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MOTIVATION

1. The search of non-singular alternatives to inflation seems as an
important problem;

2. We study bounce epoch as such alternative/completion to/of
inflation.
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BOUNCE
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Figure 1: Hubble parameter: bounce

Qui’2011,2013; Easson’2011; Cai’2012;
Osipov’2013; Koehn’2013; Battarra’2014; Ijjas’2016
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NULL ENERGY CONDITION

Realization of non-singular evolution within classical field theory
requires the violation of the Null Energy Condition (NEC) Tµνnµnν > 0
(or Null Convergence Condition (NCC) Rµνnµnν > 0 for modified
gravity).

T00 = ρ, Tij = a2γijp,

Ḣ = −4πG(ρ+ p) + curvature term.

Let us use nµ = (1,a−1ν i) with γijν iν j = 1 and then NEC leads to

Tµνnµnν > 0→ ρ+ p ≥ 0→ Ḣ ≤ 0.

Penrose theorem: singularity in the past.
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HORNDESKI THEORY

Violation of NEC/NCC without obvious pathologies is possible in the
class of Horndeski theories [Horndeski’74]:

LH = G2(ϕ, X)− G3(ϕ, X)□ϕ+
G4(ϕ, X)R+ G4,X

[
(□ϕ)2 − (∇µ∇νϕ)

2]
+ G5(ϕ, X)Gµν∇µ∇νϕ

− 1
6G5,X

[
(□ϕ)3 − 3□ϕ(∇µ∇νϕ)

2 + 2(∇µ∇νϕ)
3],

where X = − 1
2g
µν∂µϕ∂νϕ and □ϕ = gµν∇µ∇νϕ. For our purposes it

is enough to study

LH = G2(ϕ, X)− G3(ϕ, X)□ϕ+ G4(ϕ)R.

In the framework of this theory one can (quite straightforwardly)
obtain healthy bounce epoch.

5



NO-GO THEOREM

Another problem arises if one considers the whole evolution
(−∞ < t < +∞) of such a singularity-free universe: instabilities
show up at some moment in the history→ No-Go theorems.
M. Libanov, S. Mironov, V. Rubakov’2016; T. Kobayashi’2016; S. Mironov,
V. Rubakov, V. Volkova’2018.
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NO-GO THEOREM

Let us consider the following perturbed ADM metric:

ds2 = −N2dt2 + γij

(
dxi + Nidt

)(
dxj + Njdt

)
,

γij = a2e2ζ(δij + hij + . . .), N = N0(1+ α), Ni = ∂iβ.

Here α and β are not physical. We work with unitary gauge δϕ = 0.
The quadratic actions for ζ and hij are given, respectively:

Lζζ = a3
[
GS
ζ̇2

N2 −
FS
a2 ζ,iζ,i

]
, Lhh =

a3
8

[
GT
ḣ2ij
N2 −

FT
a2 hij,khij,k

]
.

Remind that bounce solution is a(t) → ∞ as t→ −∞. No-Go works if∫ t

−∞
a(t)(FT + FS)dt = ∞ ,∫ +∞

t
a(t)(FT + FS)dt = ∞ .

No-Go: FS,T < 0 at some moment of time, instability.
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NO-GO THEOREM

• One way is to go beyond Horndeski and DHOST [Cai et.al.’ 2016,
Creminelli et.al.’2016, Kolevatov et.al.’2017, Cai, Piao’2017]

• Another way to avoid No-Go theorem for Horndeski is to obtain
such a model/solution that FS,T coefficients have asymptotics

FS,T → 0 as t→ −∞, where FT = 2G4.

• This means that
G4 → 0 as t→ −∞.

• Effective Planck mass goes to zero and it signalizes that we may
have strong coupling at t→ −∞.

Solution: no SC regime at t→ −∞ in some region of lagrangian
parameters.
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CONCRETE BOUNCE MODEL

With the appropriate choice of lagrangian functions, the bounce
solution is given by

N = const , a = d(−t)χ ,

where χ > 0 is a constant and Nt→ t is cosmic time, so that
H = χ/t. Coefficients from quadratic actions are

GT = FT =
g

(−t)2µ ,

and
GS = g gS

2(−t)2µ , FS = g fS
2(−t)2µ ,

u2T =
FT
GT

= 1, u2S =
FS
GS

=
fS
gS

̸= 1.

To avoid No-Go:
1 > χ > 0, 2µ > χ+ 1.

