GENERATING COSMOLOGICAL PERTURBATIONS AT HORNDESKI BOUNCE

based on arXiv:2207.04071

IBS, Daejeon, CTPU

MOTIVATION

- 1. The search of non-singular alternatives to inflation seems as an important problem;
- 2. We study bounce epoch as such alternative/completion to/of inflation.

BOUNCE

Figure 1: Hubble parameter: bounce

Qui'2011,2013; Easson'2011; Cai'2012; Osipov'2013; Koehn'2013; Battarra'2014; Ijjas'2016

NULL ENERGY CONDITION

Realization of non-singular evolution within classical field theory requires the violation of the Null Energy Condition (NEC) $T_{\mu\nu}n^{\mu}n^{\nu}>0$ (or Null Convergence Condition (NCC) $R_{\mu\nu}n^{\mu}n^{\nu}>0$ for modified gravity).

$$T_{00}=\rho, \quad T_{ij}=\alpha^2\gamma_{ij}p,$$

$$\dot{H}=-4\pi G(\rho+p)+\text{curvature term}.$$

Let us use $n_{\mu}=(1,a^{-1}\nu^{i})$ with $\gamma_{ij}\nu^{i}\nu^{j}=1$ and then NEC leads to

$$T_{\mu\nu}n^{\mu}n^{\nu} > 0 \rightarrow \rho + p \ge 0 \rightarrow \dot{H} \le 0.$$

Penrose theorem: singularity in the past.

4

HORNDESKI THEORY

Violation of NEC/NCC without obvious pathologies is possible in the class of Horndeski theories [Horndeski'74]:

$$\begin{split} \mathcal{L}_H &= G_2(\phi,X) - G_3(\phi,X) \Box \phi + \\ & G_4(\phi,X) R + G_{4,X} \left[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2 \right] \\ & + G_5(\phi,X) G^{\mu\nu} \nabla_\mu \nabla_\nu \phi \\ & - \frac{1}{6} G_{5,X} \left[(\Box \phi)^3 - 3 \Box \phi (\nabla_\mu \nabla_\nu \phi)^2 + 2 (\nabla_\mu \nabla_\nu \phi)^3 \right], \end{split}$$

where $X=-\frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$ and $\Box\phi=g^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi$. For our purposes it is enough to study

$$\mathcal{L}_H = G_2(\phi, X) - G_3(\phi, X) \square \phi + G_4(\phi) R.$$

In the framework of this theory one can (quite straightforwardly) obtain healthy bounce epoch.

Another problem arises if one considers the whole evolution $(-\infty < t < +\infty)$ of such a singularity-free universe: instabilities show up at some moment in the history \rightarrow No-Go theorems. M. Libanov, S. Mironov, V. Rubakov'2016; T. Kobayashi'2016; S. Mironov, V. Rubakov, V. Volkova'2018.

Let us consider the following perturbed ADM metric:

$$\begin{split} ds^2 &= -N^2 dt^2 + \gamma_{ij} \left(dx^i + N^i dt \right) \left(dx^j + N^j dt \right), \\ \gamma_{ij} &= a^2 e^{2\zeta} (\delta_{ij} + h_{ij} + \ldots), \quad N = N_0 (1 + \alpha), \quad N_i = \partial_i \beta. \end{split}$$

Here α and β are not physical. We work with unitary gauge $\delta \phi = 0$. The quadratic actions for ζ and h_{ij} are given, respectively:

$$\mathcal{L}_{\zeta\zeta} = a^3 \left[\mathcal{G}_S \frac{\dot{\zeta}^2}{N^2} - \frac{\mathcal{F}_S}{a^2} \zeta_{,i} \zeta_{,i} \right], \ \mathcal{L}_{hh} = \frac{a^3}{8} \left[\mathcal{G}_T \frac{\dot{h}_{ij}^2}{N^2} - \frac{\mathcal{F}_T}{a^2} h_{ij,k} h_{ij,k} \right].$$

Remind that bounce solution is $a(t) \to \infty$ as $t \to -\infty$. No-Go works if

$$\int_{-\infty}^{t} a(t)(\mathcal{F}_{T} + \mathcal{F}_{S})dt = \infty ,$$

$$\int_{t}^{+\infty} a(t)(\mathcal{F}_{T} + \mathcal{F}_{S})dt = \infty .$$

No-Go: $\mathcal{F}_{S,T}$ < 0 at some moment of time, instability.

