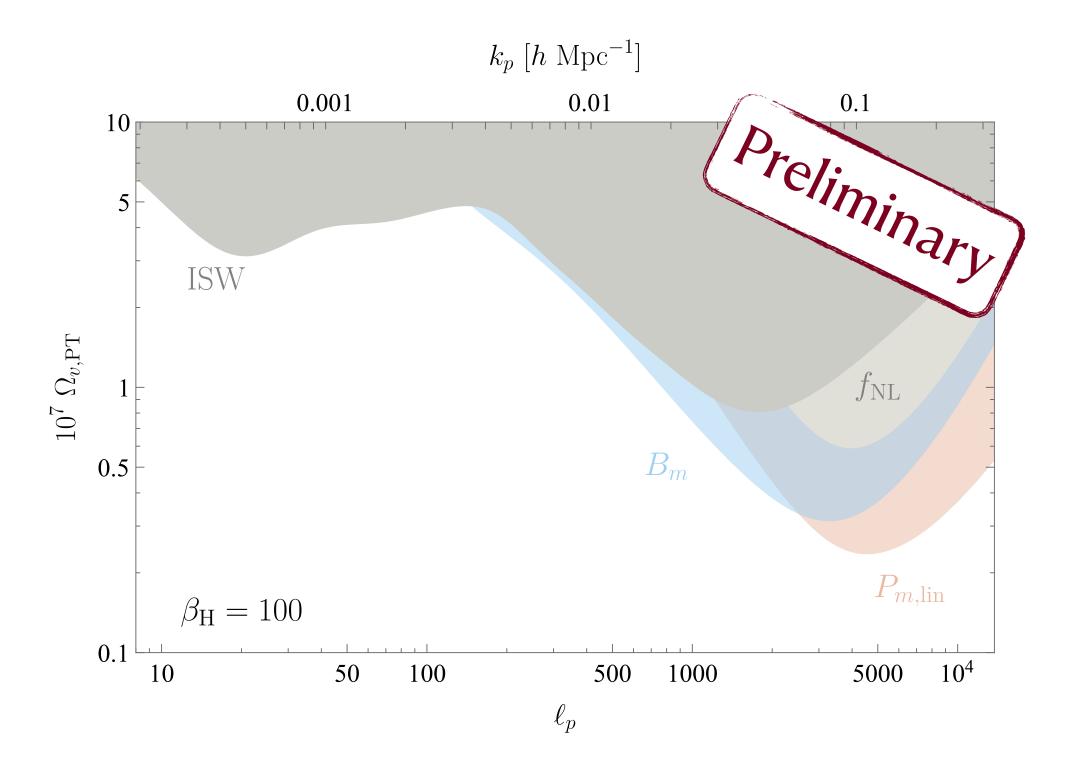
Negligible degeneracies with cosmological parameters

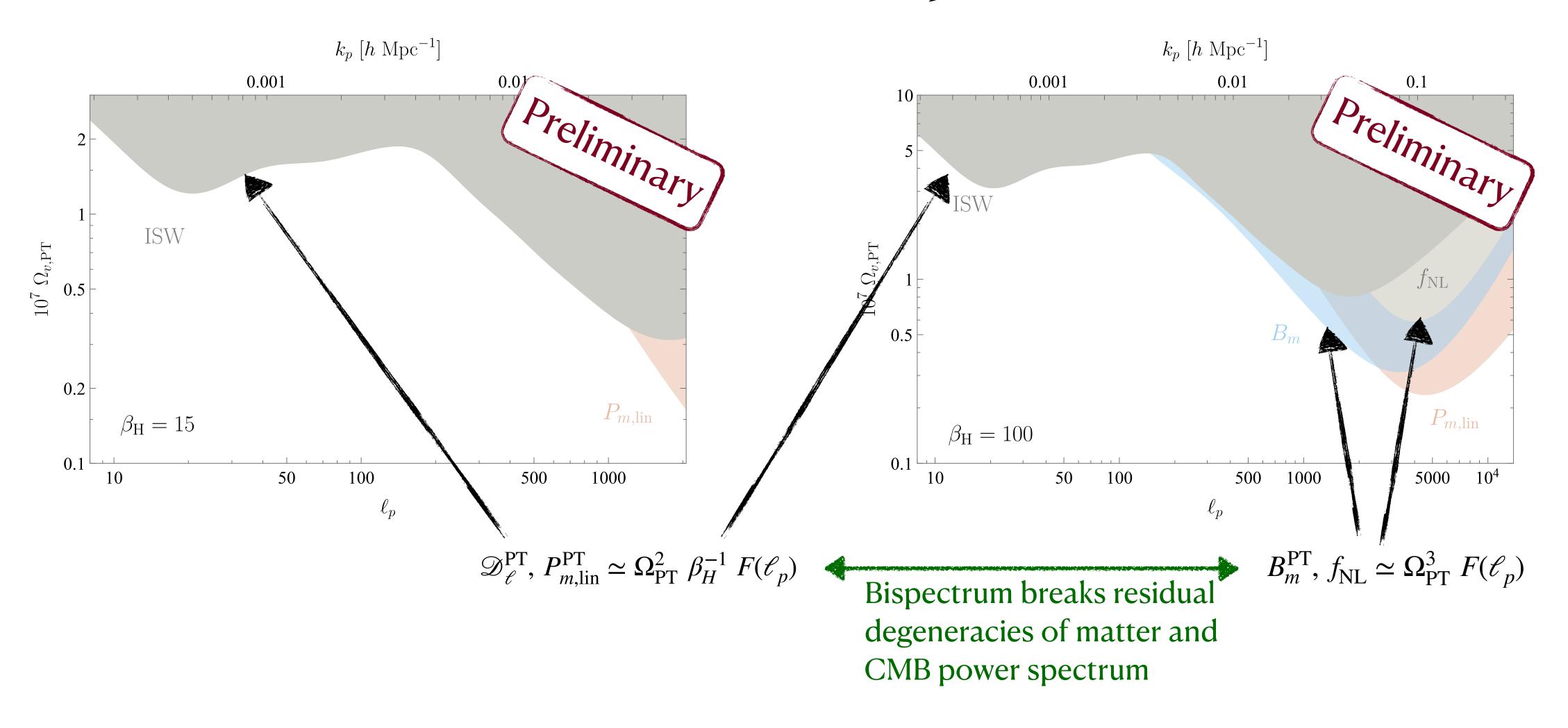
Significant non-Gaussianities are produced

