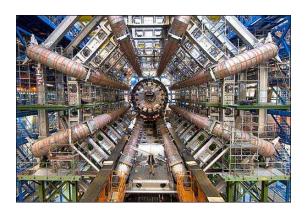
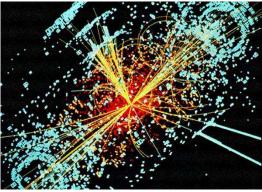
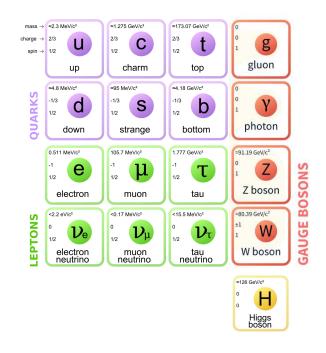
The String Landscape and Quantum Gravity Conjectures

Seung-Joo Lee (IBS)


KPS Particles and Fields Division Meeting@IBS


19-Dec-2024


Particle Phenomenology

A Successful Description in Quantum Field Theory

- The Standard Model (SM) of Particle Physics [... '67]
 - *A particular model in the Quantum Field Theory (QFT) framework
 - observed fundamental matter particles
 - three of the four fundamental forces (EM, weak and strong)
 - The Higgs particle discovered at CERN <u>as predicted!</u>

Success: Theoretical computations consistent with many observations to a great precision

Quantum Gravity and String Theory

- A Fundamental Trouble
 - Gravity does not fit to the SM

Quantum Gravity and String Theory

- A Fundamental Trouble
 - Gravity does not fit to the SM/QFT

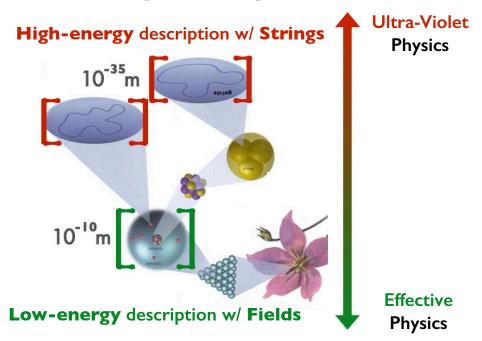
Quantum Gravity and String Theory

- A Fundamental Trouble
 - Gravity does not fit to the SM/QFT
 - Completion of the SM into a new framework?

Quantum Gravity and String Theory

- A Fundamental Trouble
 - Gravity does not fit to the SM/QFT
 - Completion of the SM into a new framework?

String Theory

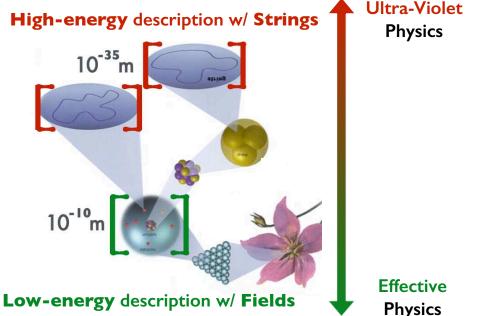


Quantum Gravity and String Theory

A Fundamental Trouble

- Gravity does not fit to the SM/QFT
- Completion of the SM into a new framework?

String Theory



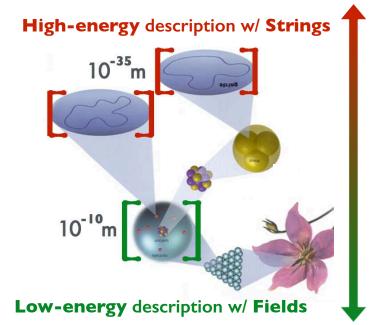
Quantum Gravity and String Theory

A Fundamental Trouble

- Gravity does not fit to the SM/QFT
- Completion of the SM into a new framework?

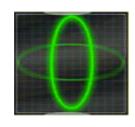
String Theory

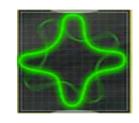
1. QFT particle = string mode

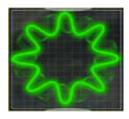


Quantum Gravity and String Theory

A Fundamental Trouble


- Gravity does not fit to the SM/QFT
- Completion of the SM into a new framework?

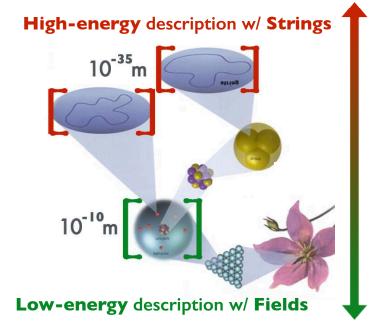

String Theory



Ultra-Violet Physics

1. QFT particle = string mode

2. Different particle species = different modes

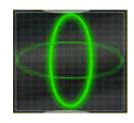

Effective Physics

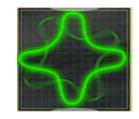
Quantum Gravity and String Theory

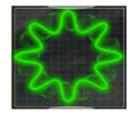
A Fundamental Trouble

- Gravity does not fit to the SM/QFT
- Completion of the SM into a new framework?

String Theory




Ultra-Violet Physics


Effective

Physics

1. QFT particle = string mode

- 2. Different particle species = different modes
- 3. Graviton as a universal mode

Quantum gravity is consistent (and compulsory)

Towards Realistic String EFTs

- String Phenomenology
 - Pursue a realistic low-energy effective QFT model of string theory
 - observed Standard-Model particle physics & cosmology

Towards Realistic String EFTs

- String Phenomenology
 - Pursue a realistic low-energy effective QFT model of string theory
 - observed Standard-Model particle physics & cosmology

Towards Realistic String EFTs

String Phenomenology

- Pursue a <u>realistic</u> low-energy effective QFT model of string theory
 - observed Standard-Model particle physics & cosmology

String Effective Field Theory

Towards Realistic String EFTs

String Phenomenology

Pursue a realistic low-energy effective QFT model of string theory
 observed Standard-Model particle physics & cosmology
 String Effective Field Theory = String EFT

Towards Realistic String EFTs

String Phenomenology

Pursue a realistic low-energy effective QFT model of string theory
 observed Standard-Model particle physics & cosmology
 Rey Terminology String Effective Field Theory = String EFT

Towards Realistic String EFTs

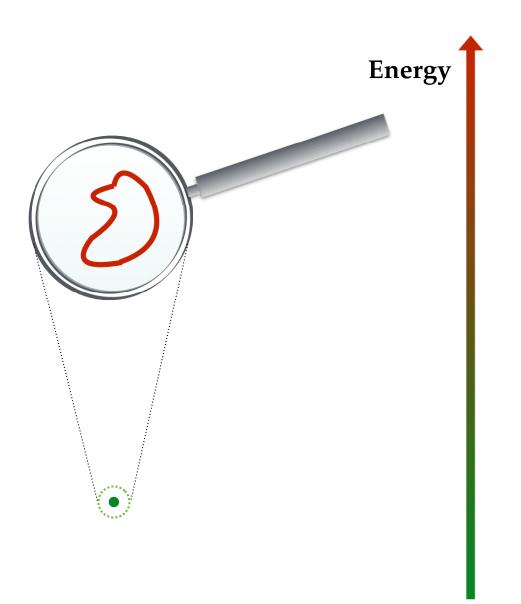
String Phenomenology

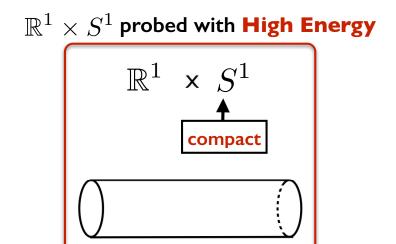
Pursue a realistic low-energy effective QFT model of string theory
 observed Standard-Model particle physics & cosmology
 Key Terminology String Effective Field Theory = String EFT

