



Long-lived Particles Search with Deep Learning at Lepton Collider

New Physics Beyond SM-LLPs

Long-lived particles (LLPs) are important ways to new physics

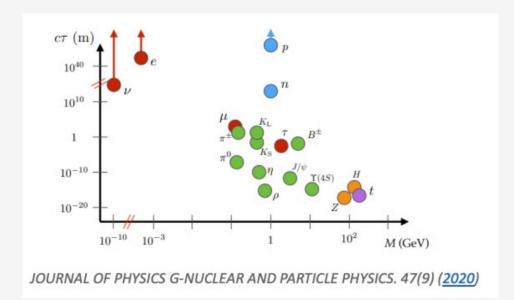
 Many particles in BSM models have a relatively long lifetime: weak coupling to SM particles, maybe new scalars, dark photons, ALP, SUSY....

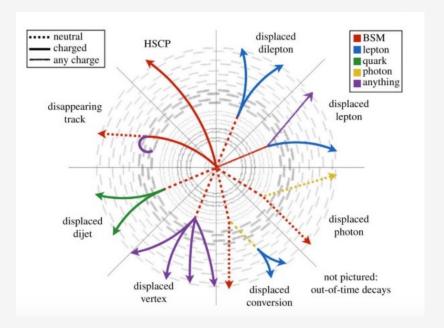
LLP topology, a strong signature for detection:

- Displaced vertex with a long distance from the main vertex
- Different performance for neutral particles: a burst of energy appearing of nowhere and far away from the collision point

Potential with Lepton Collider:

- The advantage of the lepton collider: clean environment
- Making use of deep learning techniques: Image recognition and pattern identification

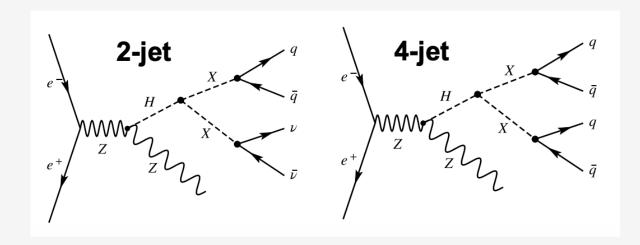




LLP at CEPC

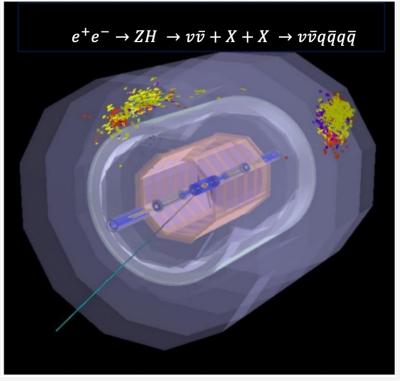
We consider two LLP final state scenrios in CEPC: **2- jet and 4-jets final state**

 We use the **full simulation** sample using CEPC official software (v4) to an integrated luminosity of 20 ab⁻¹



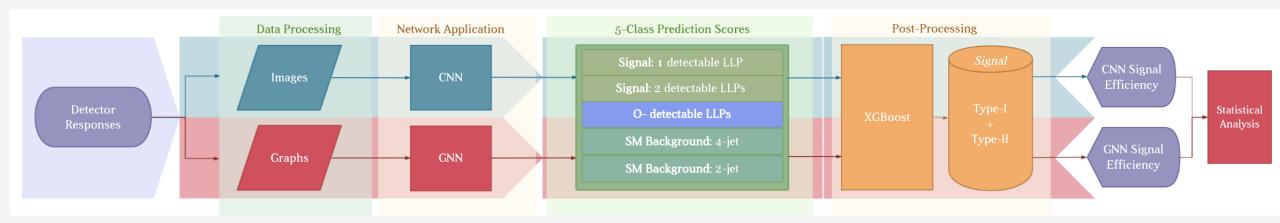
Acceptance (%)	Lifetime [ns]					
${\rm Mass} \ [{\rm GeV}]$	0.001	0.1	1	10	100	
1	100.00 ± 0.00	99.86 ± 0.01	48.76 ± 0.18	6.49 ± 0.09	0.67 ± 0.03	
10	100.00 ± 0.00	100.00 ± 0.00	99.78 ± 0.01	46.80 ± 0.16	6.22 ± 0.08	
50	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	99.31 ± 0.03	40.37 ± 0.16	

