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Number Theory and Physics?

Physics: Geometric realizations are usually defined on spaces over R or C

Number Theory: Framework of finite fields Fp (for p prime)

Local-to-Global principle:
Geometries defined over finite fields contain information of those defined over C

Example: Modularity of Calabi-Yau manifolds

relates certain Calabi-Yau geometries (in a unique way) to modular forms

based on tools from arithmetic geometry

has strong implications on physics (e.g.: flux compactifications)

[Weil, Deligne, Dwork, Serre, Wiles, Taylor, Moore, Bönisch, Candelas, de la Ossa, Elmi,

Fischbach, Hulek, Kachru, Klemm, Kuusela, McGovern, Nally, Rodrigues-Villegas, van Straten,

Verrill, Yang,. . .]
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String Theory

String Theory...

... is a UV complete quantum theory of gravity

... yields a large landscape of low energy effective field theories

... provides a framework to study consistent theories of quantum gravity

String Theory in a Nutshell:

Fundamental degrees of freedom: one-dimensional extended objects (strings)
evolving in spacetime

Quantum fields: Oscillation modes of the string

Fermionic states are included via supersymmetric extension ⇒ superstrings

Superstring theory is anomaly-free only in D = 10 spacetime dimensions
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String Compactifications

Superstring theory is consistent only in D = 10 spacetime dimensions

Compactification: Decompose spacetime

M10 = R1,3 × X6

with X6 a compact “internal“ space

Spectrum of EFT on R1,3 is determined by the geometry of X6

e.g.: Massless states ←→ harmonic modes of X6

Calabi-Yau condition:

Generically, supersymmetry in 10d is broken by compactification to 4d EFT

For special choices of X6, supersymmetry is restored after compactification

⇒ Calabi-Yau Manifolds
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Moduli Stabilization and Fluxes

Spectrum of 4d EFT contains massless scalar fields

Geometric interpretation: Moduli of the internal space X6

phenomenological: Massless scalar fields have not been observed!

Add a potential W to “stabilize“ these fields (⇒ Adding mass terms)

UV complete theory ⇒ Need “background fluxes“

Background flux: Non-trivial (topological) field strength of a higher form
gauge field on the internal space X6

Flux superpotential for type IIB string compactifications: [Gukov,Vafa,Witten, 2000]

W =

∫
X6

Ω
(
z i
)
∧ (F − τH) Ω ∈ H3,0(X6,C)

scalar fields z i and τ (the complex structure moduli and the axio-dilaton)

Internal three-form fluxes F ,H ∈ H3(X6,Z) (Field strengths of two-form
fields)
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Flux Compactification of Type IIB String Theory

Flux superpotential:

W =

∫
X6

Ω
(
z i
)
∧ (F − τH) Ω(z i ) ∈ H3,0(X6,C)

for background fluxes F ,H ∈ H3(X6,Z)

Supersymmetric vacuum constraints:

∂z iW = 0 , ∂τW = 0 , W = 0

X6 supports a non-trivial flux configuration with a supersymmetric vacuum
only if

⟨F ,H⟩Z ⊂
[
H2,1(X6,C)⊕ H1,2(X6,C)

]
∩ H3(X6,Z)

defines a two-dimensional sublattice
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Flux Compactification of M-Theory

Setup: 11d M-theory (or 12d F-theory) compactified on a Calabi-Yau fourfold X8

Flux superpotential:

W =

∫
X8

Ω(z i ) ∧ G Ω(z i ) ∈ H4(X8,C)

z i complex structure moduli

G ∈ H4(X8,Z) internal topological four-form flux

Supersymmetric vacuum constraints imply

X8 supports a non-trivial flux configuration with a supersymmetric vacuum
only if

⟨G ⟩Z ⊂
[
H4,0(X8,C)⊕ H2,2(X8,C)⊕ H0,4(X8,C)

]
∩ H4(X8,Z)

⇒ one-dimensional sublattice
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Hodge Substructures

We have seen:

Supersymmetric Flux Vacua of string or M-theory compactifications require a
non-trivial sublattice Λ ⊂ Hn(X ,Z) for n = 3, 4 such that

Λ⊗ C =
⊕

p+q=n

Λp,q

with
Λq,p = Λp,q , Λp,q ⊂ Hp,q(X ,C)

Such sublattices are called Hodge substructures

Question: Given a Calabi-Yau n-fold X , does there exists a Hodge substructure?

⇒Modularity
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Arithmetic Geometry

Assume that
X = {fi (xk) = 0} fi (x) ∈ Z[x1, . . . , xm]

is some (affine or projective) complex variety

Treat X to be defined over the finite field Fpr with pr elements (p prime,
r ∈ N)

X/Fpr := {f̄i (x) = 0} ⊂ (Fpr )m

(Finite) Number of points

Npr (X ) := |X/Fpr |

collected in the generating local zeta function

ζp(X ,T ) = exp

( ∞∑
r=1

Npr (X )
T r

r

)

”Local-to-global principle”:
ζp(X ,T ) contain information about the Hodge structure of Hk(X ,Z)
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Arithmetic Geometry

Weil conjectures: Constrain ζp(X ,T ) strongly [Weil, 1949]

Rationality:

ζp(X ,T ) =
R1(X ,T ) · · ·R2n−1(X ,T )