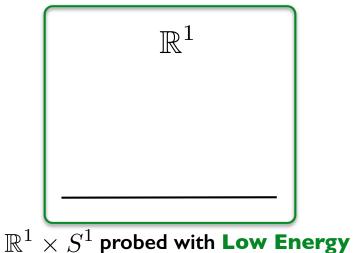
Dimension of the Spacetime

- Strings must probe a 10-dim'l spacetime for consistency
- Our spacetime is 4-dim'l

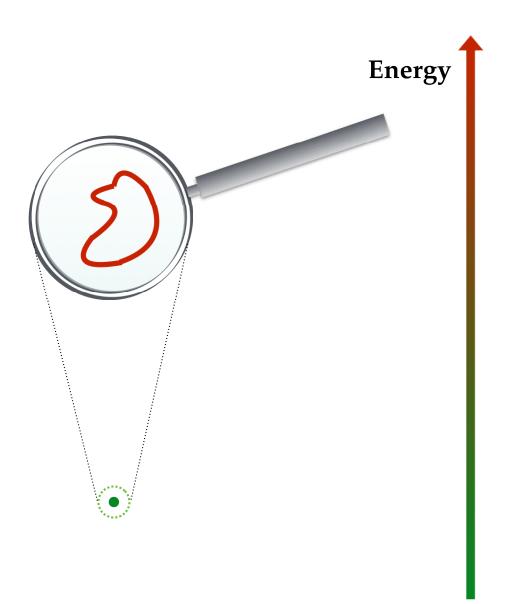
Towards Realistic String EFTs

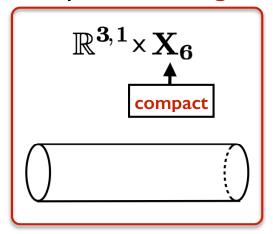

String Phenomenology

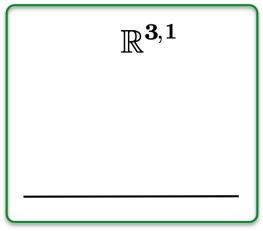

Pursue a realistic low-energy effective QFT model of string theory
 observed Standard-Model particle physics & cosmology
 Key Terminology String Effective Field Theory = String EFT


Dimension of the Spacetime

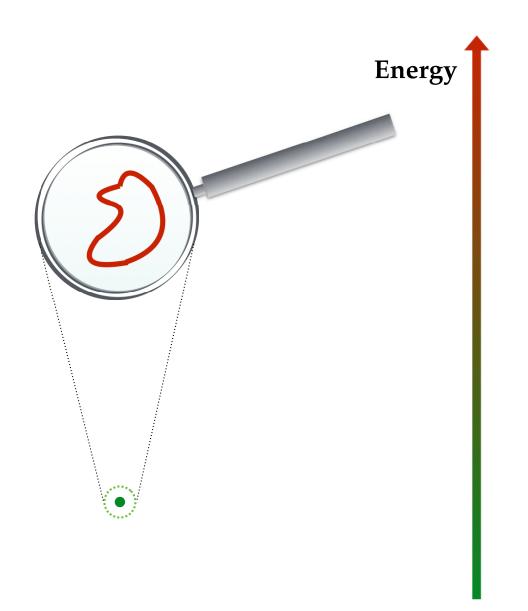
- Strings must probe a 10-dim'l spacetime for consistency
- Our spacetime is 4-dim'l
- Compactifications

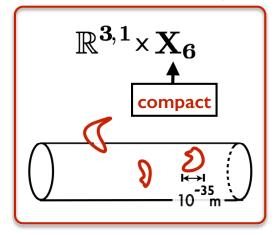

From 2d to 1d

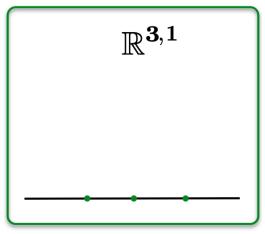




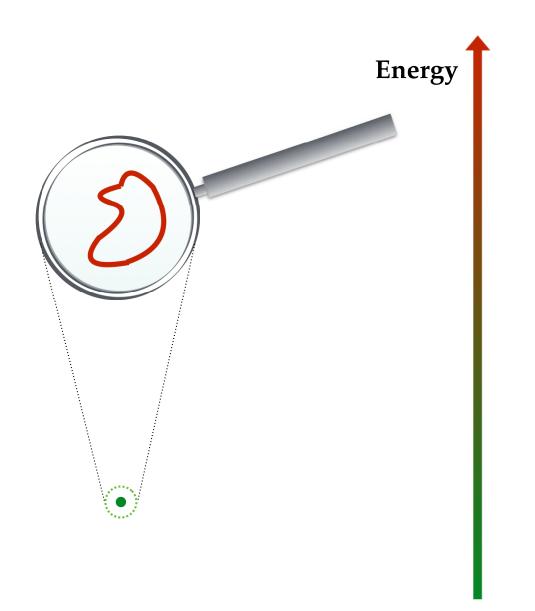
From 2d to 1d


Spacetime probed with **High Energy**

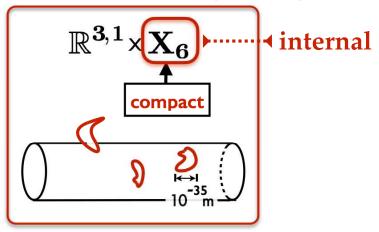



Spacetime probed with Low Energy

From 2d to 1d



Spacetime probed with **High Energy**



From 2d to 1d

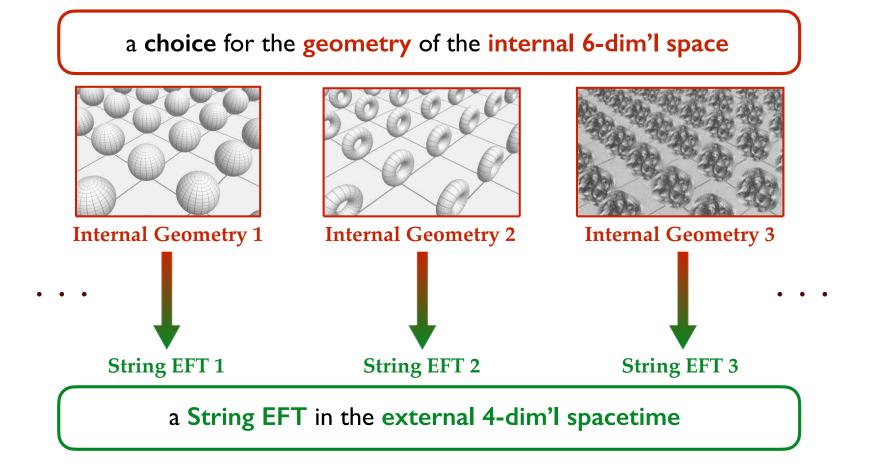
Spacetime probed with **High Energy**

Effective 4-dim'l Theory

Physics via Geometry

Effective Physics of String Theory

a choice for the geometry of the internal 6-dim'l space


 ↓

a String EFT in the external 4-dim'l spacetime

Effective 4-dim'l Theory

Physics via Geometry

Effective Physics of String Theory

Consistency and Phenomenology

Constraining the Geometry

Internal Geometry X₆

Start in 10d

Arrive at 4d

Consistency and Phenomenology

Constraining the Geometry

Internal Geometry X6

Which internal spaces X6 are allowed by strings?