To avoid SC regime (t→ −∞):

µ < 1. 9



POWER SPECTRUM

Spectra are given by

Pζ ≡ Aζ

(
k
k∗

)ns−1
, PT ≡ AT

(
k
k∗

)nT
,

where k∗ is pivot scale, the spectral tilts are

nS − 1 = nT = 2 ·
(
1− µ

1− χ

)
,

nS = 0.9649± 0.0042.
The amplitudes in our model are

Aζ =
C
g

1
gSu2νS

, AT =
8C
g ,

where
ν =

1+ 2µ− 3χ
2(1− χ)

=
3
2 +

1− nS
2 ≈ 3

2 ,

approximate flatness is ensured in our set of models by choosing
µ ≈ 1, while the slightly red spectrum is found for µ > 1 . 10



POWER SPECTRUM

The problem№1: red-tilted spectrum requires µ > 1, while absence
of strong coupling µ < 1!

Solution: consider time-dependent µ: changes from µ < 1 to µ > 1
(time runs as −∞ < t <∞).

Try to escape from SC and generate spectrum, consistent with
experiment. Horizon exit must occur in weak coupling regime!

The problem№2: r-ratio is small:

r = AT
Aζ

≈ 8gSu3S < 0.032. Tristram’2022

Solution: choose uS ≪ 1. Mukhanov’1999, 2000, k-inflation
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STRONG COUPLING

Cubic action for tensors

S(3)
TTT =

∫
dt a3d3x

[ FT
4a2

(
hikhjl −

1
2hijhkl

)
hij,kl

]
.

Corresponding SC and classical scales are

ETTTstrong ∼
G3/2T
FT

=
g1/2
|t|µ , Ecl ∼ H ∼ |t|−1,

thus we obtain for ETTTstrong > Ecl:

|t|2µ−2 < g .

Tensors exit (effective) horizon:

t(T)f (k) ∼
(
d
k

) 1
1−χ

so the absence of SC at t = tf

1
g

(
d
k

)2µ−1
1−χ

∼ AT ≪ 1.
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STRONG COUPLING

Cubic action for scalars

S(3)
ζζζ =

∫
dt d3xΛζ∂2ζ (∂iζ)2 ,

Eζζζstrong ∼ Λζ(GS)−3/2u−11/2S ∼ 1
|t|

(
g1/2u11/2S
|t|µ−1

)1/3

,

thus we obtain for Eζζζstrong > Ecl:(
gu11S

|t|2(µ−1)

)1/6
> 1 .

Scalars exit (effective) horizon:

t2(µ−1)f ∼ gAζu3S .(
gu11S

|tf(kmin)|2(µ−1)

)1/6
∼
(
u8S
Aζ

)1/6
∼
(
r8/3
Aζ

)1/6
,

(
r8/3
Aζ

)1/6
> 1 . 13



STRONG COUPLING AND r-RATIO
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Figure 2: The r-ratio (red line) and ratio Estrong(k∗)/Ecl(k∗) (blue line) as
functions of χ for the central value nS = 0.9649.
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CONCLUSION

• We construct the model of bounce, within one can generate
nearly flat (red-tilted) power spectrum of scalar perturbations.
But it is not so automatic as in inflation!

• In such models the requirement of strong coupling absence
leads to the fact that the r-ratio cannot be arbitrarily small and,
moreover, it is close to the boundary r < 0.032 suggested by the
observational data.

Thank you for attention!
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NO-GO THEOREM

Coefficients FS,GS,FT,GT are given by:

FT = 2G4 + ..., GT = 2G4 + ...,

and
FS =

1
a
d
dt

( a
Θ
G2T
)
−FT, GS =

Σ

Θ2G
2
T + 3GT,

where Σ and Θ are some cumbersome expression of G2, G3, G4 and H.
Stability conditions are:

GT ≥ FT > 0, GS ≥ FS > 0.

Denote ξ = aG2T/Θ, we rewrite FS as

FS =
1
a
dξ
dt −FT →

dξ
dt > aFT > 0
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NO-GO THEOREM

dξ
dt > aFT > 0, ξ = aG2T/Θ,

Here |Θ| <∞ everywhere and it is smooth function of time (as it is
function of ϕ and H), so ξ can never vanish (except a = 0)→ thus we
demand non-singular model. Integrating from some ti to tf, we
obtain:

ξ(tf)− ξ(ti) >
∫ tf

ti
a(t)FTdt,

where a > const > 0 for t→ −∞ and it is increasing with t→ +∞.
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NO-GO THEOREM

ξ(tf)− ξ(ti) >
∫ tf

ti
a(t)FTdt,

• Let ξi < 0, so

−ξf < |ξi| −
∫ tf

ti
aFTdt,

where RHS→ negative with tf → +∞. So therefore ξf > 0. And it
means that ξ = 0 at some moment of time - singularity! So we
should demand ξ > 0 for all times.

