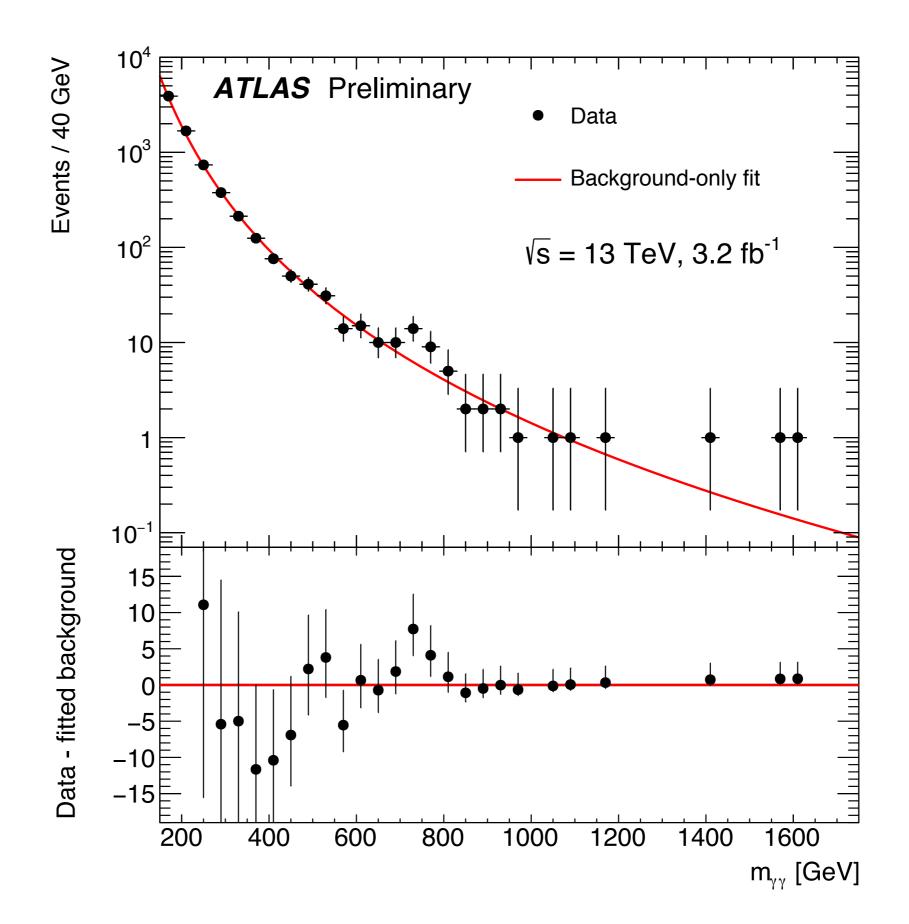
2016 Spring KPS Pioneer Symposium Program 2016.04.20

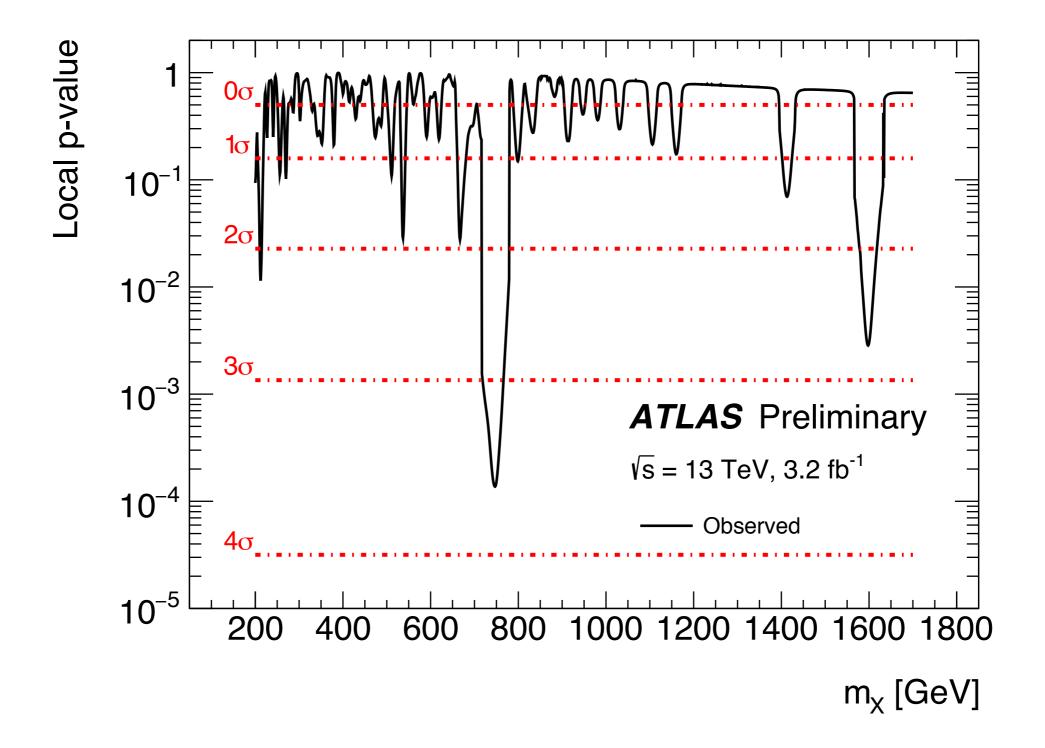
Resonance-continuum interference in the 750 GeV diphoton excess

Jeonghyeon Song (Konkuk University, Korea)

with Sunghoon Jung and Yeo Woong Yoon to appear in JHEP

1. Diphoton excess at 750 GeV

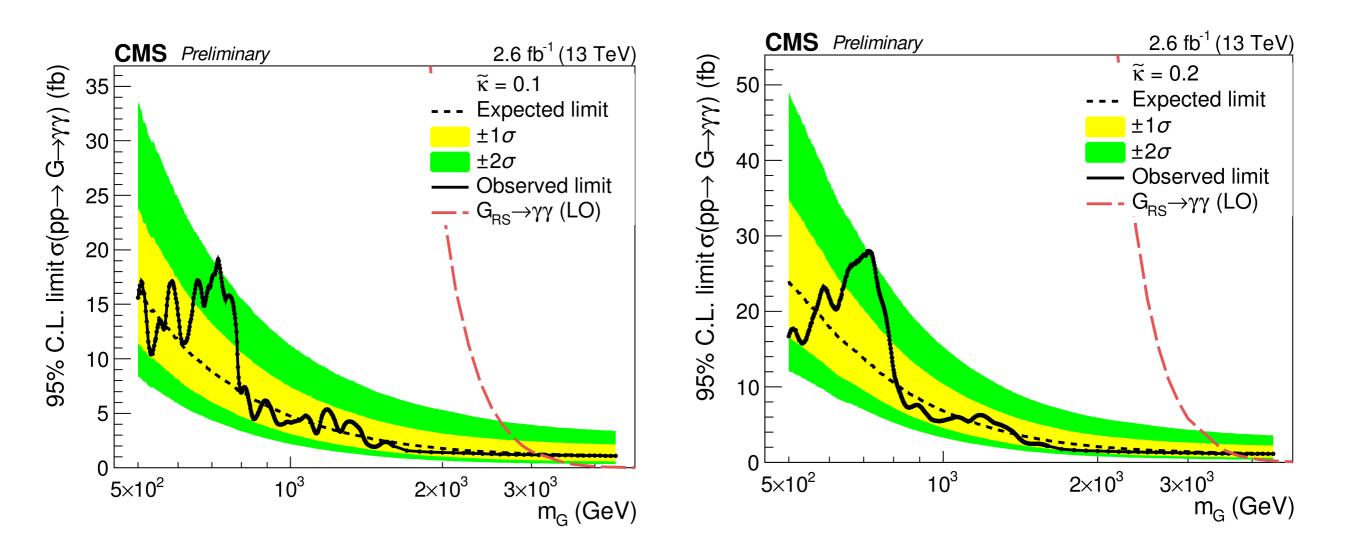




local significance: 3.6 σ

global significance: 2.3 σ

CMS PAS EXO-15-004



local significance: 2.6 σ

global significance: 1.2 σ

Mass? Width?