Start in 10d

Arrive at 4d

Consistency and Phenomenology

Constraining the Geometry

Internal Geometry X6

Which internal spaces X6 are allowed by strings?

Start in 10d

$$0 = \nabla_M \epsilon - \frac{1}{4} \mathbf{H}_M \epsilon ,$$

$$\begin{array}{c} \mathbf{O} = \nabla_{M} \epsilon - \frac{1}{4} \mathbf{H}_{M} \epsilon \; , \\ \mathbf{String} \quad \mathbf{0} = -\frac{1}{2} \Gamma \cdot \partial \phi \; \epsilon + \frac{1}{4} \mathbf{H} \epsilon \; , \\ \mathbf{0} = -\frac{1}{2} \mathbf{F} \epsilon \; , \end{array}$$

$$0 = -\frac{1}{2} \mathbf{F} \epsilon$$

Arrive at 4d

Consistency and Phenomenology

Constraining the Geometry

Internal Geometry X6

Which internal spaces X6 are allowed by strings?

Start in 10d

Arrive at 4d

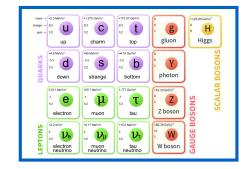
String
$$0 = \nabla_M \epsilon - \frac{1}{4} \mathbf{H}_M \epsilon$$
, $0 = -\frac{1}{2} \Gamma \cdot \partial \phi \ \epsilon + \frac{1}{4} \mathbf{H} \epsilon$, $0 = -\frac{1}{2} \mathbf{F} \epsilon$,

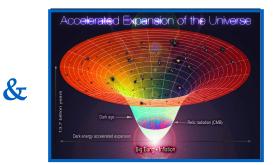
Consistency and Phenomenology

Constraining the Geometry

Internal Geometry X6

Which internal spaces X6 are allowed by strings?


Start in 10d



Arrive at 4d

$$0 = \nabla_M \epsilon - \frac{1}{4} \mathbf{H}_M \epsilon \; ,$$
 String
$$0 = -\frac{1}{2} \Gamma \cdot \partial \phi \; \epsilon + \frac{1}{4} \mathbf{H} \epsilon \; ,$$
 EOMs

$$0 = -\frac{1}{2}\Gamma \cdot \partial \phi \ \epsilon + \frac{1}{4}\mathbf{H}\epsilon$$
$$0 = -\frac{1}{2}\mathbf{F}\epsilon \ ,$$

String EFT in $\mathbb{R}^{3,1}$

Which internal spaces X6 conform with observations?

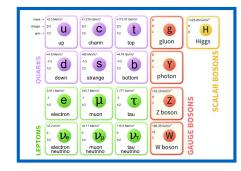
Consistency and Phenomenology

Constraining the Geometry

Internal Geometry X6

Which internal spaces X6 are allowed by strings?

Start in 10d



Arrive at 4d

$$0 = \nabla_M \epsilon - \frac{1}{4} \mathbf{H}_M \epsilon ,$$

$$0 = \nabla_M \epsilon - \frac{1}{4} \mathbf{H}_M \epsilon \; ,$$
 String
$$0 = -\frac{1}{2} \Gamma \cdot \partial \phi \; \epsilon + \frac{1}{4} \mathbf{H} \epsilon \; ,$$
 EOMs

$$0 = -\frac{1}{2} \mathbf{F} \epsilon$$

Which internal spaces X6 conform with observations?

·····> Hints on New Physics ?

Consistency and Phenomenology

Constraining the Geometry

Internal Geometry X6

Which internal spaces X6 are allowed by strings?

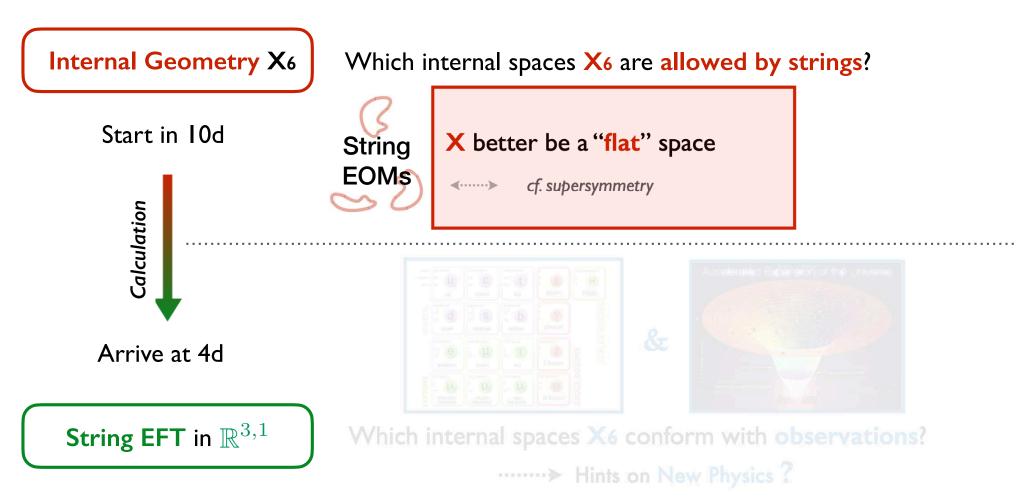
Start in 10d

Arrive at 4d

$$0 = \nabla_M \epsilon - \frac{1}{4} \mathbf{H}_M \epsilon$$

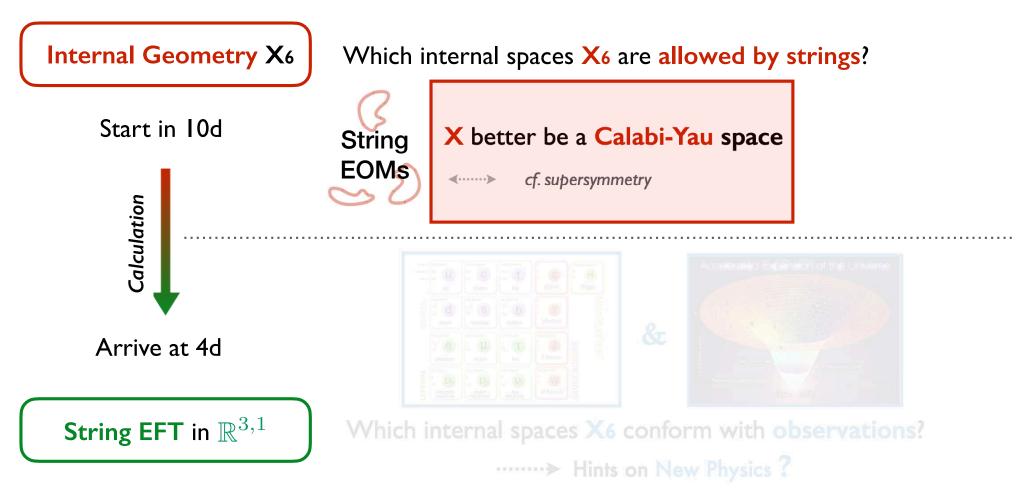
$$0 = \nabla_M \epsilon - \frac{1}{4} \mathbf{H}_M \epsilon \; ,$$
 String
$$0 = -\frac{1}{2} \Gamma \cdot \partial \phi \; \epsilon + \frac{1}{4} \mathbf{H} \epsilon \; ,$$
 EOMs

$$0 = -\frac{1}{2}\mathbf{F}\epsilon ,$$

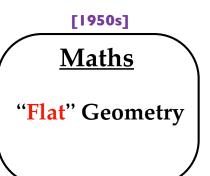

String EFT in $\mathbb{R}^{3,1}$

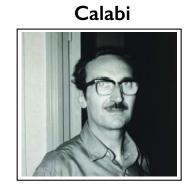
Which internal spaces X6 conform with observations?