• But on the other had, again just rewritting:

−ξi > −ξf +
∫ tf

ti
aFTdt,

and now RHS→ positive with ti → −∞ and ξi must be negative.
Again contradiction...
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NO-GO THEOREM

Thus we have two important features here:
1.ξ ̸= 0,

2.dξ/dt > aFT > 0.

ξ(tf)− ξ(ti) >
∫ tf

ti
a(t)FTdt, 19



ADM AND COVARIANT

G2 =A2 − 2XFϕ,
G3 =− 2XFX − F,
G4 =B4,

where F(ϕ, X) is an auxiliary function, such that

FX = − A3
(2X)3/2

− B4ϕ
X ,

with
N−1dϕ/dt =

√
2X.

EoMs are

(NA2)N + 3NA3NH+ 6N2(N−1A4)NH2 = 0,
A2 − 6A4H2 − 1

N
d
d̂t (A3 + 4A4H) = 0 .
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CONCRETE BOUNCE MODEL

Let us move to ADM formalism now:

L = A2(t,N) + A3(t,N)K+ A4(K2 − K2ij) + B4(t,N)R(3).

We remind that we have unitary gauge ϕ = ϕ(t). (3)Rij is the Ricci
tensor made of γij,

√
−g = N√γ, K = γijKij, (3)R = γij (3)Rij and

Kij ≡
1
2N

(dγij
dt − (3)∇iNj − (3)∇jNi

)
,

At t→ −∞

A2(t,N) = g(−t)−2µ−2 · a2(N), a2(N) = c2 +
d2
N

A3(t,N) = g(−t)−2µ−1 · a3(N), a3(N) = c3 +
d3
N ,

A4(t) = −B4(t) = −g2 (−t)
−2µ .
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CONCRETE BOUNCE MODEL: STABILITY

fS =
2(2− 4µ+ N2a3N)

2χ− N2a3N
,

gS = 2

2
(
2N3a2N + N4a2NN − 3χ(2χ+ N3a3NN)

)
(N2a3N − 2χ)2 + 3

 ,
fS = −2

(
4µ− 2+ d3
2χ+ d3

)
,

gS =
6d23

(2χ+ d3)2
.

d3 = −2,

fS =
4(µ− 1)
1− χ

= 2(1− nS) ,

gS =
6

(1− χ)2
.
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WKB

ζ =
1

(2GSa3)1/2
· ψ,

S(2)
ψψ =

∫
d3xdt

[
1
2 ψ̇

2 +
1
2
α̈

α
ψ2 − u2S

2a2 (∇⃗ψ)
2
]
,

α =
(
2GSa3

)1/2
=

const
(−t) 2µ−3χ

2
.

ψWKB =
1

(2π)3/2
1√
2ω

· e−i
∫
ωdt =

1
(2π)3/2

√
d

2uSk
(−t)χ/2 · ei

uS
d

k
1−χ (−t)1−χ

,

ω =
uSk
a =

uS · k
d(−t)χ .

23



POWER SPECTRA

ζ = C · (−t)δ · H(2)
ν

(
β(−t)1−χ

)
,

δ =
1+ 2µ− 3χ1

2 ,

β =
uSk

d(1− χ)
,

ν =
δ

γ
=
1+ 2µ− 3χ
2(1− χ)

,

C =
1

(ggS)1/2
1

25/2π(1− χ)1/2
1
d3/2

,

ζ = (−i) C

sin(νπ)

(1− χ)ν

uνSΓ(1− ν)

(
2d
k

)ν
,

Pζ = 4πk3ζ2.
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SPACE OF PARAMETERS nS AND χ
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Figure 3: Space of parameters nS and χ. Colored strips correspond to
different ratios of strong coupling scale to classical scale:
1 < Estrong(k∗)/Ecl(k∗) < 1.5 (red), 1.5 < Estrong(k∗)/Ecl(k∗) < 2.2 (orange),
2.2 < Estrong(k∗)/Ecl(k∗) < 3 (green), 3 < Estrong(k∗)/Ecl(k∗) < 4.5 (blue),
4.5 < Estrong(k∗)/Ecl(k∗) (magenta). 25



SPACE OF PARAMETERS ϵ AND χ: µ = 1
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Figure 4: Space of parameters ϵ and χ in the case µ = 1. Colored strips
correspond to different ratios of strong coupling scale to classical scale:
1 < Estrong/Ecl < 1.8 (red), 1.8 < Estrong/Ecl < 2.7 (orange),
2.7 < Estrong/Ecl < 4.2 (green), 4.2 < Estrong/Ecl < 6 (blue), 6 < Estrong/Ecl
(magenta).
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