to be answered by the χ^2 analysis

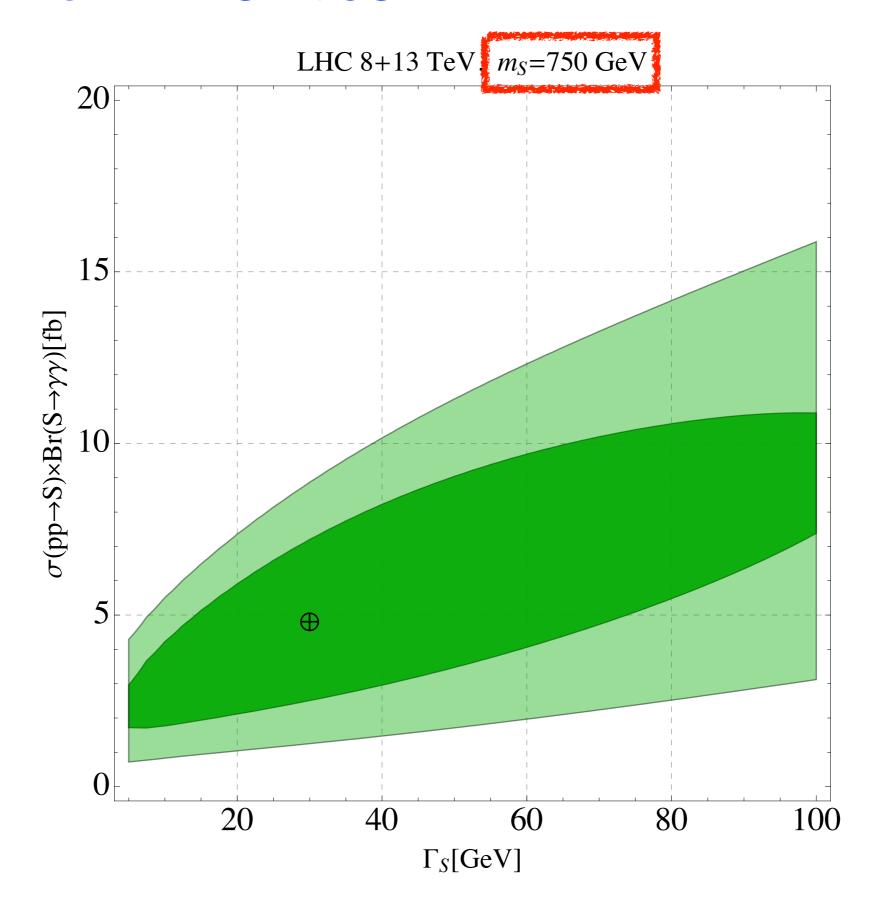
ATLAS

Bin[GeV]	650	690	730	770	810	850
$N_{ m events}$	10	10	14	9	5	2
$N_{ m background}$	11.0	8.2	6.3	5.0	3.9	3.1

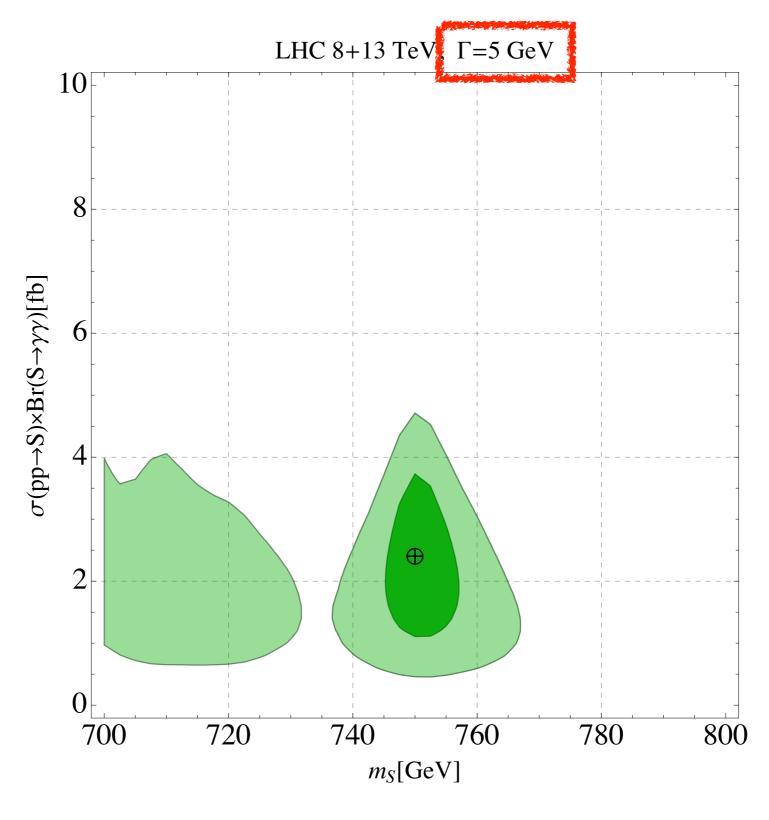
CMS

Bin[GeV]	700	720	740	760	780	800
$N_{\rm events}$ (EBEB)	3	3	4	5	1	1
$N_{\text{background}}$ (EBEB)	2.7	2.5	2.1	1.9	1.6	1.5
$N_{ m events}$ (EBEE)	16	4	1	6	2	3
$N_{\rm background}$ (EBEE)	5.2	4.6	4.0	3.5	3.1	2.8

Falkowski arXiv:1512.05777



Falkowski arXiv:1512.05777



 $2.4^{+1.35}_{-1.30}$ fb

How do we explain this 2.4 fb?

How do we explain this 2.4 fb?

NP particle with m=750 GeV

Production cross section

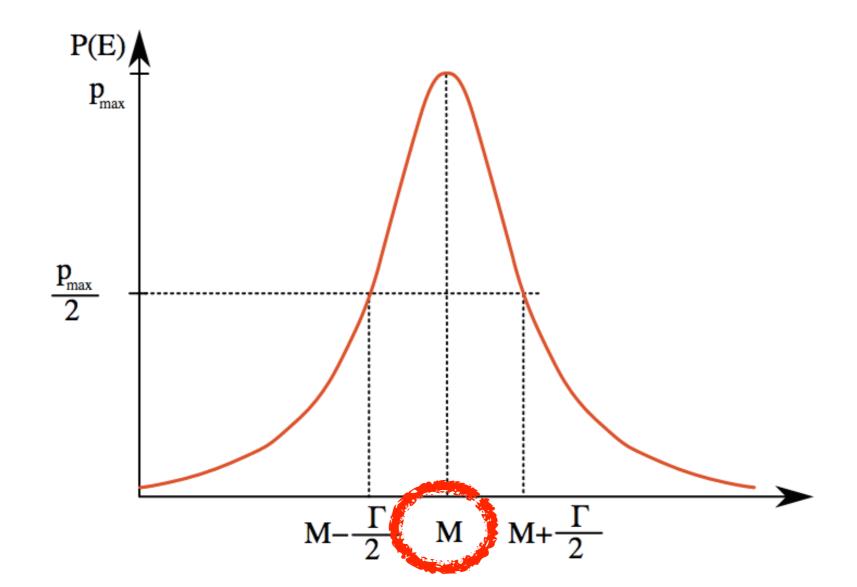
BR of the diphoton channel

$$\sigma_{\text{prod}} \cdot B = 2.4 \, \text{fb}$$

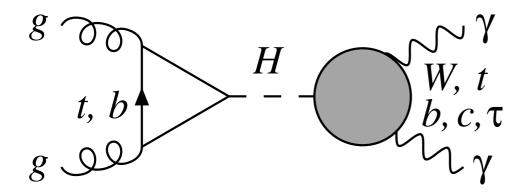
2. Interference Effects

New Particle search for Breit-Wigner resonance

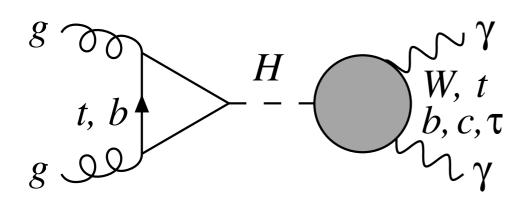
$$f(E) \sim \frac{1}{(E^2 - M^2)^2 + M^2 \Gamma^2}.$$