Hints on New Physics?


Consistency and Phenomenology

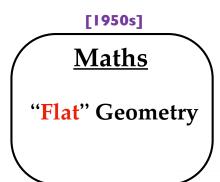
Constraining the Geometry

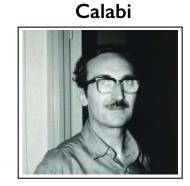

Consistency and Phenomenology

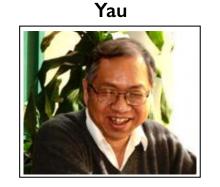

Constraining the Geometry

Calabi-Yau Space, Conceptually

Maths v.s. Physics





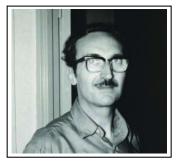


Calabi-Yau Space, Conceptually

Maths v.s. Physics

Calabi-Yau geometry is characterized via a simple topological criterion

Calabi-Yau Space, Conceptually

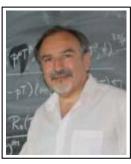

Maths v.s. Physics

Maths

"Flat" Geometry

Calabi

Yau

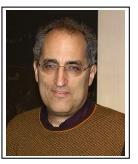

Calabi-Yau geometry is characterized via a simple topological criterion and turns out to be a legitimate internal space allowed by strings!

[1985]

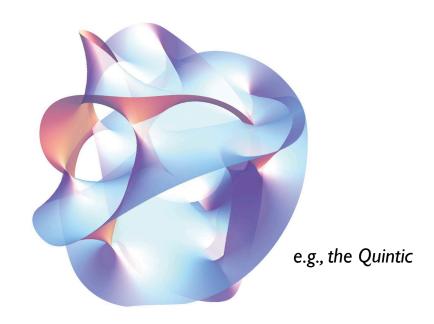
Physics

Sol. to string EOMs (string vacuum)

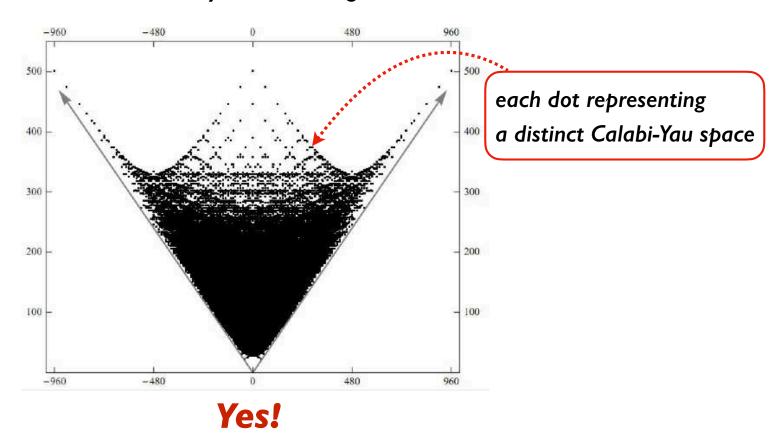
Candelas


Horowitz

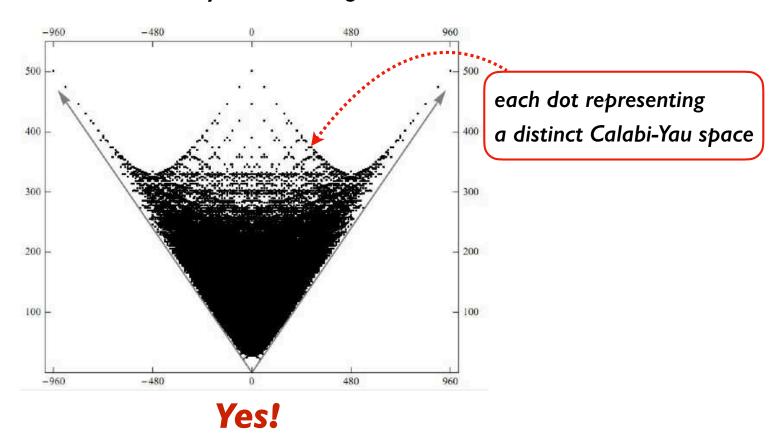
Strominger


Witten

Calabi-Yau Space, Practically

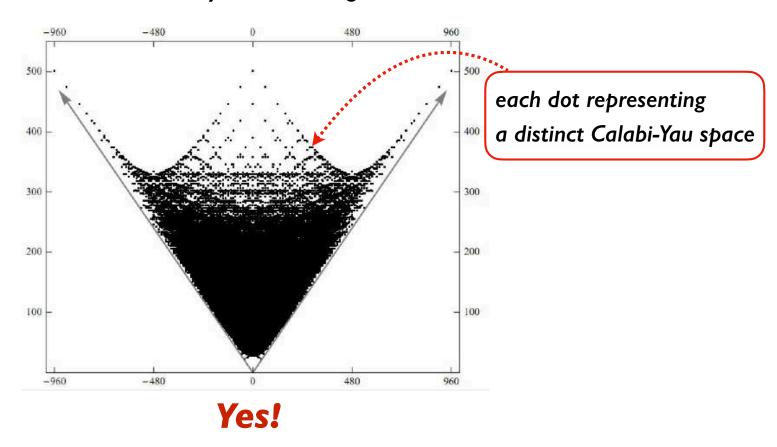

Does there exist an example of such a flat geometry?

Does there exist an example of such a flat geometry?

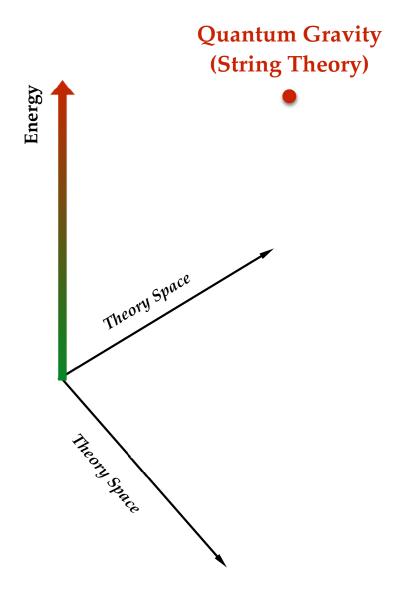


Yes

Can one find any other flat geometries?


Can one find any other flat geometries?

