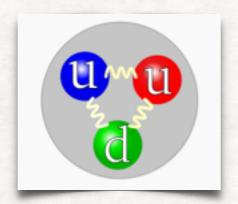

1ST IBS-HONAM FOCUS PROGRAM ON PARTICLE PHYSICS PHENOMENOLOGY, CNBU, JEONJU

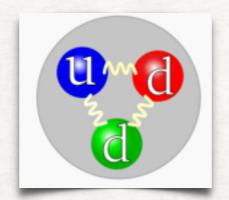
Bound State via Higgs Exchanging and resonant di-Higgs

Based on arXiv:1606.01531, Zhaofeng Kang

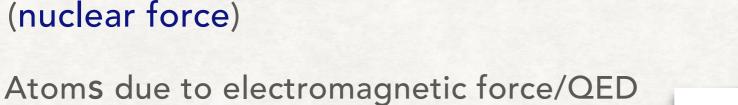
Zhaofeng Kang(康昭峰), KIAS(韩国高等研究院), 08/30/2016

0. OUTLINE

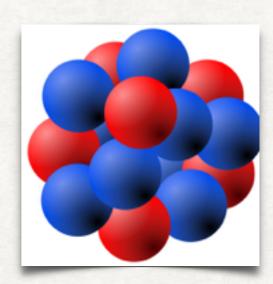

bound state via higgs exchanging

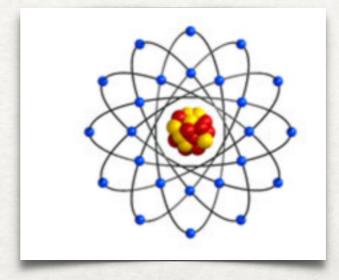

examples and conclusions

1. BASICS FOR BOUND STATE


Bound states are everywhere in our known Universe

Proton & neutron due to confinement in QCD




Atomic nucleus due to the residual strong force (nuclear force)

what about in the unknown universe? Ex,

dark atom dark matter?

1. BASICS FOR BOUND STATE

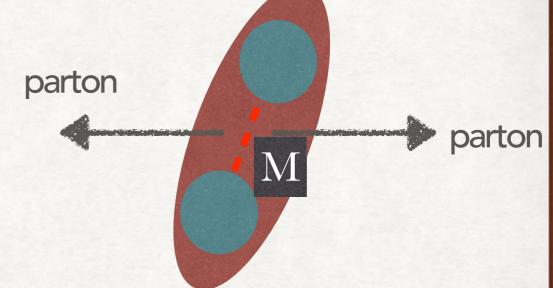
- A complicated non-perturbative object in QFT
 - it does not appear in the conventional perturbative calculations
 - II) Bethe-Saltpeter equation furnishes a powerful tool to study bound state in QFT
- Nonrelativistic (NR) limit simplification: Schrodinger equation

$$\left[-\frac{\nabla^2}{2\mu} + V(\mathbf{r}) \right] \psi_n(\mathbf{r}) = \mathcal{E}_n \psi_n(\mathbf{r})$$

the potential V(r), by exchanging a massive scalar quantum φ , for instance the SM Higgs boson h, is

the well-known Yukawa potential:

$$-\frac{\alpha_h}{r}e^{-m_h r}$$
 with $\alpha_h = u_h^2/(16\pi m_\phi^2)$


How to solve the equation? later-

2. it can be derived from the Bethe-Saltpeter equation

1. BASICS FOR BOUND STATE

Bound state (s-wave ground state) production @ LHC

- I. the constitute pairly produced near M
- II. under the condition that the constitute is sufficiently long-lived
- III. observable for a sufficiently narrow width (assumed hereafter)

$$\hat{\sigma}_{ab\to M}(\hat{s}) \simeq \frac{2\pi \left(2J+1\right) D_M}{D_a D_b} \frac{\Gamma_{M\to ab}}{M} 2\pi \, \delta(\hat{s}-M^2) \qquad \left[\begin{array}{cc} \times 2 & \text{if} & a=b \end{array}\right]$$

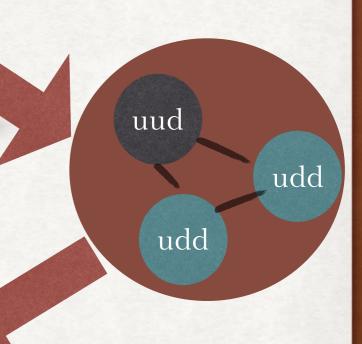
Bound state annihilation decay

the dimension of SU(3)c representation of x

$$\Gamma_{M\to XY} = \frac{1}{2m_M} \frac{N_c}{1+\delta_{XY}} \int d\Pi_2 \frac{2}{m_M} |\mathcal{M}_{\phi\phi^*\to XY}|^2 |\Psi(0)|^2,$$