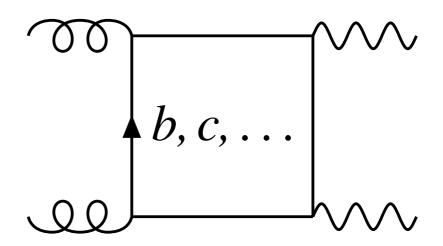


Diphoton channel of a Higgs boson

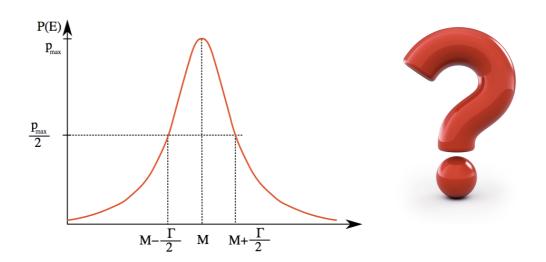


Diphoton channel of a Higgs boson





interference effects



Parton cross section

$$\frac{d\hat{\sigma}}{dz} = \frac{1}{32\pi\hat{s}} \sum \left| \mathcal{A}_{\text{bg}} e^{i\phi_{\text{bg}}} + \frac{M^2}{\hat{s} - M^2 + iM\Gamma} \cdot \mathcal{A}_{\text{res}} e^{i\phi_{\text{res}}} \right|^2$$

where $z = \cos \theta^*$

$$\frac{d\hat{\sigma}}{dz} = \frac{1}{32\pi\hat{s}} \sum \left| \mathcal{A}_{\text{bg}} e^{i\phi_{\text{bg}}} + \frac{M^2}{\hat{s} - M^2 + iM\Gamma} \right|^2 \mathcal{A}_{\text{res}} e^{i\phi_{\text{res}}} \right|^2$$

where $z = \cos \theta^*$

Propagator factor

$$\hat{\sigma} = \hat{\sigma}_{\text{bg}} + \hat{\sigma}_{\text{res}} \frac{M^4}{(\hat{s} - M^2)^2 + M^4 w^2} \left[1 + \frac{2w}{R} s_{\phi} + \frac{2(\hat{s} - M^2)}{M^2} \frac{c_{\phi}}{R} \right]$$

Exact definition

$$\hat{\sigma}_{\rm bg,res} = \frac{1}{32\pi\hat{s}} \int dz \sum \mathcal{A}_{\rm bg,res}^{2},$$

$$\hat{\sigma}_{\rm int} e^{i\phi} = \frac{1}{32\pi\hat{s}} \int dz \sum \mathcal{A}_{\rm bg} \mathcal{A}_{\rm res} e^{i(\phi_{\rm res} - \phi_{\rm bg})},$$

$$R = \frac{\hat{\sigma}_{\rm res}}{\hat{\sigma}_{\rm int}}, \quad w \equiv \frac{\Gamma}{M},$$

$$\hat{\sigma} = \hat{\sigma}_{\text{bg}} + \hat{\sigma}_{\text{res}} \frac{M^4}{(\hat{s} - M^2)^2 + M^4 w^2} \left[1 + \frac{2w}{R} s_{\phi} + \frac{2(\hat{s} - M^2)}{M^2} \frac{c_{\phi}}{R} \right]$$

If there is one dominant amplitude

$$R \simeq \frac{\mathcal{A}_{\mathrm{res}}}{\mathcal{A}_{\mathrm{bg}}}, \quad \phi \simeq \phi_{\mathrm{res}} - \phi_{\mathrm{bg}}$$

$$\hat{\sigma} = \hat{\sigma}_{\text{bg}} + \hat{\sigma}_{\text{res}} \frac{M^4}{(\hat{s} - M^2)^2 + M^4 w^2} \left[1 + \frac{2w}{R} s_{\phi} + \frac{2(\hat{s} - M^2)}{M^2} \frac{c_{\phi}}{R} \right]$$

BW resonance

$$\hat{\sigma} = \hat{\sigma}_{bg} + \hat{\sigma}_{res} \frac{M^4}{(\hat{s} - M^2)^2 + M^4 w^2} \left[1 + \frac{2w}{R} s_{\phi} + \frac{2(\hat{s} - M^2)}{M^2} \frac{c_{\phi}}{R} \right]$$

BW resonance

imaginary-part interference

$$\hat{\sigma} = \hat{\sigma}_{\text{bg}} + \hat{\sigma}_{\text{res}} \frac{M^4}{(\hat{s} - M^2)^2 + M^4 w^2} \left[1 + \frac{2w}{R} s_{\phi} + \frac{2(\hat{s} - M^2)}{M^2} \frac{c_{\phi}}{R} \right]$$

BW resonance

imaginary-part interference

real-part interference

if w is small, only resonance region is important

$$\hat{\sigma} = \hat{\sigma}_{bg} + \hat{\sigma}_{res} \frac{M^4}{(\hat{s} - M^2)^2 + M^4 w^2} \left[1 + \frac{2w}{R} s_{\phi} + \frac{2(\hat{s} - M^2)}{M^2} \frac{c_{\phi}}{R} \right]$$

if w is small, only resonance region is important

$$\hat{\sigma} = \hat{\sigma}_{\text{bg}} + \hat{\sigma}_{\text{res}} \frac{M^4}{(\hat{s} - M^2)^2 + M^4 w^2} \left[1 + \frac{2w}{R} s_{\phi} + \frac{2(\hat{s} - M^2)}{M^2} \frac{c_{\phi}}{R} \right]$$

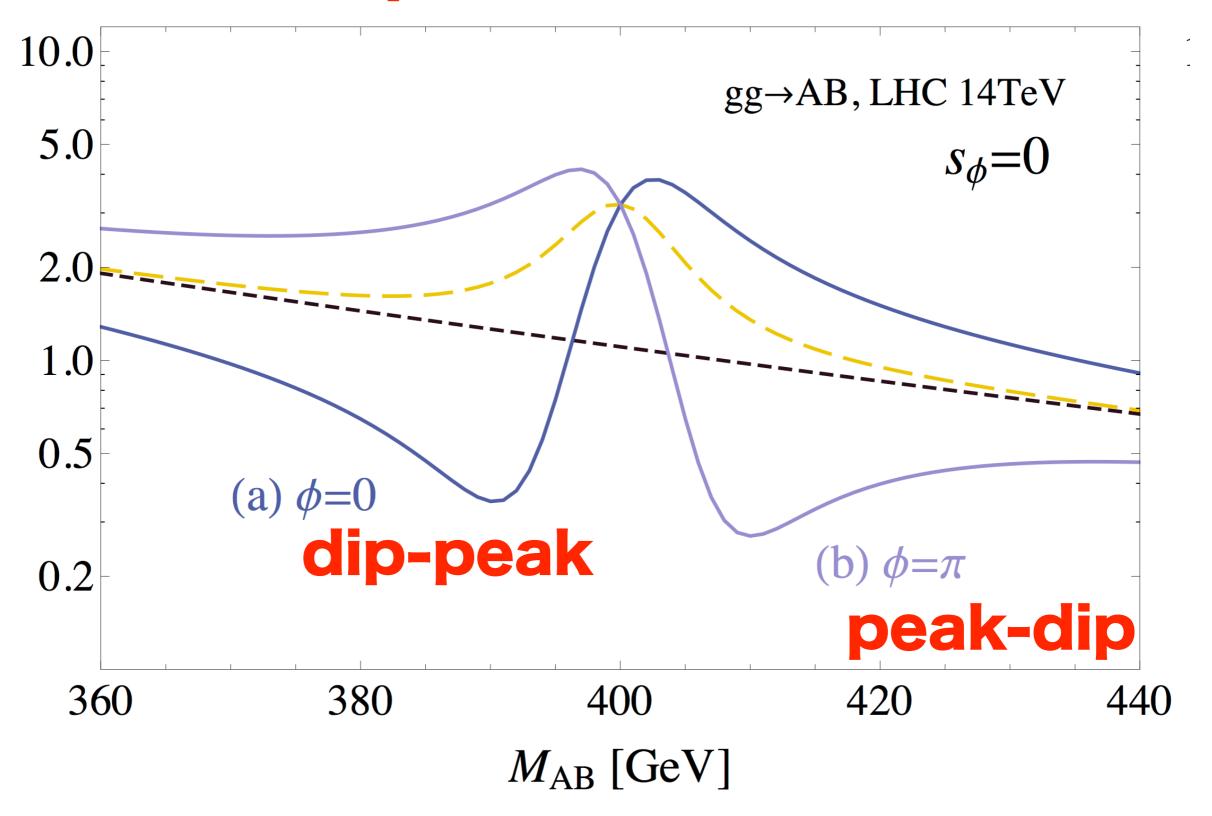
- * slowly varying near s=M^2
- * treated as constants