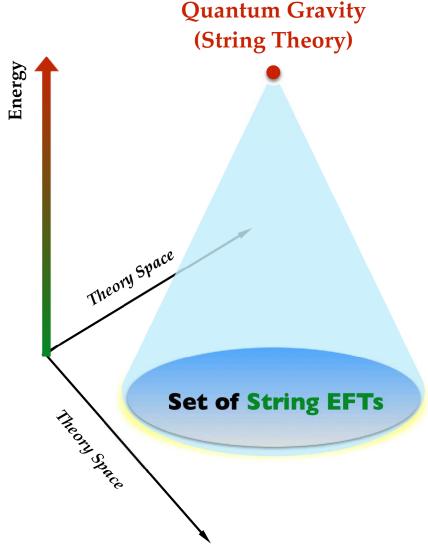
• A Big Data of 6-dim'l Calabi-Yau spaces via algebraic geometry


[Green, Hubsch '87], [Candelas, Dale, Lutken, Schimmrigk '88], [Candelas, Lynker, Schimmrigk '90], [Kreuzer, Skarke '02], ...

Can one find any other flat geometries?

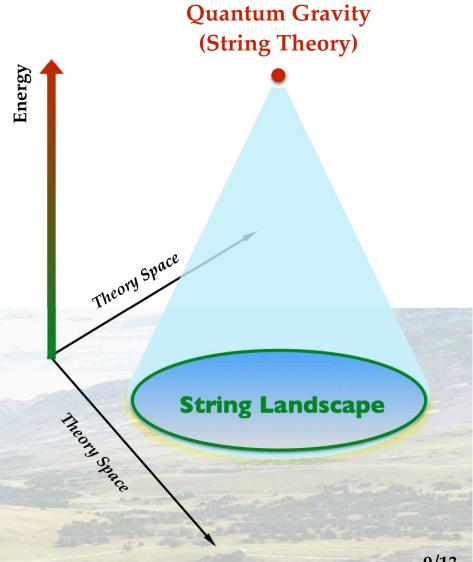
- A Big Data of 6-dim'l Calabi-Yau spaces via algebraic geometry [Green, Hubsch '87], [Candelas, Dale, Lutken, Schimmrigk '88], [Candelas, Lynker, Schimmrigk '90], [Kreuzer, Skarke '02], ...
- Estimated to have over 10^{400} spaces [Chandra, Constantin, Fraser-Taliente, Harvey, Lukas '23]

- String Theory
 - Unique at high energy



The String Landscape

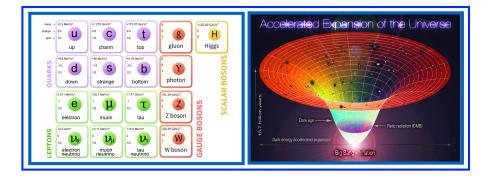
- String Theory
 - *Unique* at *high* energy



- String EFTs
 - A plethora at low energy

- **String Theory**
 - *Unique* at *high* energy

- **String EFTs**
 - · A plethora at low energy

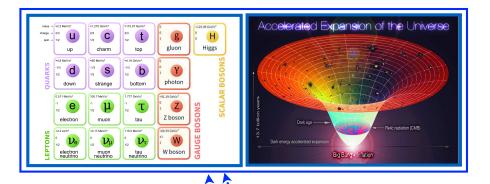


The String Landscape

- String Theory
 - Unique at high energy

- String EFTs
 - A plethora at low energy

The String Phenomenology Program


String Landscape

The String Landscape

- String Theory
 - Unique at high energy

- String EFTs
 - · A plethora at low energy

The String Phenomenology Program

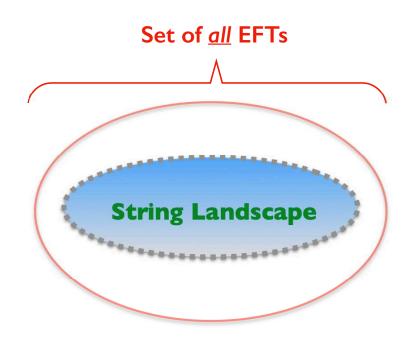
The String Landscape

- String Theory
 - Unique at high energy

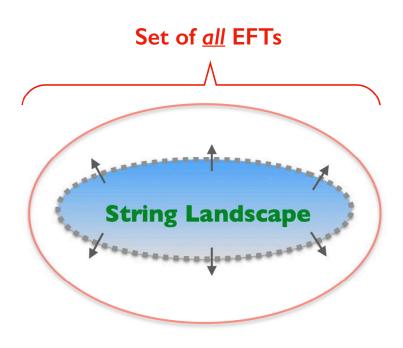
- String EFTs
 - A plethora at low energy

String Landscape

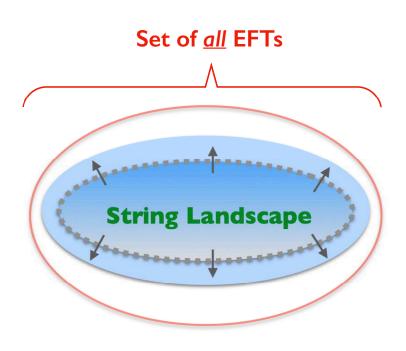
- String Theory
 - Unique at high energy


- String EFTs
 - A plethora at low energy

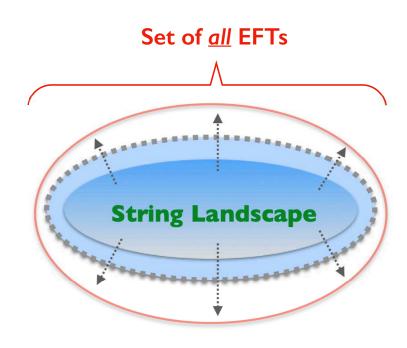
- String Theory
 - Unique at high energy


- String EFTs
 - A plethora at low energy

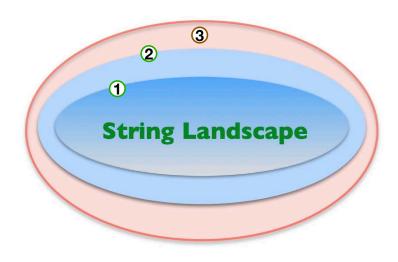
- String Theory
 - *Unique* at *high* energy


- String EFTs
 - A plethora at low energy

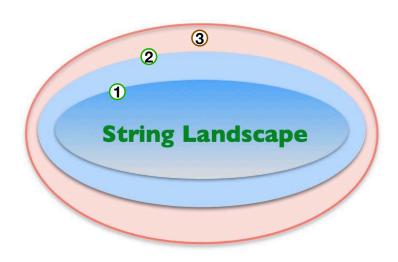
- String Theory
 - *Unique* at *high* energy


- String EFTs
 - A plethora at low energy

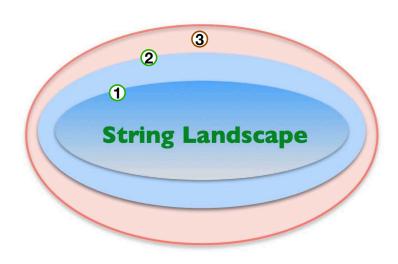
- String Theory
 - *Unique* at *high* energy



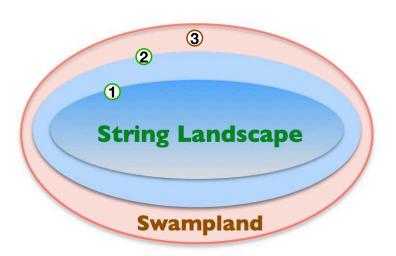
- String EFTs
 - A plethora at low energy