- One way is to go beyond Horndeski and DHOST [Cai et.al.' 2016, Creminelli et.al.'2016, Kolevatov et.al.'2017, Cai, Piao'2017]
- Another way to avoid No-Go theorem for Horndeski is to obtain such a model/solution that $\mathcal{F}_{S,T}$ coefficients have asymptotics

$$\mathcal{F}_{S,T} \to 0$$
 as $t \to -\infty$, where $\mathcal{F}_T = 2G_4$.

· This means that

$$G_4 \to 0$$
 as $t \to -\infty$.

• Effective Planck mass goes to zero and it signalizes that we may have strong coupling at $t \to -\infty$.

Solution: no SC regime at $t \to -\infty$ in some region of lagrangian parameters.

CONCRETE BOUNCE MODEL

With the appropriate choice of lagrangian functions, the bounce solution is given by

$$N = \text{const}$$
, $a = d(-t)^{\chi}$,

where $\chi > 0$ is a constant and $Nt \to t$ is cosmic time, so that $H = \chi/t$. Coefficients from quadratic actions are

$$\mathcal{G}_T = \mathcal{F}_T = \frac{g}{(-t)^{2\mu}},$$

and

$$G_{S} = g \frac{g_{S}}{2(-t)^{2\mu}}, \qquad F_{S} = g \frac{f_{S}}{2(-t)^{2\mu}},$$

 $u_{T}^{2} = \frac{F_{T}}{G_{T}} = 1, \quad u_{S}^{2} = \frac{F_{S}}{G_{S}} = \frac{f_{S}}{g_{S}} \neq 1.$

To avoid No-Go:

$$1 > \chi > 0$$
, $2\mu > \chi + 1$.

To avoid SC regime $(t \to -\infty)$:

$$\mu$$
 < 1.

POWER SPECTRUM

Spectra are given by

$$\mathcal{P}_{\zeta} \equiv \mathcal{A}_{\zeta} \left(\frac{k}{k_*} \right)^{n_s - 1} , \quad \mathcal{P}_{T} \equiv \mathcal{A}_{T} \left(\frac{k}{k_*} \right)^{n_T} ,$$

where k_* is pivot scale, the spectral tilts are

$$n_S - 1 = n_T = 2 \cdot \left(\frac{1 - \mu}{1 - \chi}\right),\,$$

$$n_{\rm S}=0.9649\pm0.0042.$$

The amplitudes in our model are

$$\mathcal{A}_{\zeta} = \frac{C}{g} \frac{1}{g_{S} u_{S}^{2\nu}} , \ \mathcal{A}_{T} = \frac{8C}{g},$$

where

$$\nu = \frac{1 + 2\mu - 3\chi}{2(1 - \chi)} = \frac{3}{2} + \frac{1 - n_S}{2} \approx \frac{3}{2},$$

approximate flatness is ensured in our set of models by choosing $\mu \approx$ 1, while the slightly red spectrum is found for $\mu >$ 1.

POWER SPECTRUM

The problem №1: red-tilted spectrum requires $\mu > 1$, while absence of strong coupling $\mu < 1$!

Solution: consider time-dependent μ : changes from $\mu < 1$ to $\mu > 1$ (time runs as $-\infty < t < \infty$).

Try to escape from SC and generate spectrum, consistent with experiment. Horizon exit must occur in weak coupling regime!