$$\langle \Phi \Phi \Phi \rangle^2 \approx \langle \Phi \Phi \rangle^3$$

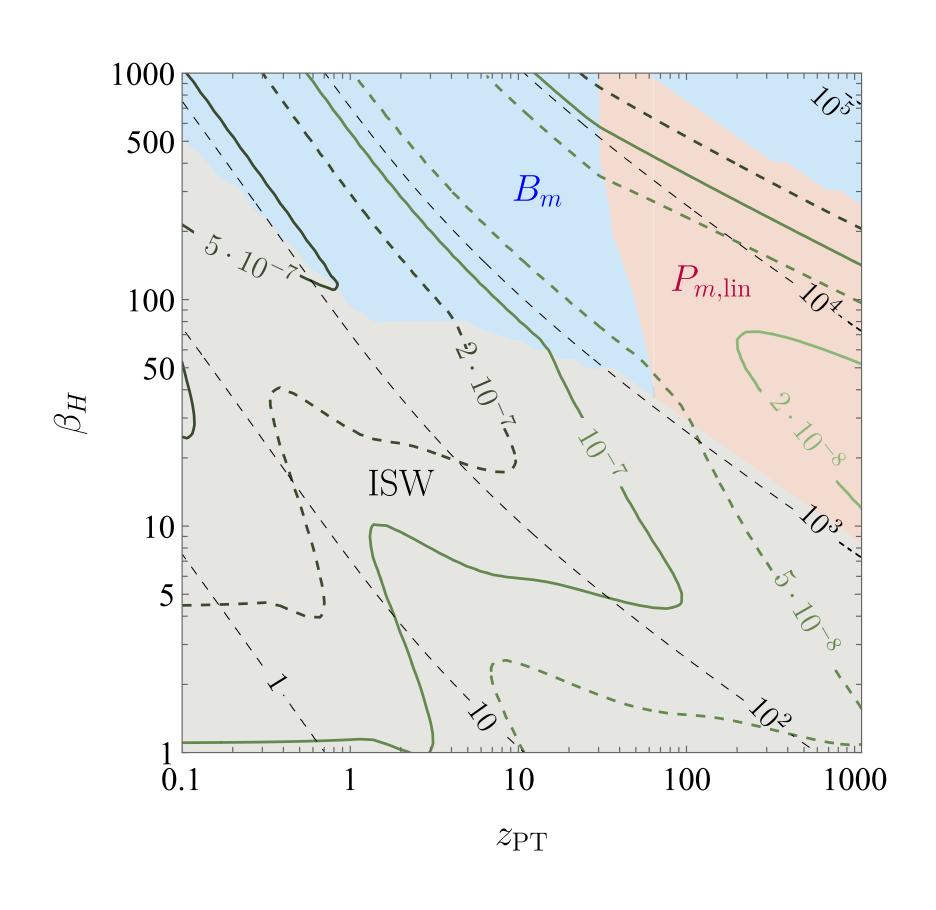
 $\langle \Phi \Phi \Phi \rangle^2 \approx \langle \Phi \Phi \rangle^3$ Constraints from bispectrum and f_{NI}