- Displaced vertex of LLPs: 0
 r_{decay}<
 m
- Traditionally, need a special vertex reconstruction algothrim



Analysis Strategy

Advanced neural networks trained with low-level detector information:



- No need for vertex reconstruction and object reconstruction
- Detector response has been calibrated and detector resolution has been considered
- Universal treatment for all decay channels

Signal: LLP events

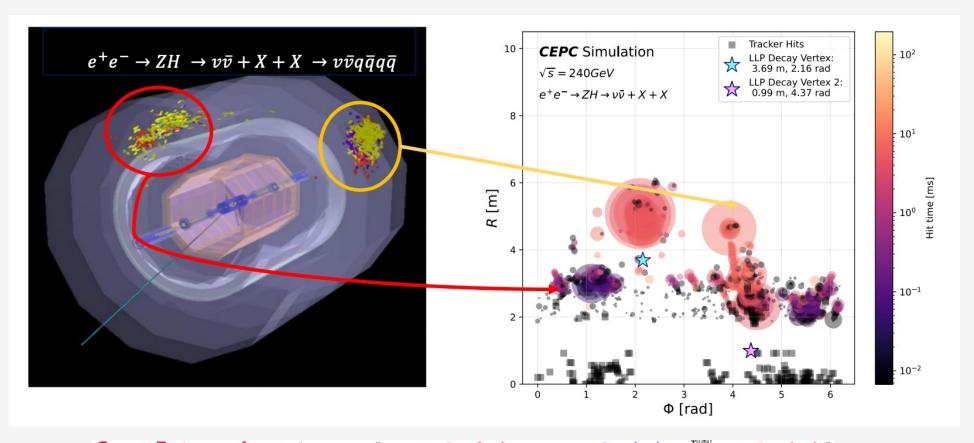
Two scenarios: 0-llp as signal and 0-llp as background

Background: SM process

Post-Processing: converting 5-class output to a 2-class classfication task

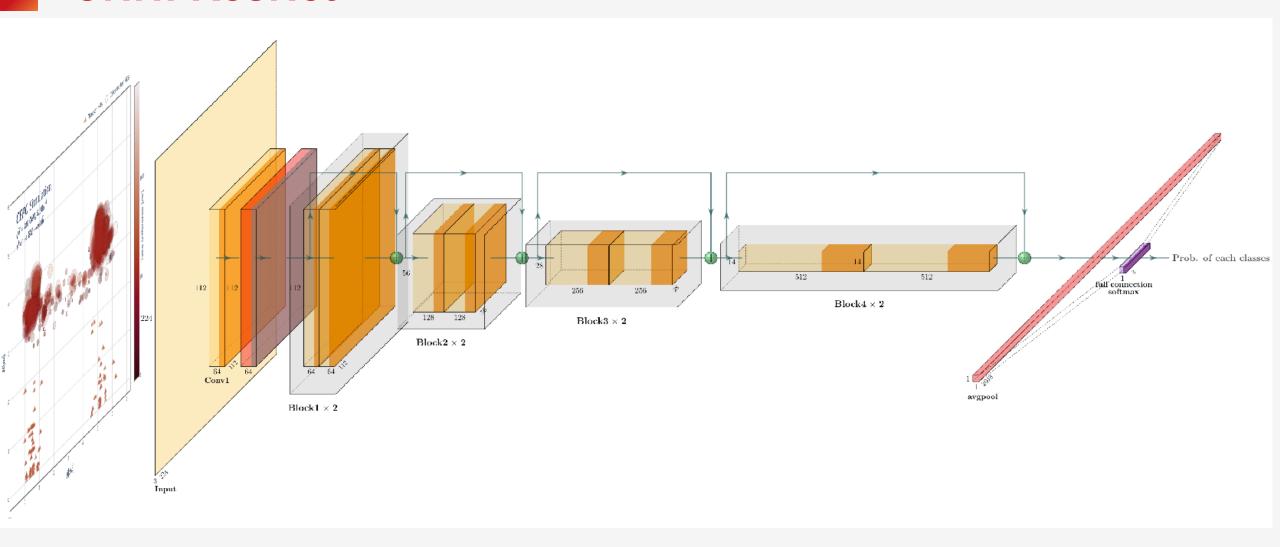
CNN: ResNet

- Converting the detector information to 2D image
- Use ResNet18 model with the cross-entropy loss