The problem №2: r-ratio is small:

$$r = \frac{A_T}{A_\zeta} \approx 8g_S u_S^3 < 0.032$$
. Tristram'2022

Solution: choose $u_S \ll 1$. Mukhanov'1999, 2000, k-inflation

STRONG COUPLING

Cubic action for tensors

$$S_{TTT}^{(3)} = \int dt \ a^3 d^3 x \left[\frac{\mathcal{F}_T}{4a^2} \left(h_{ik} h_{jl} - \frac{1}{2} h_{ij} h_{kl} \right) h_{ij,kl} \right].$$

Corresponding SC and classical scales are

$$E_{strong}^{TTT} \sim \frac{\mathcal{G}_T^{3/2}}{\mathcal{F}_T} = \frac{g^{1/2}}{|t|^{\mu}} \;, \quad E_{cl} \sim H \sim |t|^{-1},$$

thus we obtain for $E_{strong}^{TTT} > E_{cl}$:

$$|t|^{2\mu-2} < g$$
.

Tensors exit (effective) horizon:

$$t_f^{(T)}(k) \sim \left(\frac{d}{k}\right)^{\frac{1}{1-\chi}}$$

so the absence of SC at $t=t_f$

$$\frac{1}{g} \left(\frac{d}{k} \right)^{2\frac{\mu - 1}{1 - \chi}} \sim \mathcal{A}_T \ll 1.$$

STRONG COUPLING

Cubic action for scalars

$$\begin{split} \mathcal{S}^{(3)}_{\zeta\zeta\zeta} &= \int dt \; d^3x \Lambda_\zeta \partial^2 \zeta \left(\partial_i \zeta\right)^2 \;, \\ E^{\zeta\zeta\zeta}_{strong} &\sim \Lambda_\zeta (\mathcal{G}_S)^{-3/2} u_S^{-11/2} \sim \frac{1}{|t|} \left(\frac{g^{1/2} u_S^{11/2}}{|t|^{\mu-1}}\right)^{1/3} \;, \end{split}$$

thus we obtain for $E_{strong}^{\zeta\zeta\zeta} > E_{cl}$:

$$\left(\frac{gu_{S}^{11}}{|t|^{2(\mu-1)}}\right)^{1/6} > 1.$$

Scalars exit (effective) horizon:

$$t_f^{2(\mu-1)} \sim g \mathcal{A}_{\zeta} u_S^3 .$$

$$\left(\frac{g u_S^{11}}{|t_f(k_{min})|^{2(\mu-1)}}\right)^{1/6} \sim \left(\frac{u_S^8}{\mathcal{A}_{\zeta}}\right)^{1/6} \sim \left(\frac{r^{8/3}}{\mathcal{A}_{\zeta}}\right)^{1/6} ,$$

$$\left(\frac{r^{8/3}}{\mathcal{A}_{\zeta}}\right)^{1/6} > 1 .$$

STRONG COUPLING AND r-RATIO

Figure 2: The *r*-ratio (red line) and ratio $E_{strong}(k_*)/E_{cl}(k_*)$ (blue line) as functions of χ for the central value $n_S=0.9649$.

CONCLUSION

- We construct the model of bounce, within one can generate nearly flat (red-tilted) power spectrum of scalar perturbations.
 But it is not so automatic as in inflation!
- In such models the requirement of strong coupling absence leads to the fact that the r-ratio cannot be arbitrarily small and, moreover, it is close to the boundary r < 0.032 suggested by the observational data.

Thank you for attention!

Coefficients \mathcal{F}_S , \mathcal{G}_S , \mathcal{F}_T , \mathcal{G}_T are given by:

$$\mathcal{F}_T = 2G_4 + ..., \quad \mathcal{G}_T = 2G_4 + ...,$$

and

$$\mathcal{F}_{S} = \frac{1}{a}\frac{d}{dt}\left(\frac{a}{\Theta}\mathcal{G}_{T}^{2}\right) - \mathcal{F}_{T}, \quad \mathcal{G}_{S} = \frac{\Sigma}{\Theta^{2}}\mathcal{G}_{T}^{2} + 3\mathcal{G}_{T},$$

where Σ and Θ are some cumbersome expression of G_2 , G_3 , G_4 and H. Stability conditions are:

$$\mathcal{G}_T \geq \mathcal{F}_T > 0, \quad \mathcal{G}_S \geq \mathcal{F}_S > 0.$$