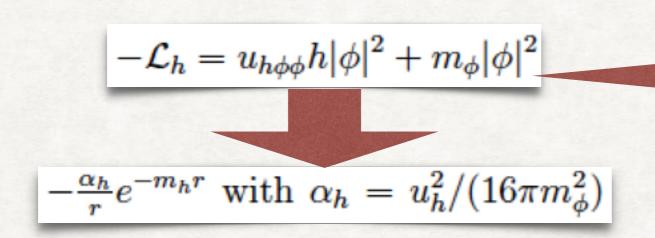
amplitude of constitute pair annihilation into XY

• An illustrating conjecture: Higgs force & bound state B_h


Higgs is just around the weak scale $\sim m_Z$, m_W , relatively light compared to the

TeV scale, the hypothetic scale for new physics

In addition, it has spin-0, potential to be a force carrier


it is reminiscent of the π meson of Yukawa, to bound nucleons inside a nucleus

This is exactly the picture in the framework of composite Higgs where the Higgs is a PGSB, and the SM fermions (or other exotic) may be composite at least partially

• An illustrating conjecture: Higgs force & bound state B_h

A general study on B_h in new physics, based on the simplified model

- I) a scalar field ϕ for simplicity
- II) discussions can be generalized to constitute with other spins

The existence of bound state $D_h=(1/m_h)/a_0>0.84$ with $a_0=1/(\alpha_h \ m\phi/2)$ requires a heavy constitute field ϕ & large α_h ,

$$m_{\phi} \gtrsim 0.84 \times \frac{2}{\alpha_h} m_h \approx 0.7 \times \left(\frac{0.3}{\alpha_h}\right) \text{TeV}$$

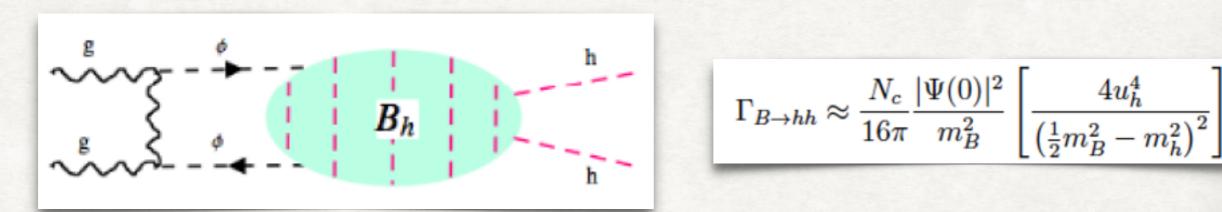
• B_h close to the critical point $D_h \sim 1$

Far from the Column limit, so the previous approximation may be invalid

A new approximation: Yukawa potential ~ scaled Hulthen potential; the later admits analytical solution

$$V_{SH}(r) = -\alpha_h \frac{R_s m_h e^{-R_s m_h r}}{1 - e^{-R_s m_h r}} R_s \approx 1.75$$

$$|\Psi_n(0)|^2 \approx \frac{\epsilon (R_s/D_h)}{n^3} \frac{1}{\pi a_0^3} = \frac{\left(1 - \frac{R_s^2}{4D_h^2}\right)^{\frac{3}{2}}}{n^3} \frac{\alpha_h^3 m_B^3}{64\pi}$$


R. Dutt, K. Chowdhury, and Y. P. Varshni, Journal of Physics A 18.9 (1985).

- I) For $D_h >> 1$, one recovers the well-known Coulomb limit
- II) as $D_h \sim 1$, there is a sizable reduction of wave function at the origin

Bh and resonant di-Higgs signature

 B_h can be produced at LHC via GGF if ϕ carries color or ϕ mixes with h

Due to the strong coupling between h and ϕ , B_h dominantly annihilation decays into a pair of Higgs boson

$$\Gamma_{B \to hh} \approx \frac{N_c}{16\pi} \frac{|\Psi(0)|^2}{m_B^2} \left[\frac{4u_h^4}{\left(\frac{1}{2}m_B^2 - m_h^2\right)^2} \right]$$

Bh and Higgs signature shifts

$$\delta r_{\gamma} \approx r_{\text{SM},\gamma} + \text{sign}(u_h) \frac{d(\phi) Q_{\phi}^2}{12} \sqrt{2\pi\alpha_h} \frac{v}{m_{\phi}},$$