Real part interference

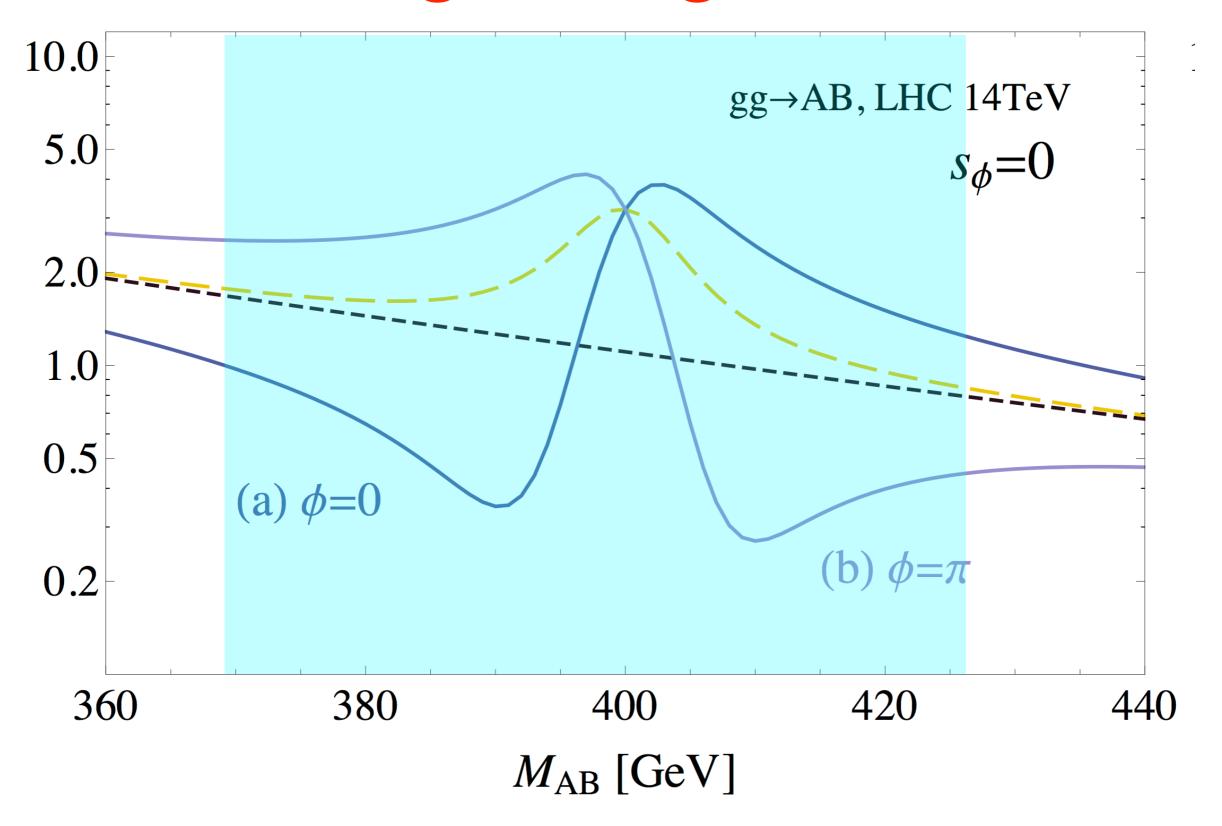
$$\hat{\sigma} = \hat{\sigma}_{bg} + \hat{\sigma}_{res} \frac{M^4}{(\hat{s} - M^2)^2 + M^4 w^2} \left[1 + \frac{2w}{R} s_{\phi} + \frac{2(\hat{s} - M^2)}{M^2} \frac{c_{\phi}}{R} \right]$$

- Odd function about the invariant mass
- Cancelled by the integration over a finite bin

Real part interference



Large enough bin



Cancelled out!

Real part: integrated out

$$\hat{\sigma} = \hat{\sigma}_{\text{bg}} + \hat{\sigma}_{\text{res}} \frac{M^4}{(\hat{s} - M^2)^2 + M^4 w^2} \left[1 + \frac{2w}{R} s_{\phi} \right]$$

Integrated out

Imaginary part interference & BW

$$\hat{\sigma} = \hat{\sigma}_{\text{bg}} + \hat{\sigma}_{\text{res}} \frac{M^4}{(\hat{s} - M^2)^2 + M^4 w^2} \left[1 + \frac{2w}{R} s_{\phi} \right]$$

- Even function about $\sqrt{\hat{s}} = M$
- survived from the integration over a finite bin.

Correction factor to the NWA

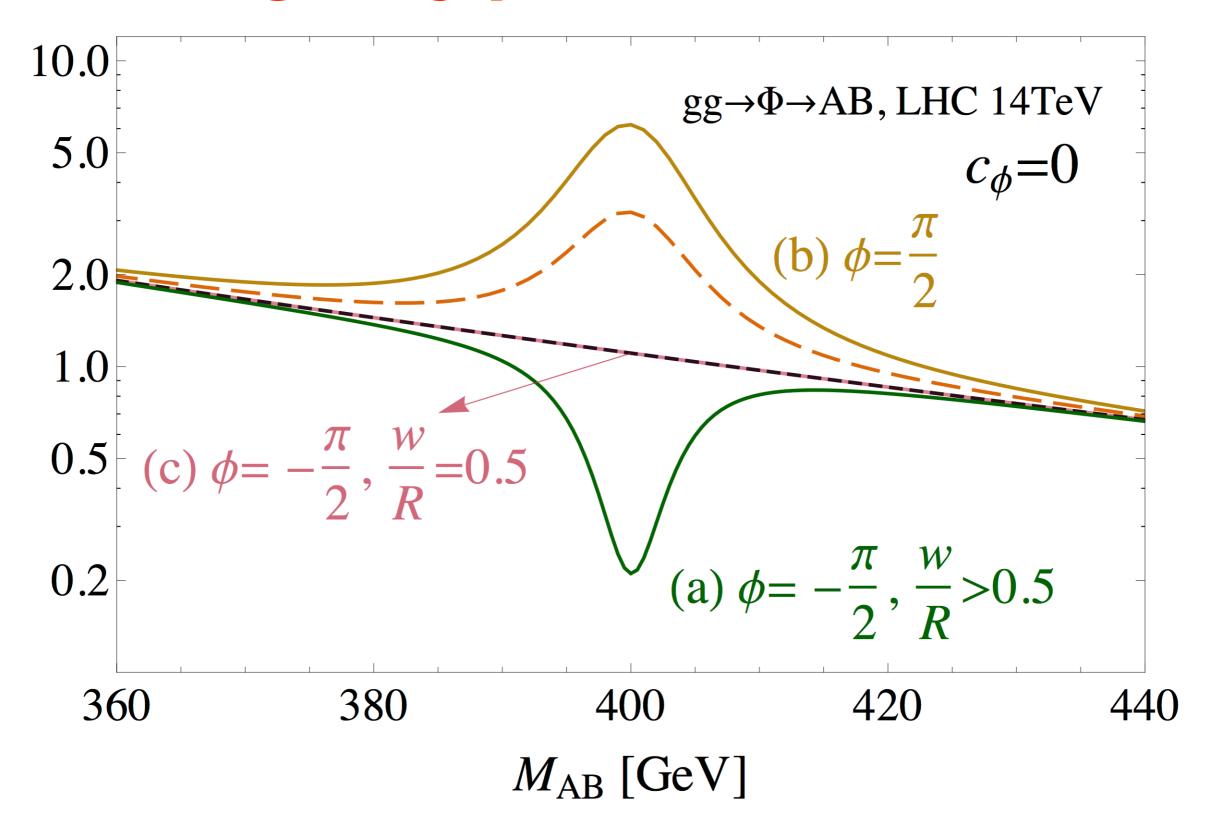
$$\hat{\sigma} = \hat{\sigma}_{\text{bg}} + \hat{\sigma}_{\text{res}} \frac{M^4}{(\hat{s} - M^2)^2 + M^4 w^2} \left[1 + \frac{2w}{R} s_{\phi} \right]$$