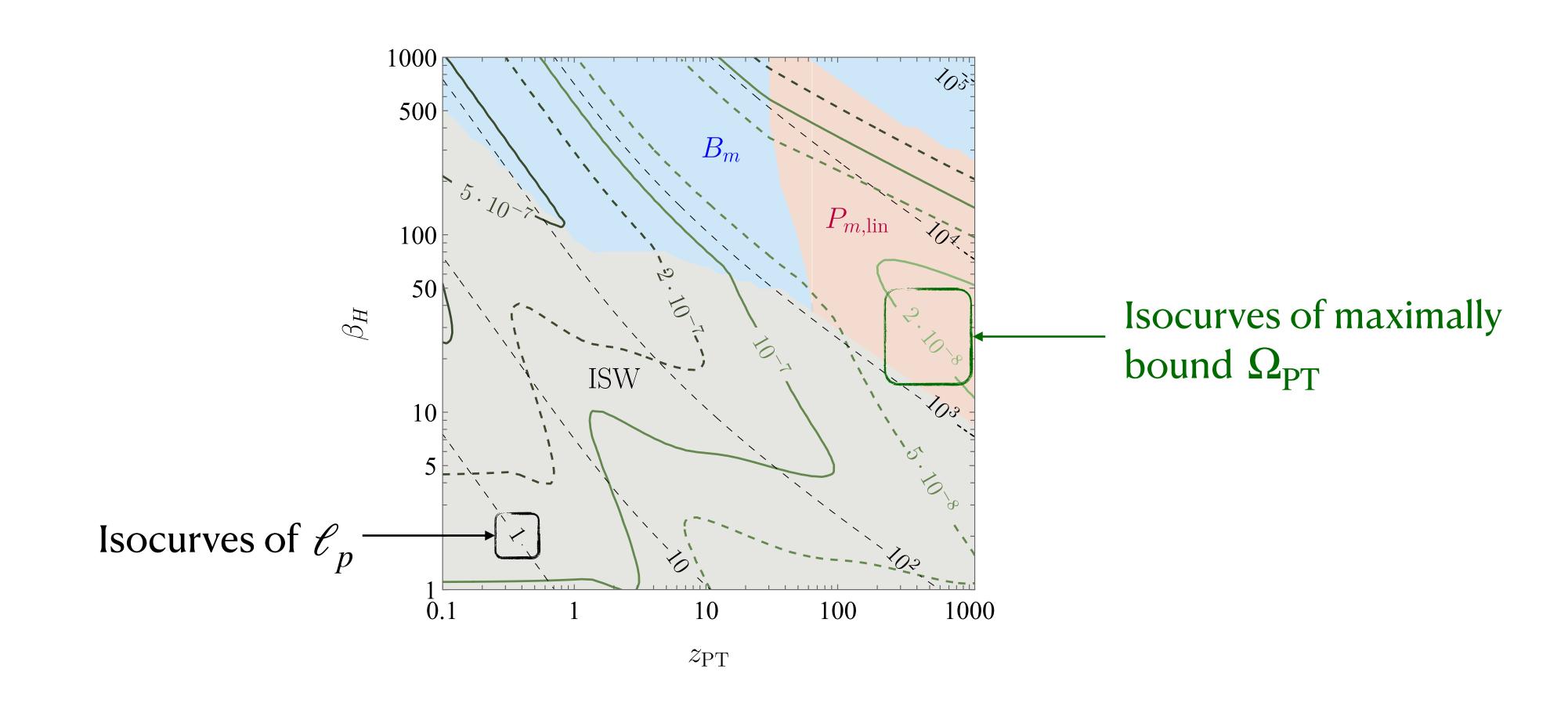


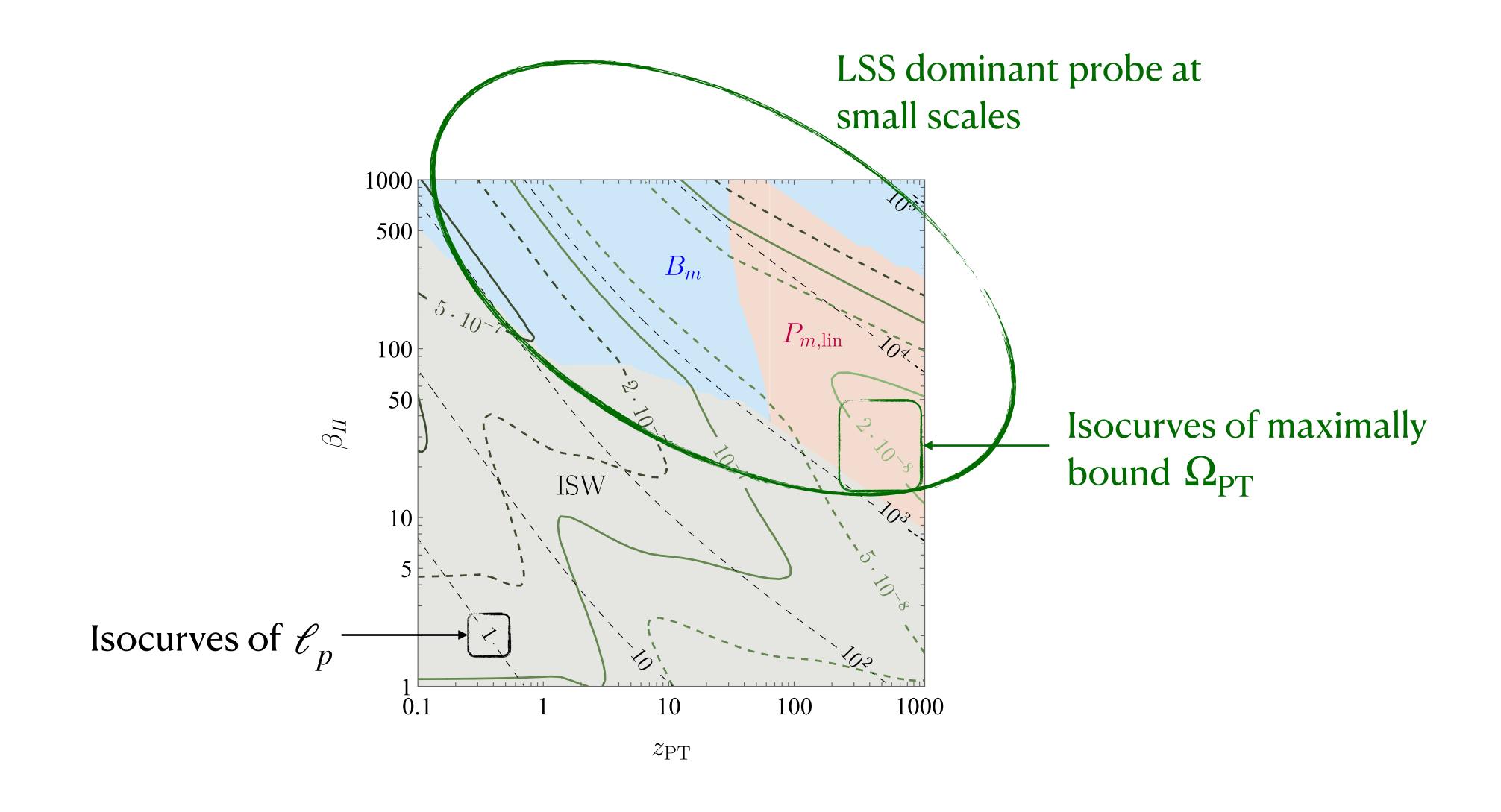




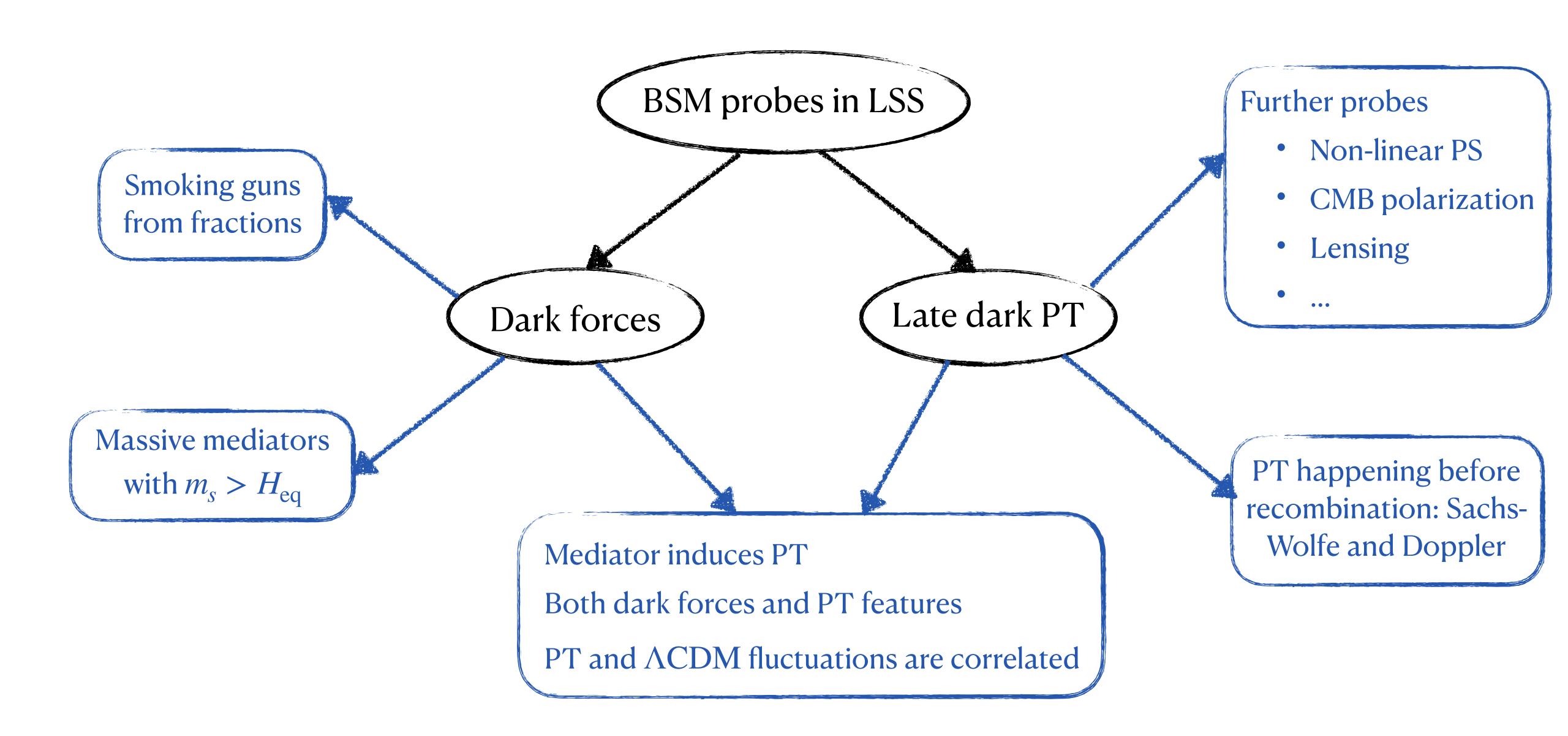
Phase transition can be fully characterized and $\Omega_{PT} \equiv \frac{\Delta \rho_{PT}}{\rho_{cr,PT}}$ can be probed at $\mathcal{O}(10^{-7})$