- Boundary of the String Landscape and Beyond
 - Division of the set of QFT models with gravity
 - String Landscape (String EFTs)

 Landscape (EFTs w/ a UV-completion)
 - Swampland (EFTs w/o a UV-completion)



- Boundary of the String Landscape and Beyond
 - Division of the set of QFT models with gravity
 - String Landscape (String EFTs)


 Landscape (EFTs w/ a UV-completion)
 - Swampland (EFTs w/o a UV-completion)

- Boundary of the String Landscape and Beyond
 - Division of the set of QFT models with gravity
 - String Landscape (String EFTs)
 Landscape (EFTs w/ a UV-completion)
 - Swampland (EFTs w/o a UV-completion)

- Boundary of the String Landscape and Beyond
 - Division of the set of QFT models with gravity
 - String Landscape (String EFTs)
 Landscape (EFTs w/ a UV-completion)
 - Swampland (EFTs w/o a UV-completion)

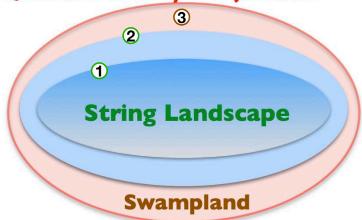


Geometrical Constraints on Physics

- Boundary of the String Landscape and Beyond
 - Division of the set of QFT models with gravity
 - String Landscape (String EFTs)
 Landscape (EFTs w/ a UV-completion)
 - Swampland (EFTs w/o a UV-completion)
 - Swampland Program

Goal: distinguish EFTs in the Landscape from those in the Swampland [Vafa '05]

- reveal common properties of quantum gravity theory

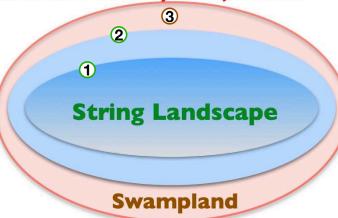


Geometrical Constraints on Physics

- Boundary of the String Landscape and Beyond
 - Division of the set of QFT models with gravity
 - String Landscape (String EFTs)
 Landscape (EFTs w/ a UV-completion)
 - Swampland (EFTs w/o a UV-completion)
 - Swampland Program

Goal: distinguish EFTs in the Landscape from those in the Swampland [Vafa '05]

- reveal common properties of quantum gravity theory, aka Quantum Gravity Conjectures


Geometrical Constraints on Physics

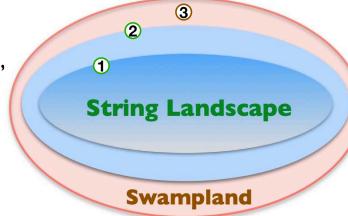
- Boundary of the String Landscape and Beyond
 - Division of the set of QFT models with gravity
 - String Landscape (String EFTs)
 Landscape (EFTs w/ a UV-completion)
 - Swampland (EFTs w/o a UV-completion)
 - Swampland Program

Goal: distinguish EFTs in the Landscape from those in the Swampland [Vafa '05]

- reveal common properties of quantum gravity theory, aka Quantum Gravity Conjectures
- String Landscape as a guiding principle

"Can we extract universal properties of the String EFTs?"

Geometrical Constraints on Physics


- Boundary of the String Landscape and Beyond
 - Division of the set of QFT models with gravity
 - String Landscape (String EFTs)
 Landscape (EFTs w/ a UV-completion)
 - Swampland (EFTs w/o a UV-completion)
 - Swampland Program

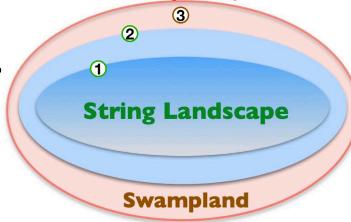
Goal: distinguish EFTs in the Landscape from those in the Swampland [Vafa '05]

- reveal common properties of quantum gravity theory, aka Quantum Gravity Conjectures
- String Landscape as a guiding principle

"Can we extract universal properties of the String EFTs?"

→ test out conjectures for <u>all (generic)</u> String EFTs

Geometrical Constraints on Physics


- Boundary of the String Landscape and Beyond
 - Division of the set of QFT models with gravity
 - String Landscape (String EFTs)
 Landscape (EFTs w/ a UV-completion)
 - Swampland (EFTs w/o a UV-completion)
 - Swampland Program

Goal: distinguish EFTs in the Landscape from those in the Swampland [Vafa '05]

- reveal common properties of quantum gravity theory, aka Quantum Gravity Conjectures
- String Landscape as a guiding principle

"Can we extract universal properties of the String EFTs?"

- → test out conjectures for <u>all (generic)</u> String EFTs
- → propose a *microscopic mechanism* for the conjectures

Geometrical Constraints on Physics

- Boundary of the String Landscape and Beyond
 - Division of the set of QFT models with gravity
 - String Landscape (String EFTs)
 Landscape (EFTs w/ a UV-completion)
 - Swampland (EFTs w/o a UV-completion)
 - Swampland Program

Goal: distinguish EFTs in the Landscape from those in the Swampland [Vafa '05]

- reveal common properties of quantum gravity theory, aka Quantum Gravity Conjectures
- String Landscape as a guiding principle

"Can we extract universal properties of the String EFTs?"

- → test out conjectures for <u>all (generic)</u> String EFTs
- → propose a *microscopic mechanism* for the conjectures
- Geometrical Constraints on Physics

"establish universal behaviors of the internal geometry to constrain the effective physics"

Verification for String EFTs at Weak U(1) Coupling

• The Weak Gravity Conjecture(s) [Arkani-Hamed, Motl, Nicolis, Vafa '06]; [Heidenreich, Reece, Rudelius '16-'17], [Montero, Shiu, Soler '16]

"The gravitational force is weaker than the electric force"

Verification for String EFTs at Weak U(1) Coupling

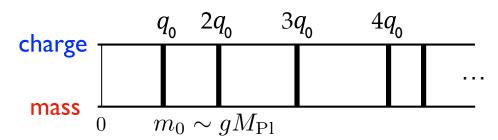
• The Weak Gravity Conjecture(s) [Arkani-Hamed, Motl, Nicolis, Vafa '06]; [Heidenreich, Reece, Rudelius '16-'17], [Montero, Shiu, Soler '16]

Verification for String EFTs at Weak U(1) Coupling

• The Weak Gravity Conjecture(s) [Arkani-Hamed, Motl, Nicolis, Vafa '06]; [Heidenreich, Reece, Rudelius '16-'17], [Montero, Shiu, Soler '16]

There exists a particle w/ mass "smaller than" charge: $\frac{m^2}{M_{\rm Pl}^2} < g^2 q^2$

- minimal (original) ver. at least one such particle

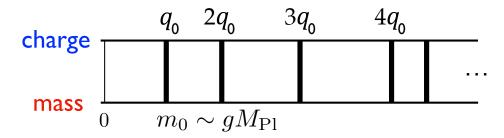

Verification for String EFTs at Weak U(1) Coupling

The Weak Gravity Conjecture(s) [Arkani-Hamed, Motl, Nicolis, Vafa '06]; [Heidenreich, Reece, Rudelius '16-'17], [Montero, Shiu, Soler '16]

$$\frac{\mathbf{m}^2}{M_{\rm Pl}^2} < g^2 q^2$$

- minimal (original) ver. ———— at least one such particle
- tower/sublattice ver. tower/charge-sublattice amount of such particles