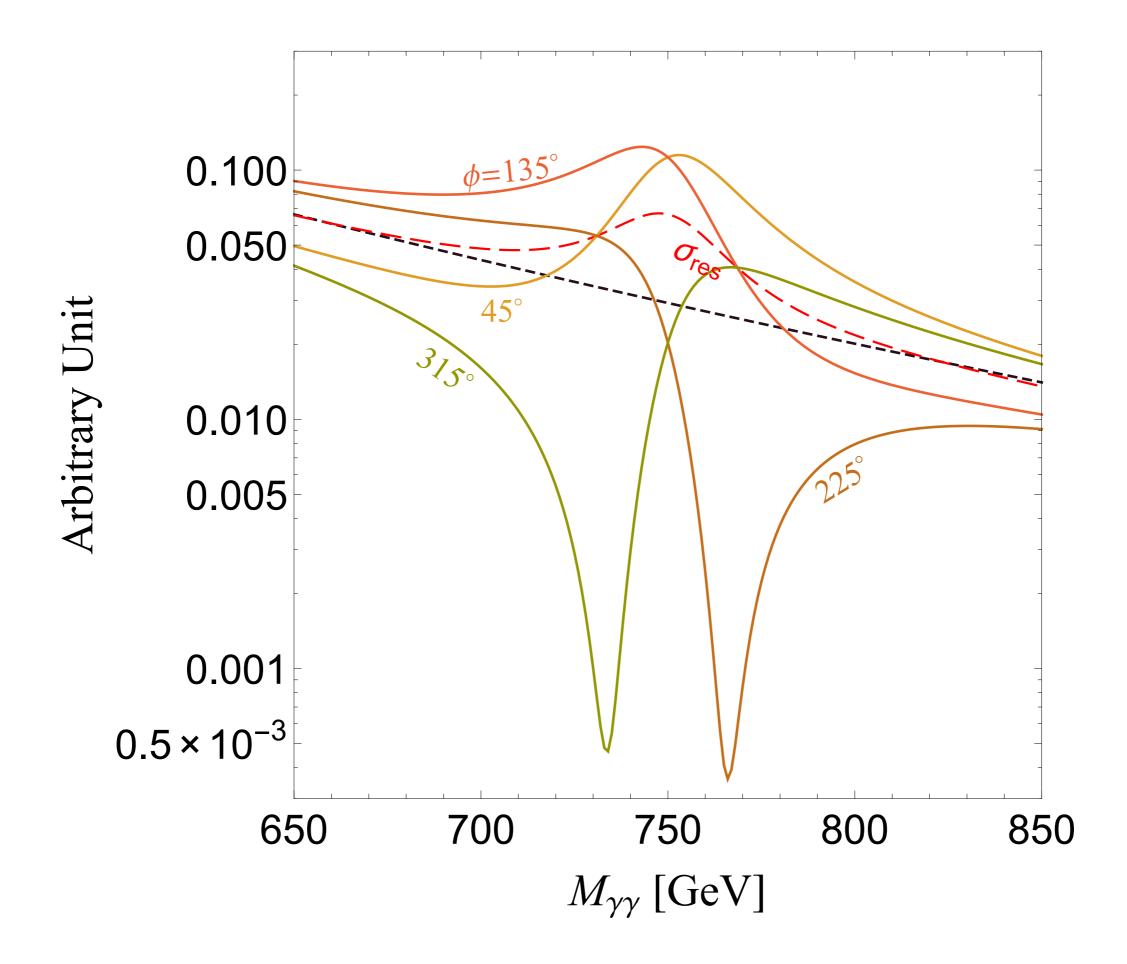
$$1 + \frac{2w}{R}s_{\phi}$$

Integrated out

$$\sigma(ab \to \Phi \to cd)_{\text{W/intf}} = \sigma(ab \to \Phi) \cdot \text{Br}(\Phi \to cd) \cdot C$$

Imaginary part interference





How does the interference effect change the 750 GeV diphoton excess?

3. Singlet Model: Real-Part Interference

Contents

- ightharpoonup a CP-odd SM-singlet scalar $\Phi = A$
- vector-like quarks $Q \equiv Q^{7/6} = (3, 2, 7/6)$
- vector-like leptons $L \equiv L^{3/2} = (1, 2, 3/2)$

Lagrangian

$$-\mathcal{L} \ni \frac{1}{2}M_{\Phi}^2\Phi^2 + \sum_{Q}(s_Q\Phi + M_Q)\overline{Q}\gamma_5Q + \sum_{L}(s_L\Phi + M_L)\overline{L}\gamma_5L$$

$$\Gamma(\Phi \to gg) = \frac{\alpha_S^2}{128\pi^3} \frac{M_{\Phi}^3}{M_Q^2} \left| \sum_Q s_Q A_{1/2}^{\Phi} \left(\frac{M_{\Phi}^2}{4M_Q^2} \right) \right|^2,$$

$$\Gamma(\Phi \to \gamma\gamma) = \frac{\alpha^2}{256\pi^3} M_{\Phi}^3 \left| \sum_{f=Q,L} N_C q_f^2 \frac{s_f}{M_f} A_{1/2}^{\Phi} \left(\frac{M_{\Phi}^2}{4M_f^2} \right) \right|^2,$$

Quark sector

$$M_Q = 1 \,\mathrm{TeV}, \; N_Q = 2, \; s_Q = 0.2.$$

Lepton sector

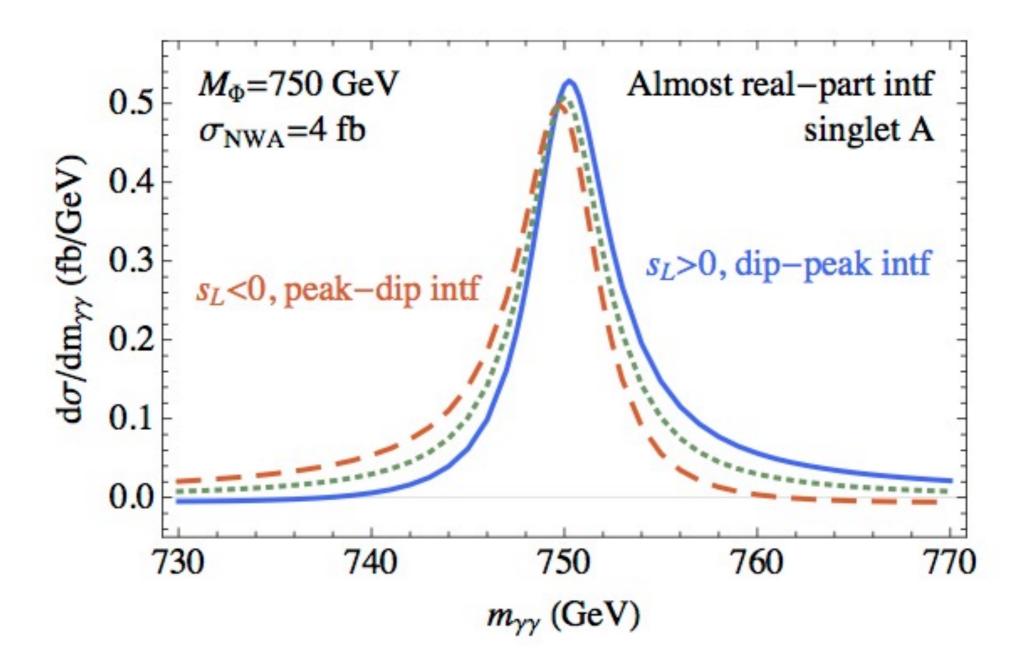
 $M_L = 400 \,\mathrm{GeV}, \; N_L = 6, \; s_L \;\mathrm{is \; varied}.$