Cross Entropy Loss: $loss = -[\omega_0 * y_0 \log(x_0) + \omega_1 * y_1 \log(x_1) + \frac{\omega_2}{\omega_2} * y_2 \log(x_2)]$ Class 0: 2-fermion bkg $\omega_0 = 0.5$ Class 1: 4-fermion bkg $\omega_1 = 0.25$ Class 2: LLP Signal $\omega_2 = 0.25$

CNN: ResNet



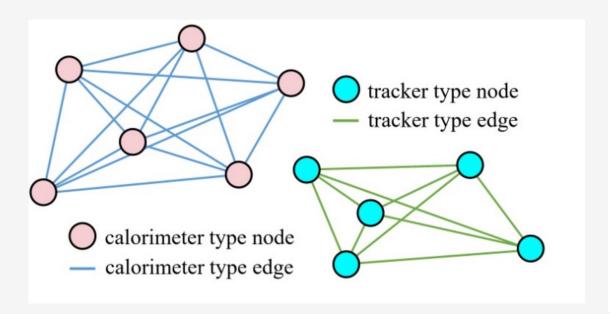
The structure of the ResNet18: 4 convolution blocks and 1 MLP layer Output: 5–class score after softmax

GNN

The detector hits in the calorimeter and tracker are converted to point-cloud dataset

- Simple clustering is used to reduce graph complexity
- Nodes of the same detector type are fully connected

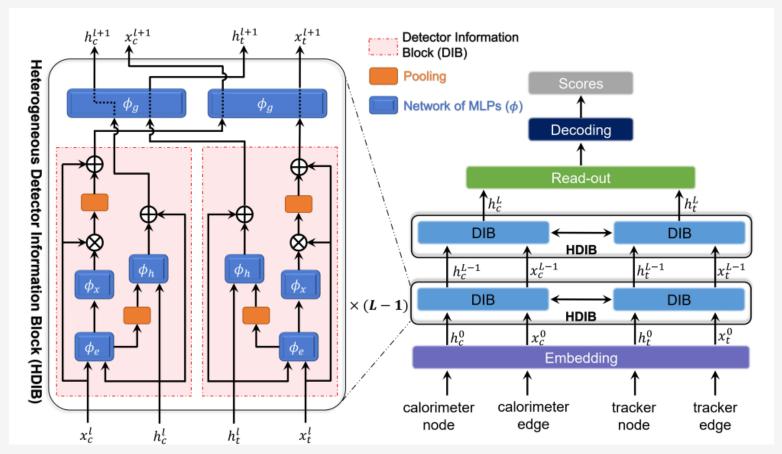
Features of nodes: calorimeter-type and tracker-type. Features of edges: interaction between neighbor nodes



Features	Variable	Definition
	$ x_i^{\mu} $	the space-time interval
calorimeter type node i	$ p_i^{\mu} $	the invariant mass
	N_i	the number of hits
	η_i	$\frac{1}{2} \ln \frac{1 + \frac{Pz}{p}}{1 - \frac{Pz}{p}}$
	ϕ_i	$\arctan \frac{\hat{p}_y}{p_x}$
	\mathcal{R}_i	$\sqrt{\eta^2 + \phi^2}$
calorimeter type edge between node i and j		$egin{aligned} x_{j\mu}, p_i^{\mu} p_{j\mu}, x_i^{\mu} p_{j\mu}, p_i^{\mu} x_{j\mu} \ & + p_j^{\mu} , \eta_i - \eta_j, \phi_i - \phi_j, \mathcal{R}_i - \mathcal{R}_j \end{aligned}$
	r	euclidean distance
	N_i	the number of hits
tracker type node i	η_i	$\frac{1}{2} \ln \frac{1 + \frac{x}{r}}{1 - \frac{x}{r}}$
	ϕ_i	arctan y
	\mathcal{R}_i	$\sqrt{\eta^2+\phi^2}$
tracker type edge between node i and j	$ r_i-r_j $	$r_i r_j, \eta_i - \eta_j, \phi_i - \phi_j, \mathcal{R}_i - \mathcal{R}_j$