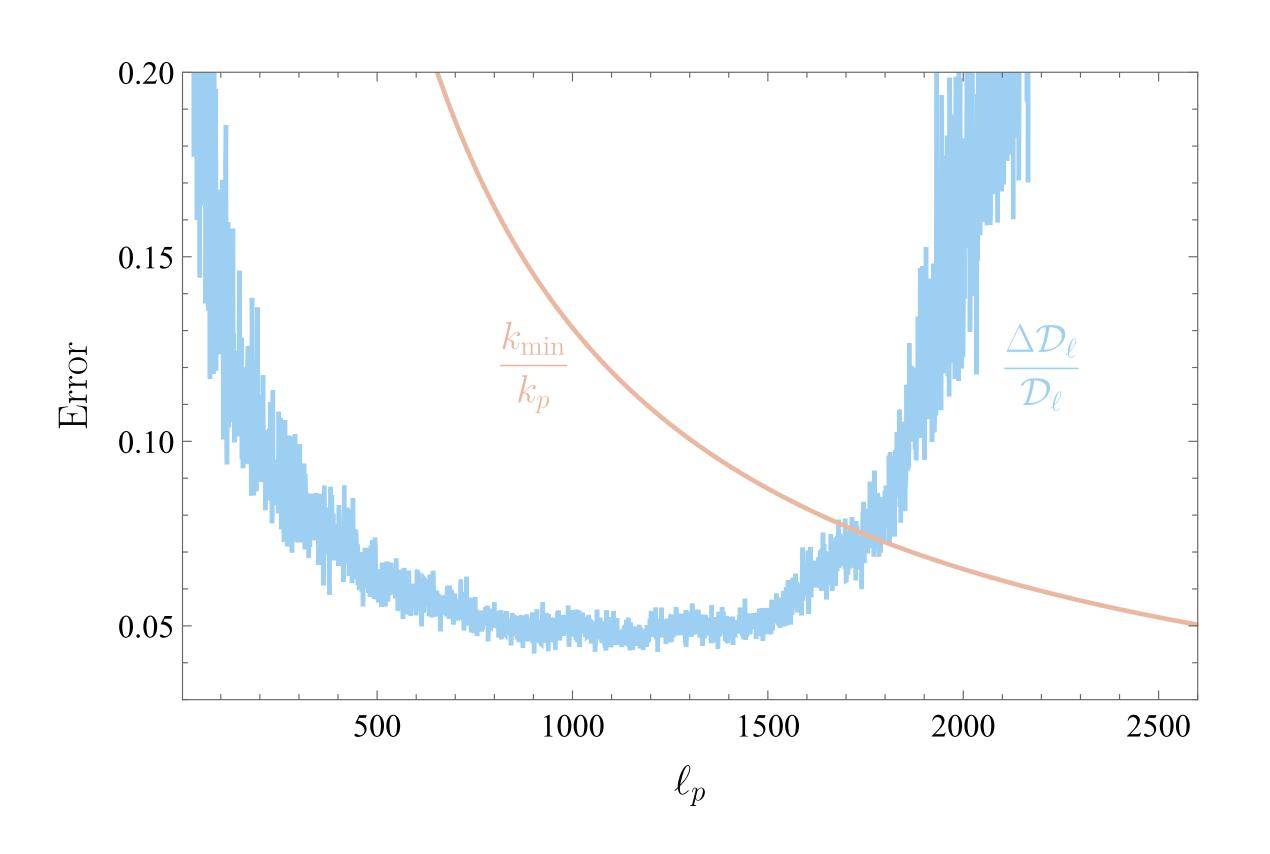


Outlook

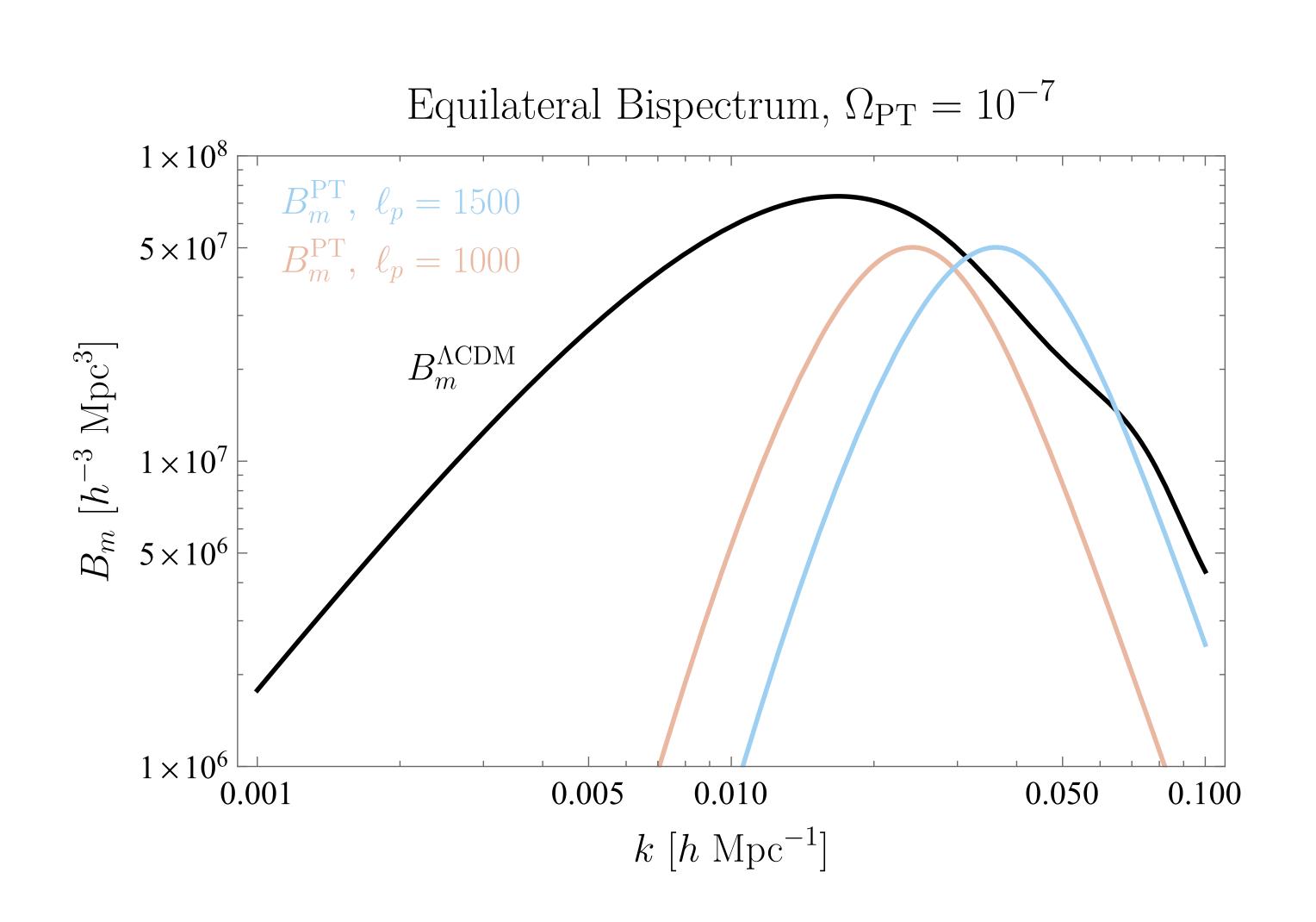


Back-up

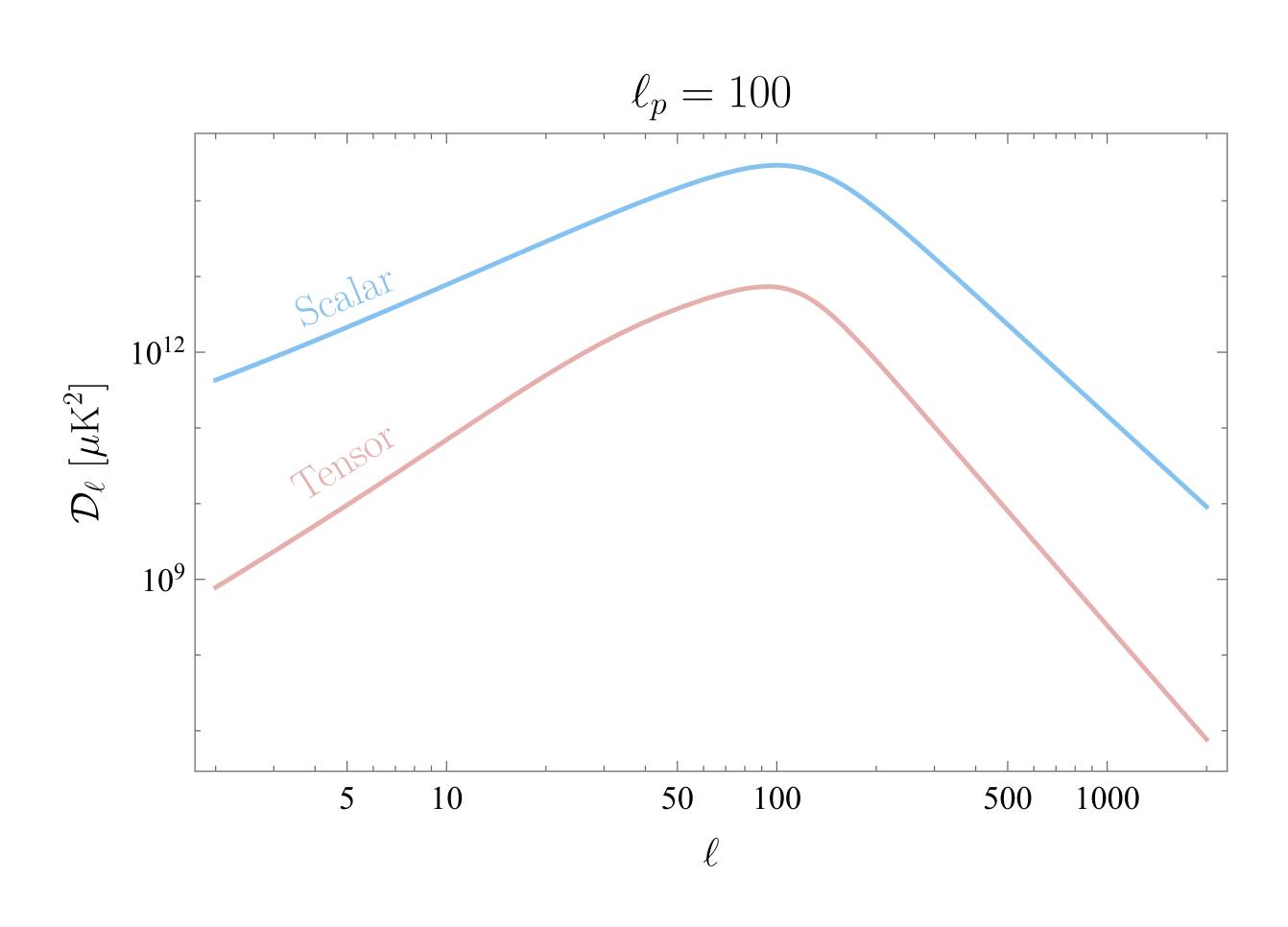
CMB vs. Power spectrum



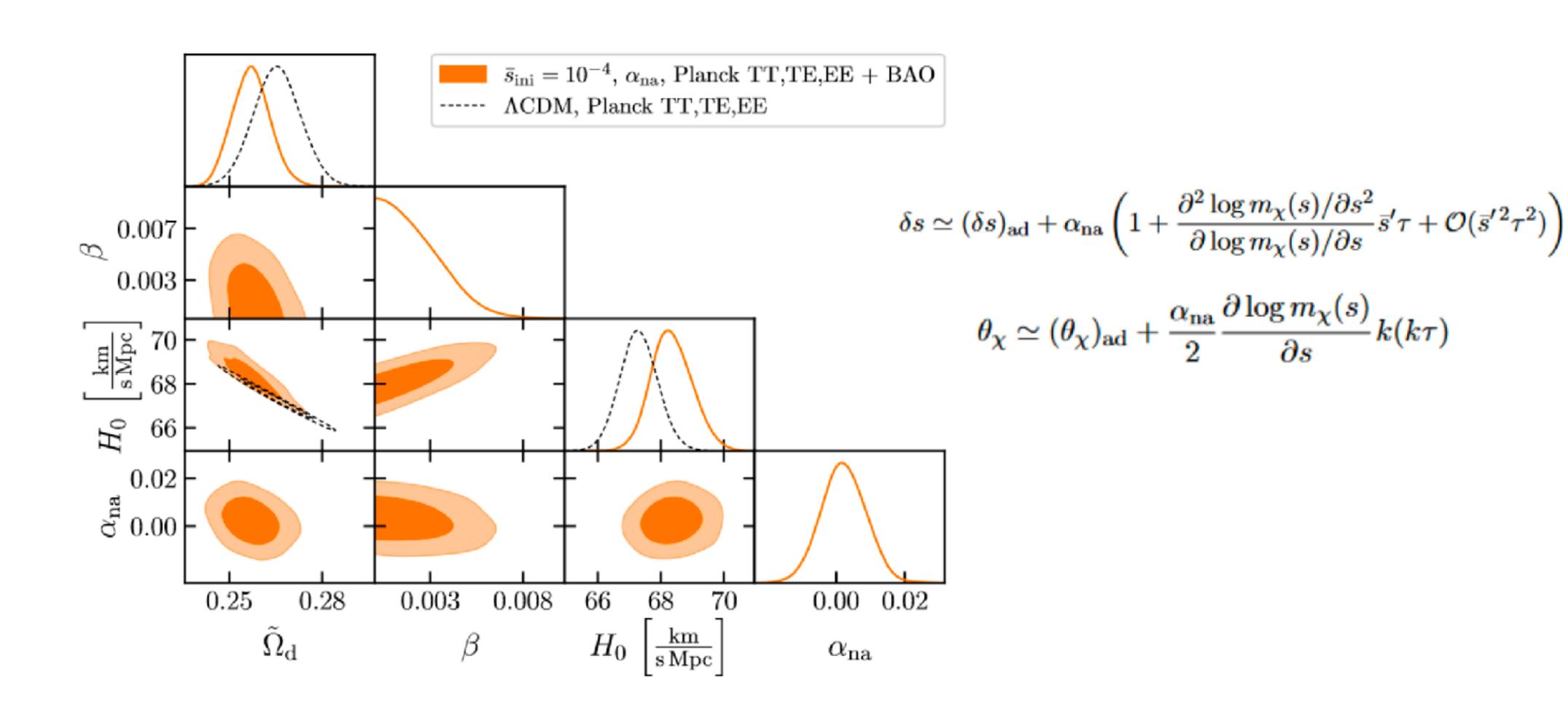
Bispectrum



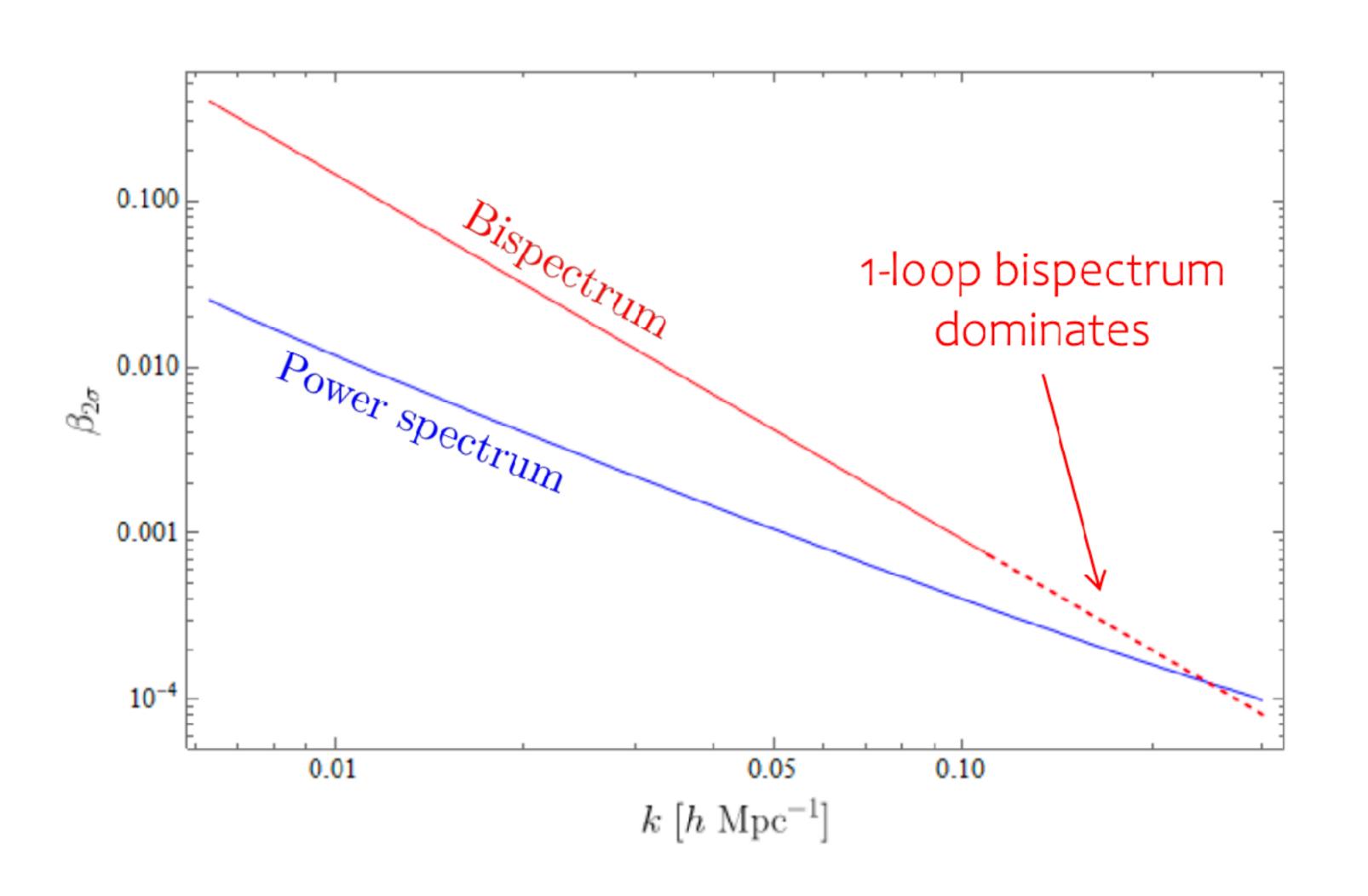
ISW from GWs



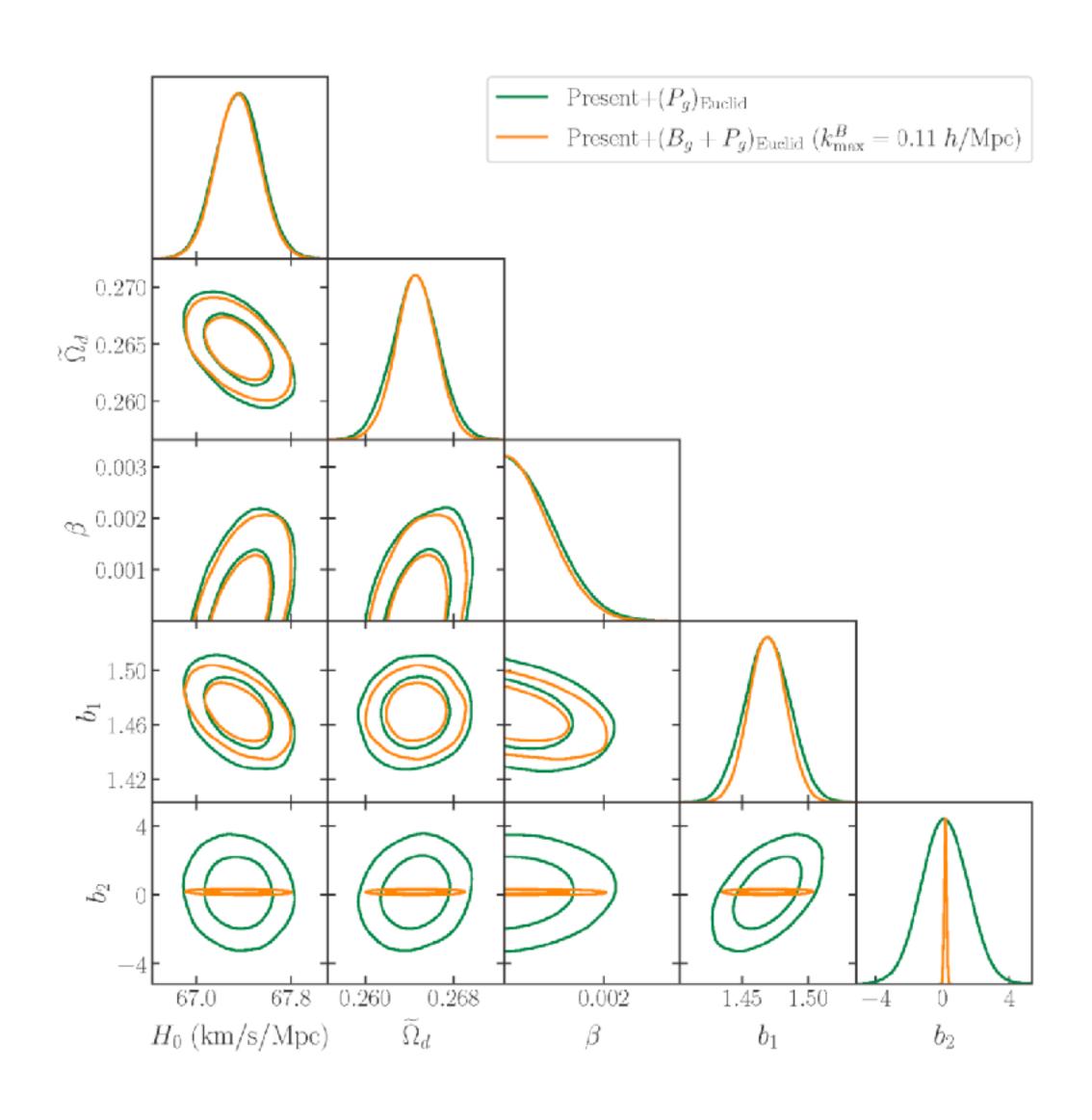