R0(X ,T ) · · ·R2n(X ,T )
, n = dimC(X )

Rk(X ,T ) are polynomials of degree bk = dim(Hk(X ,Q))

In particular: Rk(X ,T ) = det(1− TFr−1
p ) for linear maps

Frp : Hk(X ,Qp)→ Hk(X ,Qp)

Hk(X ,Qp): p-adic cohomology groups

Important fact:
If Hk(X ,Z) has a Hodge substructure, Frp becomes block-diagonal
⇒ Rk(X ,T ) factorizes for (almost) all primes p!
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The Modularity Conjecture

Consider an elliptic curve E :

R1(E ,T ) = 1− apT + pT 2 with ap = p + 1− Np(E)

Modularity: f (τ) :=
∑

p prime

apq
p , q = e2πiτ is a modular form of weight two

For a Calabi-Yau n-fold X : If Hk(X ,Z) has a two-dimensional Hodge substructure:

Rk(X ,T ) = RΛ(X ,T ) · RΣ(X ,T ) with RΛ(X ,T ) = 1− app
αT + pβT 2

for some (fixed) α, β ∈ N

Serre’s Modularity Conjecture: [Serre, 1975]

f (τ) :=
∑

p prime

apq
p , q = e2πiτ is a modular form

Manifolds of this type are called modular
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Arithmetic Search for Fluxes

Question: How can we find Calabi-Yau n-folds that admit non-trivial fluxes?
⇒ Use modularity as a necessary condition for Hodge substructures of Hn(X ,Z)

Setup: Xz a family of Calabi-Yau n-folds, z ∈ C modulus

Algorithm: For p ≥ 7 prime

The moduli space z ∈ C reduces to the finite set zp ∈ Fp

For each zp ∈ Fp compute Rn(Xzp ,T )

Count |{zp ∈ Fp | Rn(Xzp ,T ) factorizes quadratically}|
If there is at least one point of factorization per prime p:

Find z ∈ Q̄ ⊂ C s.t.
zp ≡ z mod p

is a point of quadratic factorization for each prime p

If such a z ∈ Q̄ exists, the (complex) variety Xz is a candidate to be modular
[Kachru, Nally, Yang, 2020], [Candelas, de la Ossa, van Straten, 2020],...
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Example: Non-Modular Case

[Jockers, S.K., Kuusela, ’23]The mirror family of the complete intersection P7[2, 2, 4]:

Family of Calabi-Yau fourfolds Xz dependent on one modulus z ∈ C
Number of quadratic factorizations for each prime 7 ≤ p ≤ 317:

50 100 150 200 250 300

2

4

Many primes p with no point zp ∈ Fp s.t. R4(Xzp ,T ) has a quadratic
factorization

The existence of an algebraic modulus z ∈ Q̄ ⊂ C s.t. H4(Xz ,Z) has a
two-dimensional sublattice of definite Hodge type is highly unlikely
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Example: Modular Case

[Jockers, S.K., Kuusela, ’23]A one-parameter family of Hulek-Verrill fourfolds HV4
z :

Number of quadratic factorizations for each prime 7 ≤ p ≤ 733

50 100 150 200 250 300 350 400 450 500 550 600 650 700

2

4

6

8

10

At least one point zp ∈ Fp for each prime s.t. R4(HV
4
zp ,T ) has a quadratic

factorization

There is potentially a modulus z ∈ Q̄ s.t. HV4
z is modular
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Example: Modular Case

Reconstruction of possible modular points z ∈ Q̄ ⊂ C from p-adic data:

Collection of points zp ∈ Fp with quadratic factorization

prime p zp ∈ Fp

p = 11 1 6 8 10
p = 13 1
p = 17 1 15

prime p zp ∈ Fp

p = 19 1 2 7 17
p = 23 1 4 5 12
p = 29 1 6 11 24

One (rational) solution z ∈ Q s.t. zp ≡ z mod p appears for all p:

z = 1

HV4
z=1 is a candidate for a modular Calabi-Yau fourfold!
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A Modular Calabi-Yau Fourfold

Consistency checks:

Coefficients ap of quadratic factor

RΛ(HV
4
1,T ) = 1− appT + p2T 2

give the q-expansion of a unique modular form

Identified generators of the two-dimensional Hodge substructure

Λ =
[
H3,1(HV4

1,C)⊕ H1,3(HV4
1,C)

]
∩ H4(HV4

1,Z)

by suitable covariant derivatives of Ω ∈ H4,0(HV4
1,C)

Remainder

Σ =
[
H4,0(HV4

1,C)⊕ H2,2(HV4
1,C)⊕ H0,4(HV4

1,C)
]
∩ H4(HV4

1,Z)

defines suitable four-form fluxes

In particular:
G := C ·Re(Ω(z))|z=1 ∈ Σ , C ∈ R
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Conclusions: Number theory and Physics!

Arithmetic geometry can be used as a tool to investigate varieties which are
defined over C

Modularity serves as a necessary condition for (two-dimensional) Hodge
substructures, i.e. for

supersymmetric flux vacua

rank-two attractor points [Candelas, de la Ossa, Elmi, van Straten, ’19]

topology changing transition loci? [Jockers, S.K., Kuusela, WIP]

The corresponding modular form fX contains physical information

For type IIB flux vacua: The axio-dilaton τ

For rank-two attractor points: The BH entropy SBH
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