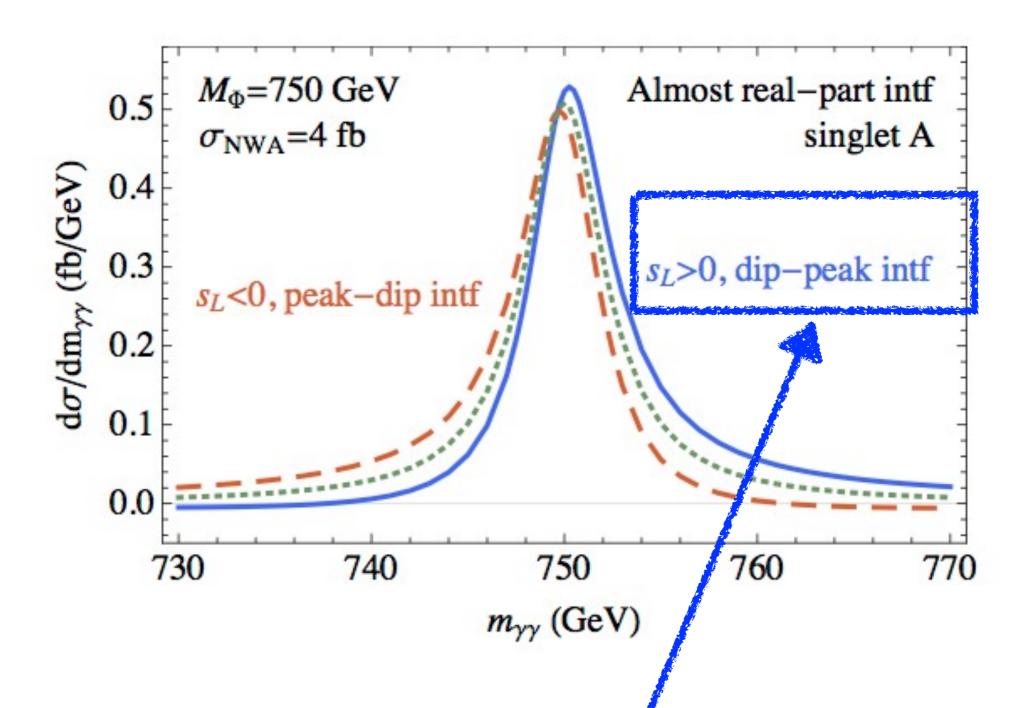
Relative phase?

Relative phase?

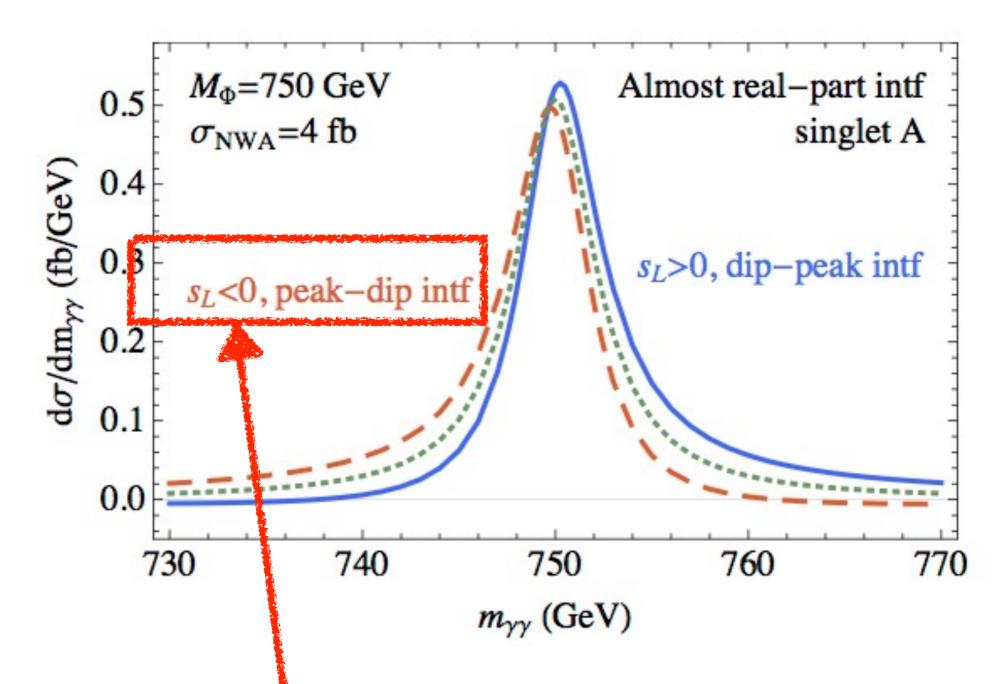
$$\phi \simeq \begin{cases} 8.3^{\circ} & \text{for } s_L > 0; \\ 188.3^{\circ} & \text{for } s_L < 0, \end{cases}$$

Real interference





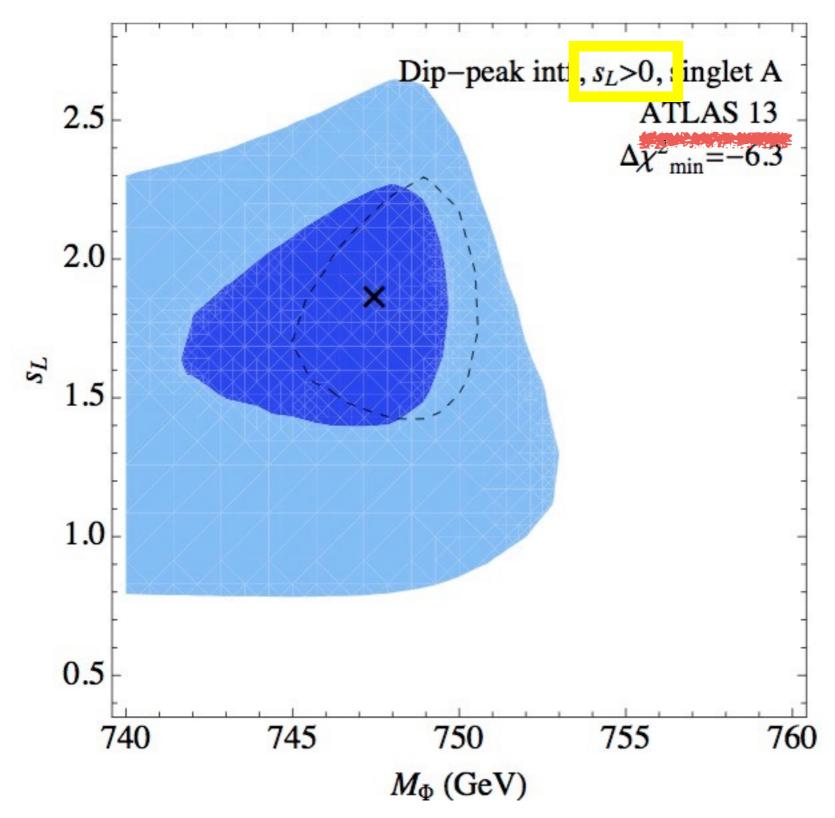
* Long tail in high mass region* Peak shift into larger mass