GNN

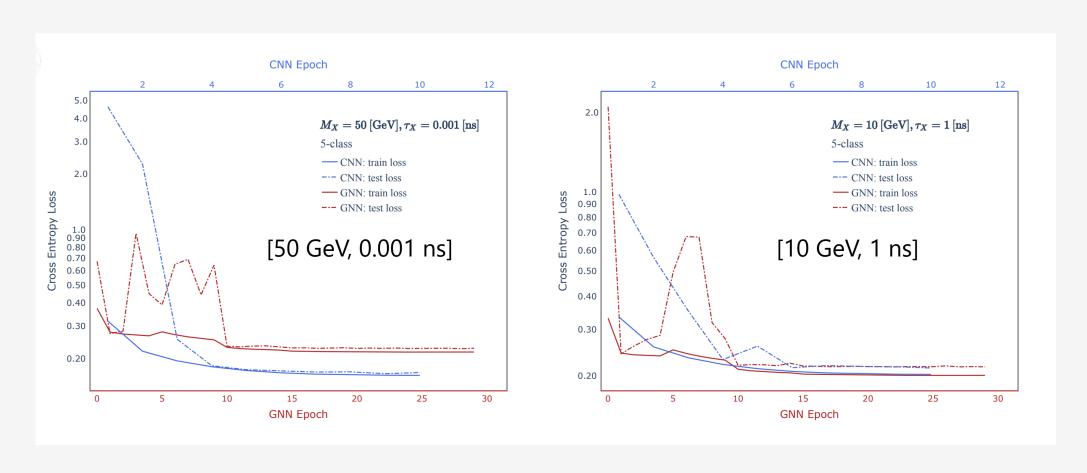
- DIB (detector information block): considering Lorentz equivariant in the graph network
- HDIB (Heterogeneous detector information block): The output of the DIB exchanges information in the MLP layer



Output: 5–class score after softmax

CNN & GNN Training Results

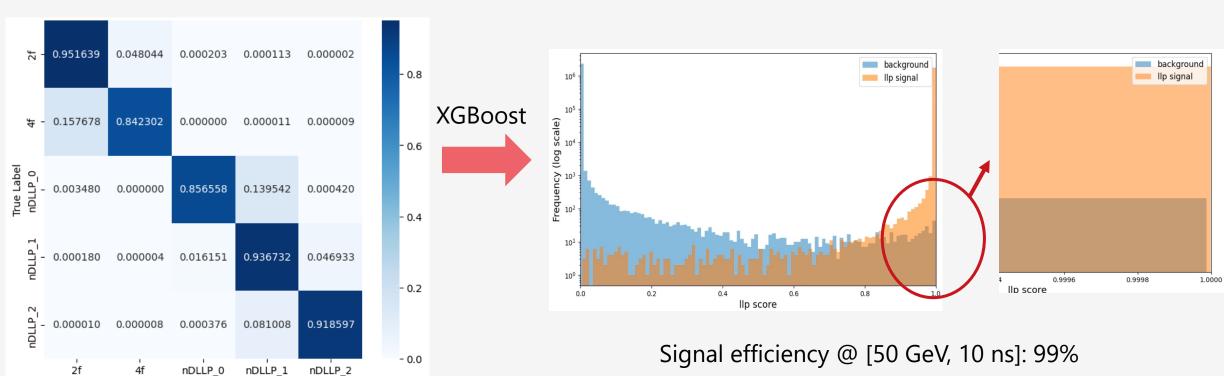
The training/ test loss looks reasonable for all mass and lifetime points



XGBoost

XGBoost is used to convert a 5-class classification task to 2-class classification task

Confusion matrix



Signal efficiency @ [50 GeV, 10 ns]: 95%

Predicted Label

Background-free achieveable

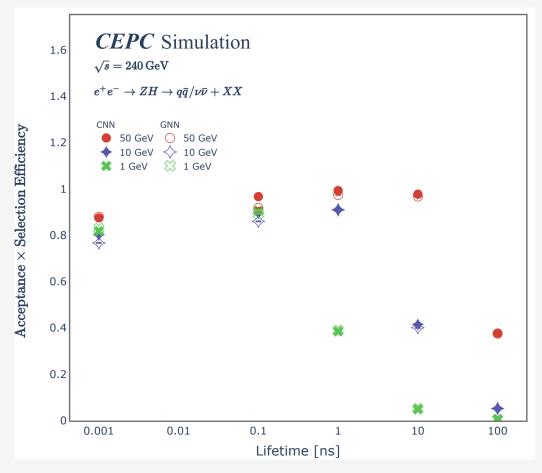
Signal Efficiency

- Both CNN and GNN achieve high signal efficiencies while rejecting all SM backgrounds
 - Similar trend seen across different LLP mass and lifetime considerations.
- Systematics uncertainties of 2.0%
 - Luminosity and neutral network training uncertainties
 - Pile-up and cosmic rays background are neglected