Denote $\xi = a\mathcal{G}_T^2/\Theta$, we rewrite \mathcal{F}_S as

$$\mathcal{F}_{S} = \frac{1}{a} \frac{d\xi}{dt} - \mathcal{F}_{T} \rightarrow \frac{d\xi}{dt} > a\mathcal{F}_{T} > 0$$

$$\frac{d\xi}{dt} > a\mathcal{F}_T > 0, \quad \xi = a\mathcal{G}_T^2/\Theta,$$

Here $|\Theta| < \infty$ everywhere and it is smooth function of time (as it is function of ϕ and H), so ξ can never vanish (except a=0) \to thus we demand non-singular model. Integrating from some t_i to t_f , we obtain:

$$\xi(t_f) - \xi(t_i) > \int_{t_i}^{t_f} a(t) \mathcal{F}_T dt,$$

where a > const > 0 for $t \to -\infty$ and it is increasing with $t \to +\infty$.

$$\xi(t_f) - \xi(t_i) > \int_{t_i}^{t_f} a(t) \mathcal{F}_T dt,$$

• Let ξ_i < 0, so

$$-\xi_f < |\xi_i| - \int_{t_i}^{t_f} a \mathcal{F}_T dt,$$

where RHS \to negative with $t_f \to +\infty$. So therefore $\xi_f > 0$. And it means that $\xi = 0$ at some moment of time - singularity! So we should demand $\xi > 0$ for all times.

· But on the other had, again just rewritting:

$$-\xi_i > -\xi_f + \int_{t_i}^{t_f} a \mathcal{F}_T dt,$$

and now RHS \to positive with $t_i \to -\infty$ and ξ_i must be negative. Again contradiction...

NO-GO THEOREM

Thus we have two important features here:

$$\begin{aligned} &1.\xi \neq 0,\\ &2.d\xi/dt > a\mathcal{F}_T > 0. \end{aligned}$$

$$\xi(t_f) - \xi(t_i) > \int_{t_i}^{t_f} a(t) \mathcal{F}_T dt,$$

ADM AND COVARIANT

$$G_2 = A_2 - 2XF_{\phi},$$

 $G_3 = -2XF_X - F,$
 $G_4 = B_4,$

where $F(\phi, X)$ is an auxiliary function, such that

$$F_X = -\frac{A_3}{(2X)^{3/2}} - \frac{B_{4\phi}}{X},$$

with

$$N^{-1}d\phi/dt = \sqrt{2X}.$$

EoMs are

$$(NA_2)_N + 3NA_{3N}H + 6N^2(N^{-1}A_4)_NH^2 = 0,$$

$$A_2 - 6A_4H^2 - \frac{1}{N}\frac{d}{d\hat{t}}(A_3 + 4A_4H) = 0.$$

CONCRETE BOUNCE MODEL

Let us move to ADM formalism now:

$$\mathcal{L} = A_2(t, N) + A_3(t, N)K + A_4(K^2 - K_{ij}^2) + B_4(t, N)R^{(3)}.$$

We remind that we have unitary gauge $\phi = \phi(t)$. (3) R_{ij} is the Ricci tensor made of γ_{ij} , $\sqrt{-g} = N\sqrt{\gamma}$, $K = \gamma^{ij}K_{ij}$, (3) $R = \gamma^{ij}$ (3) R_{ij} and

$$K_{ij} \equiv \frac{1}{2N} \left(\frac{d\gamma_{ij}}{dt} - {}^{(3)}\nabla_i N_j - {}^{(3)}\nabla_j N_i \right),$$

At $t \to -\infty$

$$A_2(t,N) = g(-t)^{-2\mu-2} \cdot a_2(N), \quad a_2(N) = c_2 + \frac{d_2}{N}$$

$$A_3(t,N) = g(-t)^{-2\mu-1} \cdot a_3(N), \quad a_3(N) = c_3 + \frac{d_3}{N},$$

$$A_4(t) = -B_4(t) = -\frac{g}{2}(-t)^{-2\mu}.$$

CONCRETE BOUNCE MODEL: STABILITY

$$f_{S} = \frac{2(2 - 4\mu + N^{2}a_{3N})}{2\chi - N^{2}a_{3N}},$$

$$g_{S} = 2 \left[\frac{2(2N^{3}a_{2N} + N^{4}a_{2NN} - 3\chi(2\chi + N^{3}a_{3NN}))}{(N^{2}a_{3N} - 2\chi)^{2}} + 3 \right],$$