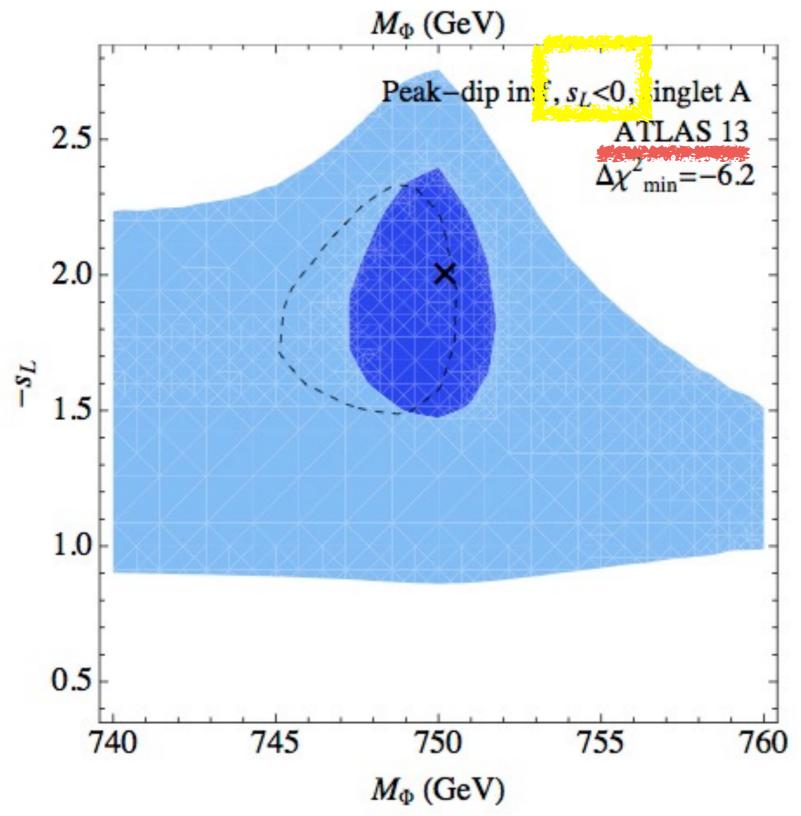
* Tail in the small mass region
* Peak shift into small mass

Quantitatively?

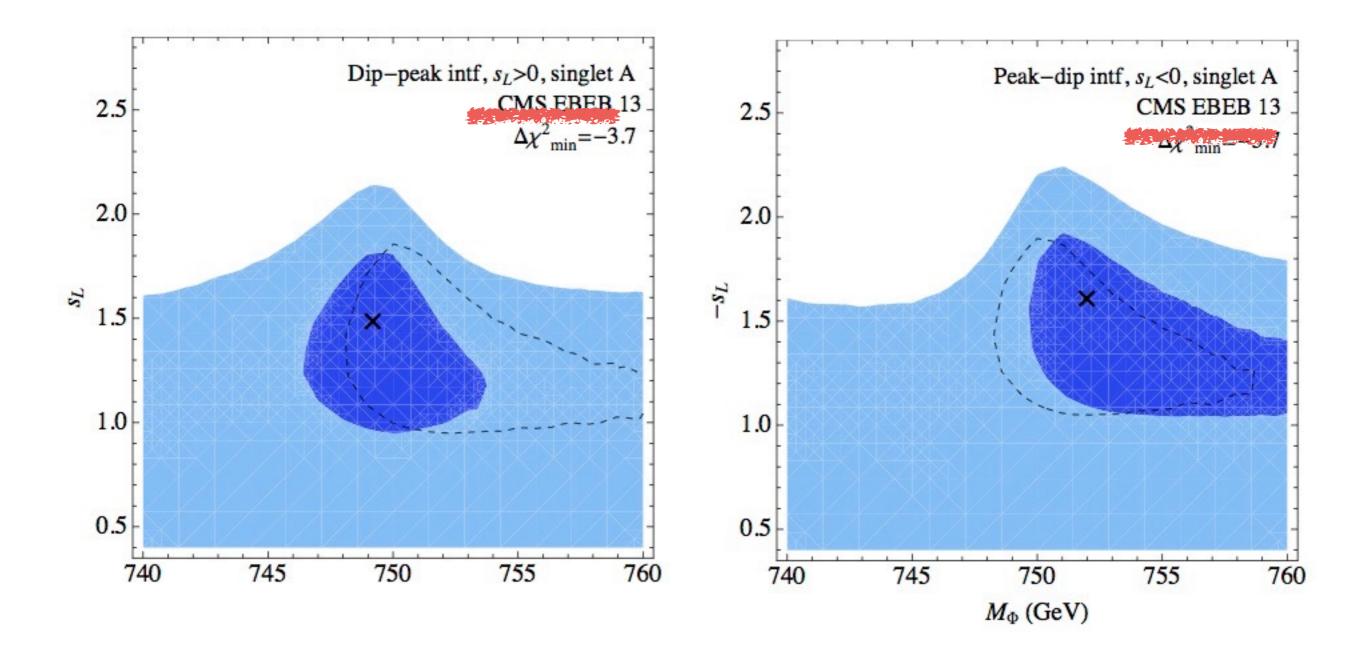
Only through the χ^2 analysis



- Dashed: I σ allow region w/o interference
- •Blue: w/ interference ⇒ lower mass region



- Dashed: w/o interference
- •Blue: w/ interference ⇒ higher mass region



- •positive $sL \Rightarrow$ the tail region shrinks
- •negative $sL \Rightarrow$ the tail region expands

3. Doublet Model: Imaginary-Part Interference

Two Higgs doublets

 Φ_1 and Φ_2

$$\Phi_a = \begin{pmatrix} \phi_a^+ \\ \frac{v_a + \rho_a + i\eta_a}{\sqrt{2}} \end{pmatrix}, \quad a = 1, 2.$$

Two Higgs doublets

In order to suppress FCNC at tree level, we impose Z2 symmetry

$$\Phi_1 \rightarrow \Phi_1$$
 and $\Phi_2 \rightarrow -\Phi_2$

Z2 parity of other fermions

	Φ_1	Φ_2	u_R	d_R	ℓ_R	Q_L, L_L
Type I	+		-		-	+
Type II	+	_	_	+	+	+
Type X	+	was and was a second		<u> </u>	+	+
Type Y	+	_	_	+	_	+

Five physical Higgs bosons

$$h^0, H^0, A^0, H^{\pm}$$

Alignment limit

$$H^{\rm SM} = s_{\beta - \alpha} h^0 + c_{\beta - \alpha} H^0$$

750 GeV state

$$M_{\phi} = M_{H} = M_{A} = 750 \, \mathrm{GeV}$$

2HDM with VLL

		$\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_Y$
$L_L = \begin{pmatrix} E_L \\ D_L \end{pmatrix}$	$L_R = \begin{pmatrix} E_R' \\ D_R' \end{pmatrix}$	$({f 1},{f 2},-rac{3}{2})$
E_R	E_L^{\prime}	$({f 1},{f 1},-1)$
D_R	D_L'	(1, 1, -2)

Lagrangian

$$-\mathcal{L} = Y_D \overline{L}_L H_1 D_R + Y_D' \overline{L}_R H_1 D_L' + Y_E \overline{L}_L \widetilde{H}_2 E_R + Y_E' \overline{L}_R \widetilde{H}_2 E_L'$$
$$+ M_L \overline{L}_L L_R + M_E \overline{E}_L' E_R + M_D \overline{D}_L' D_R + \text{h.c.}$$

Mass matrix in the basis of (E, E')

$$\mathcal{M}_{E} = \begin{pmatrix} M_{L} & \frac{1}{\sqrt{2}} Y_{E} v_{2} \\ \frac{1}{\sqrt{2}} Y_{E}' v_{2} & M_{E} \end{pmatrix}$$