Non-adiabatic ICs



Bispectrum vs. Power spectrum



Bispectrum vs. Power spectrum



Relations with 5th force experiments

The scalar mediator can couple to the SM if DM does, e.g. the axion

$$\mathcal{L} = \frac{\alpha}{8\pi} \frac{E}{N} \frac{a}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{\alpha_3}{8\pi} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{\mu\nu} - g_D m_a s a^2$$

$$\mathcal{L} = \sqrt{4\pi G_N s} \left(\frac{d_e}{4} F_{\mu\nu} F^{\mu\nu} + \frac{d_g b_3 \alpha_3}{8\pi} G^a_{\mu\nu} G^{\mu\nu} + \cdots \right)$$

$$d_e \simeq \sqrt{\beta} \left(\frac{m_a}{4\pi f_a}\right)^2 \frac{\alpha^2}{16\pi^2} \simeq 2 \times 10^{-10} \sqrt{\frac{\beta}{0.01}} \left(\frac{m_a}{f_a}\right)^2 \leq 2.1 \times 10^{-4}$$

$$d_g \simeq \sqrt{\beta} \left(\frac{m_a}{4\pi f_a}\right)^2 \frac{\alpha_3}{8\pi b_3} \simeq 3 \times 10^{-6} \sqrt{\frac{\beta}{0.01}} \left(\frac{m_a}{f_a}\right)^2 \leq 2.9 \times 10^{-6}$$
MICROSCOPE (1712.01176)