Verification for String EFTs at Weak U(1) Coupling

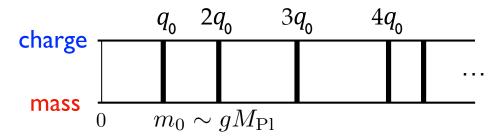

The Weak Gravity Conjecture(s) [Arkani-Hamed, Motl, Nicolis, Vafa '06]; [Heidenreich, Reece, Rudelius '16-'17], [Montero, Shiu, Soler '16]

There exists a particle w/ mass "smaller than" charge: $\frac{m^2}{M_{\rm Pl}^2} < g^2 q^2$

$$\frac{\mathbf{m}^2}{M_{\rm Pl}^2} < g^2 q^2$$

- minimal (original) ver. ———— at least one such particle
- tower/sublattice ver. tower/charge-sublattice amount of such particles

Confirmation@ $g \ll 1$ [Klawer, S.J.L., Weigand, Wiesner '20]

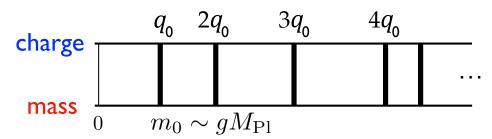

Verification for String EFTs at Weak U(1) Coupling

The Weak Gravity Conjecture(s) [Arkani-Hamed, Motl, Nicolis, Vafa '06]; [Heidenreich, Reece, Rudelius '16-'17], [Montero, Shiu, Soler '16]

$$\frac{\mathbf{m}^2}{M_{\rm Pl}^2} < g^2 \mathbf{q}^2$$

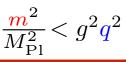
- minimal (original) ver. ———— at least one such particle
- tower/sublattice ver. tower/charge-sublattice amount of such particles

- Confirmation@ $g \ll 1$ [Klawer, S.J.L., Weigand, Wiesner '20]
 - A universal geometric structure assures that a light string emerges at weak coupling

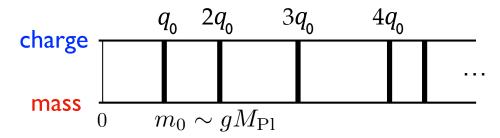

Verification for String EFTs at Weak U(1) Coupling

The Weak Gravity Conjecture(s) [Arkani-Hamed, Motl, Nicolis, Vafa '06]; [Heidenreich, Reece, Rudelius '16-'17], [Montero, Shiu, Soler '16]

$$\frac{\mathbf{m}^2}{M_{\rm Pl}^2} < g^2 q^2$$


- minimal (original) ver. at least one such particle
- tower/sublattice ver. tower/charge-sublattice amount of such particles

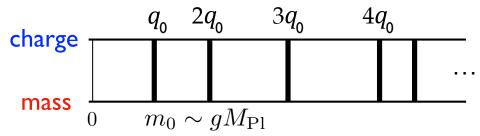
- Confirmation@ $g \ll 1$ [Klawer, S.J.L., Weigand, Wiesner '20]
 - A universal geometric structure assures that a light string emerges at weak coupling
 - A symmetry of the string partition function leads to a universal spectral pattern


Verification for String EFTs at Weak U(1) Coupling

The Weak Gravity Conjecture(s) [Arkani-Hamed, Motl, Nicolis, Vafa '06]; [Heidenreich, Reece, Rudelius '16-'17], [Montero, Shiu, Soler '16]

- minimal (original) ver. at least one such particle
- tower/sublattice ver. tower/charge-sublattice amount of such particles

- Confirmation@ $g \ll 1$ [Klawer, S.J.L., Weigand, Wiesner '20]
 - A universal geometric structure assures that a light string emerges at weak coupling
 - A symmetry of the string partition function leads to a universal spectral pattern
 - The spectrum necessarily contains a tower/sublattice subject to the above inequality!


Verification for String EFTs at Weak U(1) Coupling

• The Weak Gravity Conjecture(s) [Arkani-Hamed, Motl, Nicolis, Vafa '06]; [Heidenreich, Reece, Rudelius '16-'17], [Montero, Shiu, Soler '16]

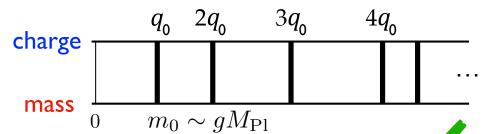
There exists a particle w/ mass "smaller than" charge: $\frac{m^2}{M_{\rm Pl}^2} < g^2 q^2$

- minimal (original) ver. at least one such particle
- tower/sublattice ver. tower/charge-sublattice amount of such particles

Model-Independent

- Confirmation@ $g \ll 1$ [Klawer, S.-J.L., Weigand, Wiesner '20]
 - * A <u>universal</u> geometric structure assures that a light string emerges at weak coupling
 - A symmetry of the string partition function leads to a <u>universal</u> spectral pattern
 - The spectrum necessarily contains a tower/sublattice subject to the above inequality!

Verification for String EFTs at Weak U(1) Coupling


The Weak Gravity Conjecture(s) [Arkani-Hamed, Motl, Nicolis, Vafa '06]; [Heidenreich, Reece, Rudelius '16-'17], [Montero, Shiu, Soler '16]

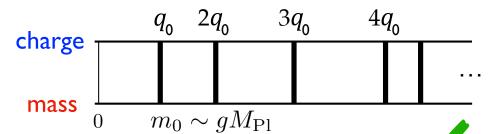
There exists a particle w/ mass "smaller than" charge: $\frac{m^2}{M_{\rm Pl}^2} < g^2 q^2$

$$\frac{\mathbf{m}^2}{M_{\rm Pl}^2} < g^2 q^2$$

- minimal (original) ver. at least one such particle
- tower/sublattice ver. tower/charge-sublattice amount of such particles

Model-Independent

- Confirmation@ $g \ll 1$ [Klawer, S.-J.L., Weigand, Wiesner '20]
 - A <u>universal</u> geometric structure assures that a light string emerges at weak coupling
 - A symmetry of the string partition function leads to a *universal* spectral pattern
 - The spectrum necessarily contains a tower/sublattice subject to the above inequality!


Verification for String EFTs at Weak U(1) Coupling

• The Weak Gravity Conjecture(s) [Arkani-Hamed, Motl, Nicolis, Vafa '06]; [Heidenreich, Reece, Rudelius '16-'17], [Montero, Shiu, Soler '16]

There exists a particle w/ mass "smaller than" charge: $\frac{m^2}{M_{\rm Pl}^2} < g^2 q^2$

- minimal (original) ver. at least one such particle
- tower/sublattice ver. tower/charge-sublattice amount of such particles

Model-Independent

- ullet Confirmation@ $g\ll 1$ [Klawer, <u>s.-J.L.</u>, Weigand, Wiesner '20]
 - A <u>universal</u> geometric structure assures that a light string emerges at weak coupling
 - A symmetry of the string partition function leads to a <u>universal</u> spectral pattern
 - The spectrum necessarily contains a tower/sublattice subject to the above inequality!