$$f_{S} = -2\left(\frac{4\mu - 2 + d_{3}}{2\chi + d_{3}} \right),$$

$$g_{S} = \frac{6d_{3}^{2}}{(2\chi + d_{3})^{2}}.$$

$$d_{3} = -2,$$

$$f_{S} = \frac{4(\mu - 1)}{1 - \chi} = 2(1 - n_{S}),$$

$$g_{S} = \frac{6}{(1 - \chi)^{2}}.$$

$$\zeta = \frac{1}{(2\mathcal{G}_S a^3)^{1/2}} \cdot \psi,$$

$$\mathcal{S}_{\psi\psi}^{(2)} = \int d^3x dt \left[\frac{1}{2} \dot{\psi}^2 + \frac{1}{2} \frac{\ddot{\alpha}}{\alpha} \psi^2 - \frac{u_S^2}{2a^2} (\vec{\nabla}\psi)^2 \right],$$

$$\alpha = \left(2\mathcal{G}_S a^3 \right)^{1/2} = \frac{\text{const}}{(-t)^{\frac{2\mu - 3\chi}{2}}} .$$

$$\psi_{WKB} = \frac{1}{(2\pi)^{3/2}} \frac{1}{\sqrt{2\omega}} \cdot e^{-i\int \omega dt} = \frac{1}{(2\pi)^{3/2}} \sqrt{\frac{d}{2u_S k}} (-t)^{\chi/2} \cdot e^{i\frac{u_S}{d} \frac{k}{1 - \chi} (-t)^{1 - \chi}},$$

$$\omega = \frac{u_S k}{a} = \frac{u_S \cdot k}{d(-t)\chi}.$$

POWER SPECTRA

$$\zeta = \mathfrak{C} \cdot (-t)^{\delta} \cdot H_{\nu}^{(2)} \left(\beta(-t)^{1-\chi}\right),$$

$$\delta = \frac{1+2\mu-3\chi_1}{2},$$

$$\beta = \frac{u_S k}{d(1-\chi)},$$

$$\nu = \frac{\delta}{\gamma} = \frac{1+2\mu-3\chi}{2(1-\chi)},$$

$$\mathfrak{C} = \frac{1}{(gg_S)^{1/2}} \frac{1}{2^{5/2}\pi(1-\chi)^{1/2}} \frac{1}{d^{3/2}},$$

$$\zeta = (-i) \frac{\mathfrak{C}}{\sin(\nu\pi)} \frac{(1-\chi)^{\nu}}{u_S^{\nu}\Gamma(1-\nu)} \left(\frac{2d}{k}\right)^{\nu},$$

$$\mathcal{P}_{\zeta} = 4\pi k^3 \zeta^2.$$

Space of parameters n_S and χ

Figure 3: Space of parameters n_S and χ . Colored strips correspond to different ratios of strong coupling scale to classical scale: $1 < E_{strong}(k_*)/E_{cl}(k_*) < 1.5$ (red), $1.5 < E_{strong}(k_*)/E_{cl}(k_*) < 2.2$ (orange), $2.2 < E_{strong}(k_*)/E_{cl}(k_*) < 3$ (green), $3 < E_{strong}(k_*)/E_{cl}(k_*) < 4.5$ (blue), $4.5 < E_{strong}(k_*)/E_{cl}(k_*)$ (magenta).

Space of parameters ϵ and χ : $\mu=1$

Figure 4: Space of parameters ϵ and χ in the case $\mu=1$. Colored strips correspond to different ratios of strong coupling scale to classical scale: $1 < E_{strong}/E_{cl} < 1.8$ (red), $1.8 < E_{strong}/E_{cl} < 2.7$ (orange), $2.7 < E_{strong}/E_{cl} < 4.2$ (green), $4.2 < E_{strong}/E_{cl} < 6$ (blue), $6 < E_{strong}/E_{cl}$ (magenta).