Lagrangian in mass basis

$$-\mathcal{L} \supset y_{E}h(\overline{E}_{1}E_{1} - \overline{E}_{2}E_{2}) + y_{D}h(\overline{D}_{1}D_{1} - \overline{D}_{2}D_{2})$$

$$-\frac{1}{t_{\beta}}y_{E}H(\overline{E}_{1}E_{1} - \overline{E}_{2}E_{2}) + t_{\beta}y_{D}H(\overline{D}_{1}D_{1} - \overline{D}_{2}D_{2})$$

$$-i\frac{1}{t_{\beta}}y_{E}A(\overline{E}_{1}\gamma_{5}E_{1} - \overline{E}_{2}\gamma_{5}E_{2})$$

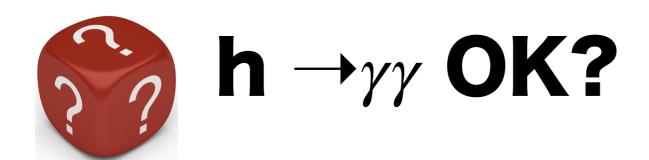
$$-it_{\beta}y_{D}A(\overline{D}_{1}\gamma_{5}D_{1} - \overline{D}_{2}\gamma_{5}D_{2})$$

where
$$y_E = -s_{\beta} s_{2\theta_E} Y_E / \sqrt{2}$$
, $y_D = -c_{\beta} s_{2\theta_D} Y_D / \sqrt{2}$

The partial decay widths of $\Phi = h, H, A$

$$\Gamma(\Phi \to \gamma \gamma) = \frac{G_F \alpha_e^2 M_{\Phi}^3}{128\sqrt{2}\pi^3} \left| \sum_{q} \hat{y}_q^{\Phi} N_c Q_q^2 A_{1/2}^{\Phi} (\tau_q) + \sum_{\ell} \hat{y}_{\ell}^{\Phi} Q_{\ell}^2 A_{1/2}^{\Phi} (\tau_{\ell}) + \mathcal{A}_{\gamma \gamma, \text{VLL}}^{\Phi} \right|^2$$

$$\mathcal{A}_{\gamma\gamma,\text{VLL}}^{\Phi} = \sum_{\text{VLL}} \sum_{i=1,2} \left[Q_{E_i}^2 \frac{\hat{y}_t^{\Phi} y_E v}{M_{E_i}} A_{1/2}^{\Phi}(\tau_{E_i}) + Q_{D_i}^2 \frac{\hat{y}_b^{\Phi} y_D v}{M_{D_i}} A_{1/2}^{\Phi}(\tau_{D_i}) \right]$$



YES! If we allow some fine tuning

$$y_D = -\frac{Q_E^2}{Q_D^2} y_E = -0.25 y_E$$

Large like 50 GeV

$$\sigma(pp \to \Phi \to \gamma\gamma) = \begin{cases} 6.5 \pm 2.5 \,\text{fb } (68\%\text{CL}) \\ 6.5^{+4.5}_{-3.5} \,\text{fb } (95\%\text{CL}) \end{cases}$$

M[GeV]	УЕ	$\phi^{ extbf{H}}$	ϕ^{A}	C
457	2	99°	123°	3.5
413	4	93°	108°	2.0
400	6	91°	104°	1.6
385	-5	−96°	-88°	0.32
395	-8	_95°	−86°	0.43
		<u> </u>		

Imaginary interference

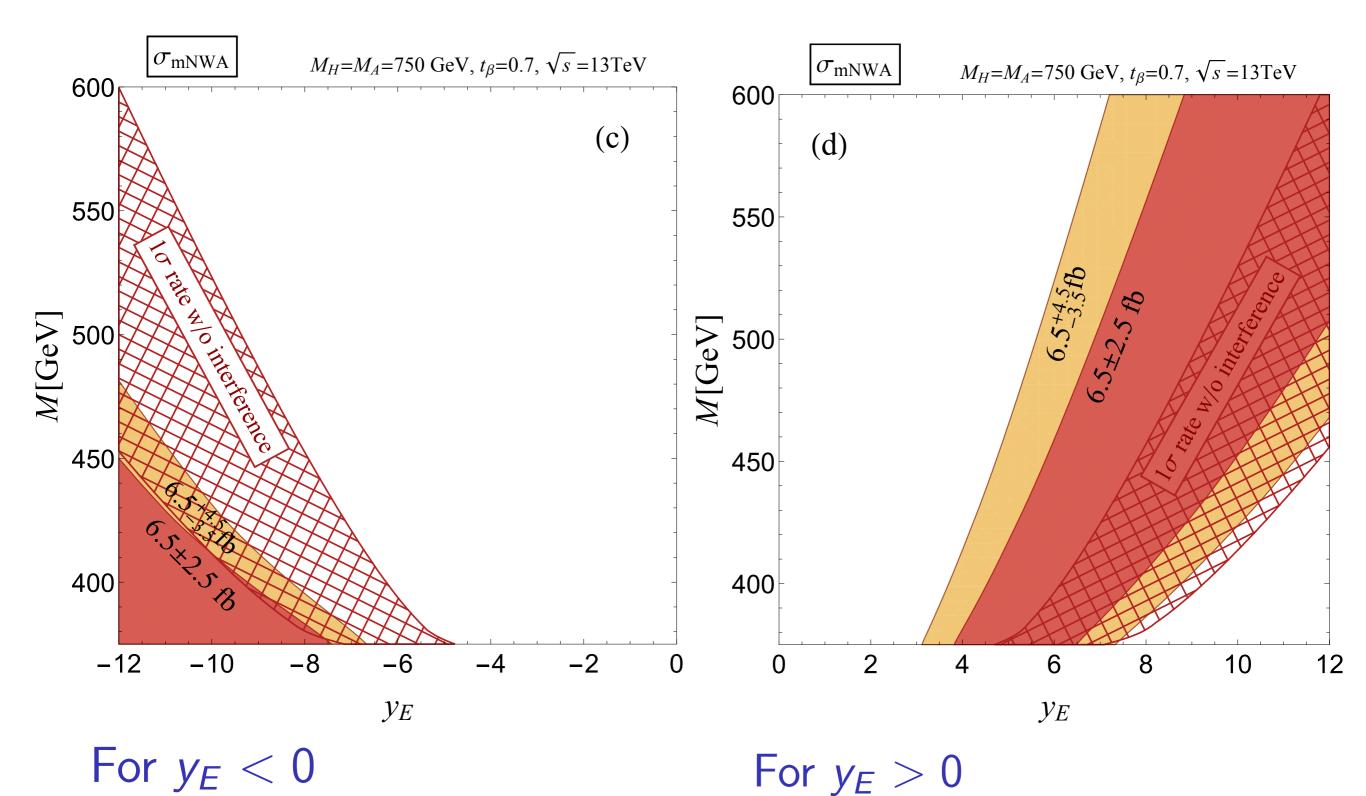
$M[\mathrm{GeV}]$	УЕ	ϕ^{H}	ϕ^{A}	С
457	2	99°	123°	3.5
413	4	93°	108°	2.0
400	6	91°	104°	1.6
385	-5	-96°	-88°	0.32
395	-8	-95°	-86°	0.43

Enhanced signal!

Constructive interference

M[GeV]	УЕ	ϕ^{H}	ϕ^{A}	C
457	2	99°	123°	3.5
413	4	93°	108°	2.0
400	6	91°	104°	1.6
385	-5	-96°	-88°	0.32
395	-8	_95°	-86°	0.43

Destructive interference



- Destructive interference
- Larger y_E is required

- Constructive interference
- Smaller y_E is required

5. Conclusions

- The 750 GeV diphoton excess can be a new scalar boson, through the gluon fusion production.
- Interference with the continuum background can be significant.
- Real interference shifts the mass pole position, and imaginary interference enhances or reduces the signal rate.