Verification for String EFTs at Infinite Distance

• The Emergent String Conjecture [S.-J.L., Lerche, Weigand, '19]

If an EFT is "severely" deformed in the EFT Parameter Space:

Verification for String EFTs at Infinite Distance

• The Emergent String Conjecture [S.-J.L., Lerche, Weigand, '19]

If an EFT is "severely" deformed in the EFT Parameter Space: the theory necessarily reduces to a weakly-coupled tensionless string theory (unless the spacetime decompactifies)

Verification for String EFTs at Infinite Distance

• The Emergent String Conjecture [S.-J.L., Lerche, Weigand, '19]

If an EFT is "severely" deformed in the EFT Parameter Space: the theory necessarily reduces to a weakly-coupled tensionless string theory (unless the spacetime decompactifies)

Confirmation via Universal Asymptotic Properties of Geometry

```
Type II theory in 4d (closed)

IIA/IIB hyper moduli in 4d [(Baume,) Marchesano, Wiesner '19]

M-theory in 4d [Xu '20]

F-theory in 4d

[S.-J.L., Lerche, Weigand '19], [Klawer, S.-J.L., Weigand, Wiesner '20]

Type II theory in 4d (closed)

[Grimm, Palti, Valenzuela '18], [Grimm, Li, Palti '18],

[Klemm, Joshi '19], [Grimm, Li, Valenzuela '19], ...

F-theory in 8d (open) [S.-J.L., (Lerche,) Weigand '21]

[S.-J.L., Lerche, Weigand '19], [Klawer, S.-J.L., Weigand, Wiesner '20]

F-theory in 6d (open) [Alvarez-Garcia, S.-J.L., Weigand '23]
```

Verification for String EFTs at Infinite Distance

The Emergent String Conjecture [S.-J.L., Lerche, Weigand, '19]

If an EFT is "severely" deformed in the EFT Parameter Space: the theory necessarily reduces to a weakly-coupled tensionless string theory (unless the spacetime decompactifies)

Confirmation via Universal Asymptotic Properties of Geometry

```
Type II theory in 4d (closed)

IIA/IIB hyper moduli in 4d [(Baume,) Marchesano, Wiesner '19]

M-theory in 4d [Xu '20]

F-theory in 4d

[S.-J.L., Lerche, Weigand '19], [Klawer, S.-J.L., Weigand, Wiesner '20]

Type II theory in 4d (closed)

[Grimm, Palti, Valenzuela '18], [Grimm, Li, Palti '18],

[Klemm, Joshi '19], [Grimm, Li, Valenzuela '19], ...

F-theory in 8d (open) [S.-J.L., (Lerche,) Weigand '21]

[S.-J.L., Lerche, Weigand '19], [Klawer, S.-J.L., Weigand, Wiesner '20]

F-theory in 6d (open) [Alvarez-Garcia, S.-J.L., Weigand '23]
```

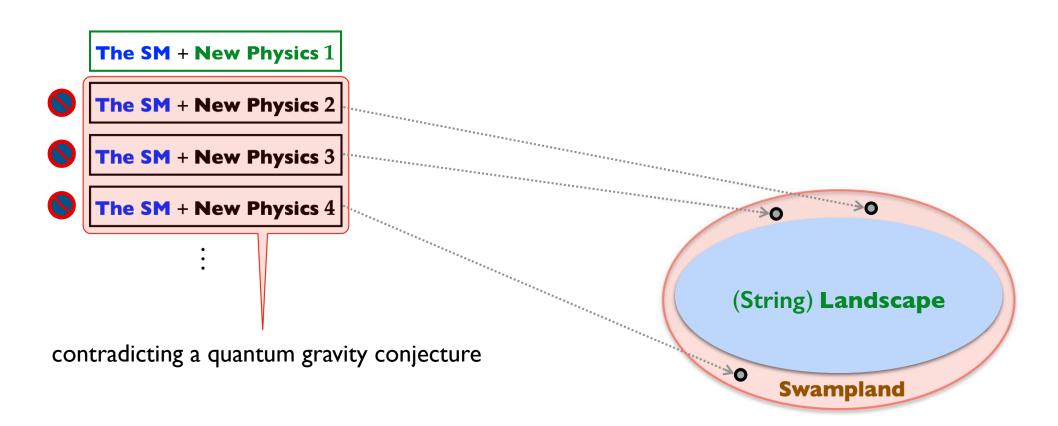
- Bottom-up intuitions e.g. in [Basile, Lust, Montella, '23], [Bedroya, Mishra, Wiesner, '24]
- Fruitful applications to particle physics, cosmology, pure geometry, ...

• Consistent EFTs of quantum gravity seem to exhibit certain universal features, known as quantum gravity conjectures.

- Consistent EFTs of quantum gravity seem to exhibit certain universal features, known as quantum gravity conjectures.
- String theory provides a <u>vast</u> landscape of $10^{\mathcal{O}(100)}$ gravitational EFTs.

- Consistent EFTs of quantum gravity seem to exhibit certain universal features, known as quantum gravity conjectures.
- String theory provides a <u>vast</u> landscape of $10^{\mathcal{O}(100)}$ gravitational EFTs.
- Every EFT in the string landscape must be subject to such quantum gravity conjectures, which may be identified as universal properties of the String EFTs.

- Consistent EFTs of quantum gravity seem to exhibit certain universal features, known as quantum gravity conjectures.
- String theory provides a <u>vast</u> landscape of $10^{\mathcal{O}(100)}$ gravitational EFTs.
- Every EFT in the string landscape must be subject to such quantum gravity conjectures, which may be identified as universal properties of the String EFTs.
- As illustrated in this talk, by analyzing universal properties of the internal geometry of string theory, we can <u>derive</u> existing conjectures (top-down) and <u>propose</u> new ones (boldly as a bottom-up statement).


- Consistent EFTs of quantum gravity seem to exhibit certain universal features, known as quantum gravity conjectures.
- String theory provides a <u>vast</u> landscape of $10^{\mathcal{O}(100)}$ gravitational EFTs.
- Every EFT in the string landscape must be subject to such quantum gravity conjectures, which may be identified as universal properties of the String EFTs.
- As illustrated in this talk, by analyzing universal properties of the internal geometry of string theory, we can <u>derive</u> existing conjectures (top-down) and <u>propose</u> new ones (boldly as a bottom-up statement).
- Research along this line will eventually help us better understand Quantum Gravity per se.

- Consistent EFTs of quantum gravity seem to exhibit certain universal features, known as quantum gravity conjectures.
- String theory provides a <u>vast</u> landscape of $10^{\mathcal{O}(100)}$ gravitational EFTs.
- Every EFT in the string landscape must be subject to such quantum gravity conjectures, which may be identified as universal properties of the String EFTs.
- As illustrated in this talk, by analyzing universal properties of the internal geometry of string theory, we can <u>derive</u> existing conjectures (top-down) and <u>propose</u> new ones (boldly as a bottom-up statement).
- Research along this line will eventually help us better understand Quantum Gravity per se.

Connection to Phenomenology

Universal vs. Pheno Aspects

"The Swampland Program and the String Pheno Program are both in pursuit of a consistent theoretical model of Our Universe!"

Emergent String Conjecture

Potential Caveats

String Limits

- Could there arise multiple species of lightest strings?
 - No! Universal patterns of asymptotic geometry support uniqueness

```
[S.-J.L., Lerche, Weigand '18-'20]
```

- Could higher-dim'l objects be lighter than the string?
 - No! Circumstantial evidence for quantum obstructions of potential membrane limits

```
[Alvarez-Garcia, Klawer, Weigand '21]
```

Decompactification Limits

- Would the Lorenz invariance persist after the decompactification?
 - Not always! Defects may arise in the "brane moduli limits"

```
[Alvarez-Garcia, S.-J.L., Weigand '23]
```