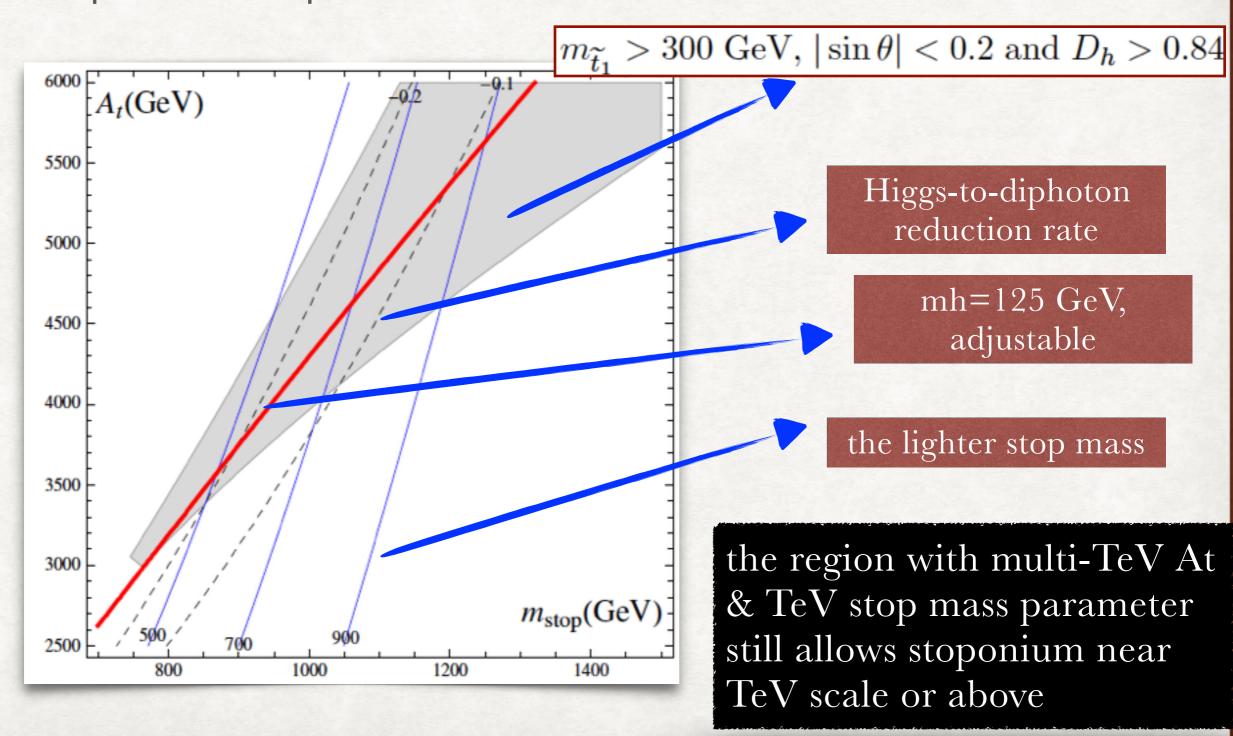
$$\delta r_g \approx r_{\text{SM},g} + \text{sign}(u_h) C(\phi) \sqrt{2\pi\alpha_h} \frac{v}{m_{\phi}},$$

3. STOPONIUM: BOUND STATE OF STOP

A large soft trilinear term and a large stop mixing angle....

$$m_{stop}^{2} \approx \begin{pmatrix} m_{RR}^{2} & m_{t}X_{t} \\ m_{t}X_{t} & m_{LL}^{2} \end{pmatrix} X_{t} = A_{t} - \mu \cot \beta \approx A_{t}$$

$$-\mathcal{L}_{soft} \supset y_{t}A_{t}\widetilde{t}_{L} \left(v_{u} + \frac{h}{\sqrt{2}}\right)\widetilde{t}_{R}^{*} + h.c.,$$


$$-\mathcal{L}_{h\widetilde{t}_{1}\widetilde{t}_{1}} = u_{h\widetilde{t}_{1}^{*}\widetilde{t}_{1}}h|\widetilde{t}_{1}|^{2} \text{ with } u_{h\widetilde{t}_{1}\widetilde{t}_{1}} \approx \frac{m_{t}A_{t}}{\sqrt{2}v}\sin 2\theta_{t}$$

- The lighter stop two-body decay can be suppressed either by the degenerate with LSP or gravitino being the LSP (says in GMSB)
- Sbottom sector with a large µ-term from unnatural SUSY

$$\mu H_u H_d + y_b Q_3 H_d U_3^c \Rightarrow \frac{m_b \tan \beta}{\sqrt{2}v} \mu \sin 2\theta_b h |\widetilde{b}_1|^2.$$

3. STOPONIUM: BOUND STATE OF STOP

Is stoponium still possible?

3. INERT HIGGS DOUBLET FROM RADIATIVE SEESAW

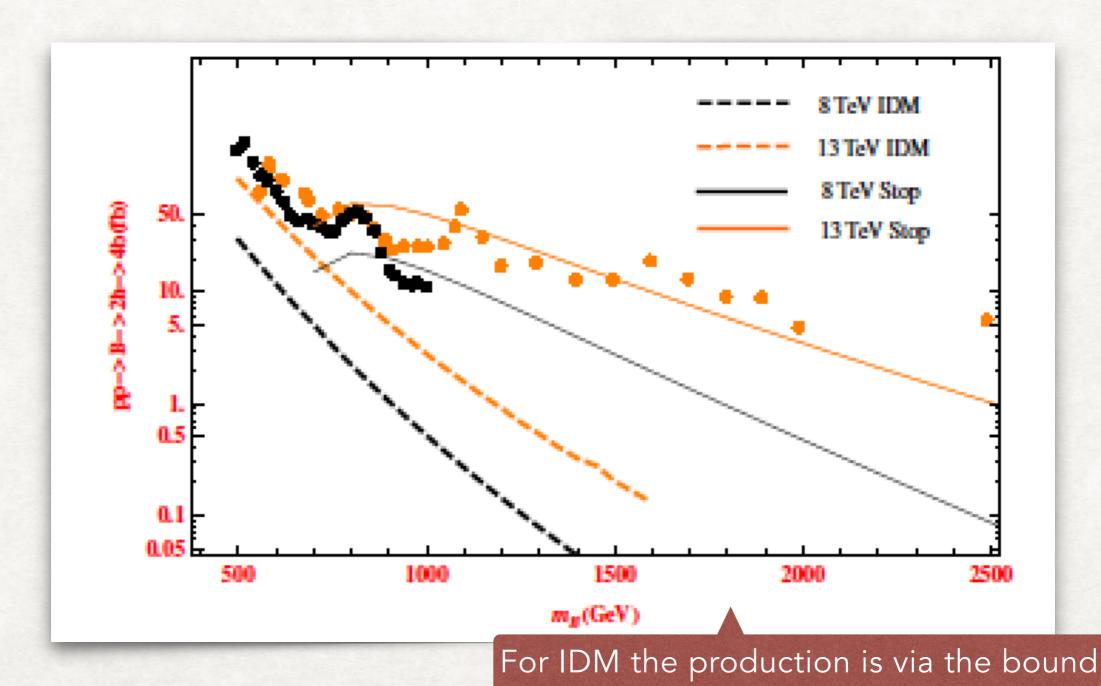
• Higgs portal term with a large dimensionless coupling $\lambda |X|^2 |\Phi_2|^2$

Can X be dark matter? No! direct detection rules it out!

$$\sigma_{\rm SI}^n \approx \frac{4\alpha_h}{v^2} \frac{m_n^4}{m_h^4} \left(\Sigma_q f_{T_q}^{(n)} \right)^2 = 3.6 \times 10^{-6} \times \left(\frac{\alpha_h}{0.3} \right) \, \mathrm{pb},$$

- But scalar X with $\lambda >> 1$ are well motivated for triggering strong first order phase transition (SFOPT) or classical scale symmetry breaking
- Consider a celebrated model with X=quasi inert Higgs doublet Φ_1 ,

$$-\mathcal{L}_{\text{Ma}} = \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{\lambda_5}{2} \left[(\Phi_1^{\dagger} \Phi_2)^2 + h.c. \right] + (y_N \bar{l} \Phi_1 P_R N + c.c.)$$


Ma's model for radiative neutrino masses

$$-\mathcal{L}_{h} \supset \sqrt{2}\lambda_{3}v \, hC^{+}C^{-} + \frac{v}{\sqrt{2}} \left(\lambda_{3} - \frac{m_{C}^{2} - m_{S}^{2}}{v^{2}}\right) hS^{2}$$

$$+ \frac{v}{\sqrt{2}} \left(\lambda_{3} - \frac{m_{C}^{2} - m_{A}^{2}}{v^{2}}\right) hA^{2}.$$

4. CURRENT Bh AT LHC VIA RESONANT DI-HIGGS

The best sensitivity comes from the 4b channel @ 13 TeV

state mixing with SM-Higgs boson

5. SUMMARY PART III

- Higgs boson may mediate a relatively strong new force, leading to bound state B_h
- A characteristic feature of B_h is producing resonant di-Higgs (~TeV) signature at LHC
- Stop/sbottom/inert Higgs doublet can be good candidates

Thank you!!!