Approach	Efficiency (%)	Lifetime [ns]				
	Mass [GeV]	0.001	0.1	1	10	100
	1	81.8 ± 0.1	90.7 ± 0.1	78.9 ± 0.2	74.4 ± 0.6	76.5 ± 1.9
CNN	10	80.2 ± 0.1	89.5 ± 0.1	91.2 ± 0.1	88.7 ± 0.1	83.6 ± 0.8
	50	87.5 ± 0.1	96.7 ± 0.1	99.3 ± 0.0	98.4 ± 0.0	93.5 ± 0.3
GNN	1	82.9 ± 0.1	89.4 ± 0.1	79.9 ± 0.2	79.9 ± 0.6	80.2 ± 1.8
	10	76.7 ± 0.1	86.0 ± 0.1	91.2 ± 0.1	85.7 ± 0.2	83.7 ± 0.8
	50	88.0 ± 0.1	91.8 ± 0.1	97.4 ± 0.1	97.4 ± 0.1	$93.0 \pm 0.$

Best efficiency at 99% (50 GeV, 1ns)

0-llp is considered as signal



Comparison between Non-XGBoost and XGBoost

- XGBoost can reduce the uncertainty and improve the signal efficiency in both scenarios
 - Backgrounds are all rejected in both scenarios
- Training uncertainty is calculated by (standard deviation)/(mean value)
 - Each training dataset contains 5*10⁵ events

0-llp belongs to signal

	50 GeV 0.1 ns	50 GeV 10ns	1 GeV 10 ns
CNN	0.81 (9.9%)	0.95 (1.1%)	0.57 (13%)
CNN+XGBoost	0.96 (1.1%)	0.99 (0.33%)	0.69 (4.7%)

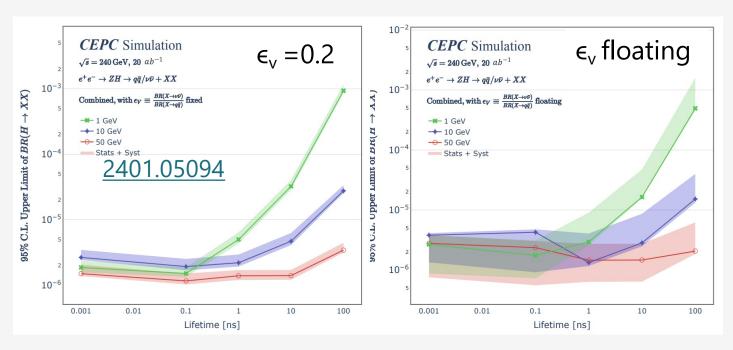
0-llp belongs to background: overlap with SM background or other BSM physics

	50 GeV 0.1 ns	50 GeV 10ns	1 GeV 10 ns
CNN	0.81 (9.9%)	0.74 (10%)	0.14 (27%)
CNN+XGBoost	0.96 (1.1%)	0.95 (1.2%)	0.19 (23%)

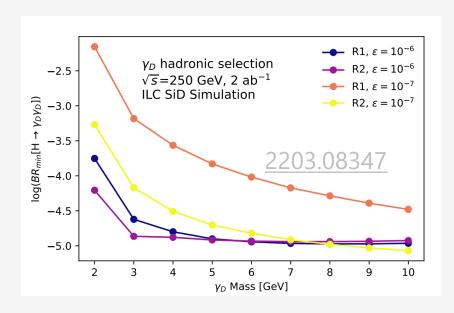
LLP Search Limits

- The best expected limit of BR(H → XX) achieves 10-6
- Outperforming the current limit from ATLAS and CMS by 2 3 orders of magnitude
- An order of magnitude better than the ILC when the lifetime of LLP is over 1ns

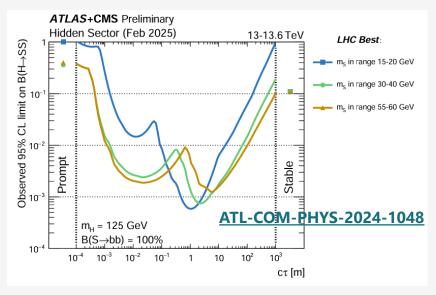
$$\epsilon_{v} = BR(X \rightarrow \bar{\nu}\nu)/BR(X \rightarrow \bar{q}q)$$



Best limit: ~10⁻⁶



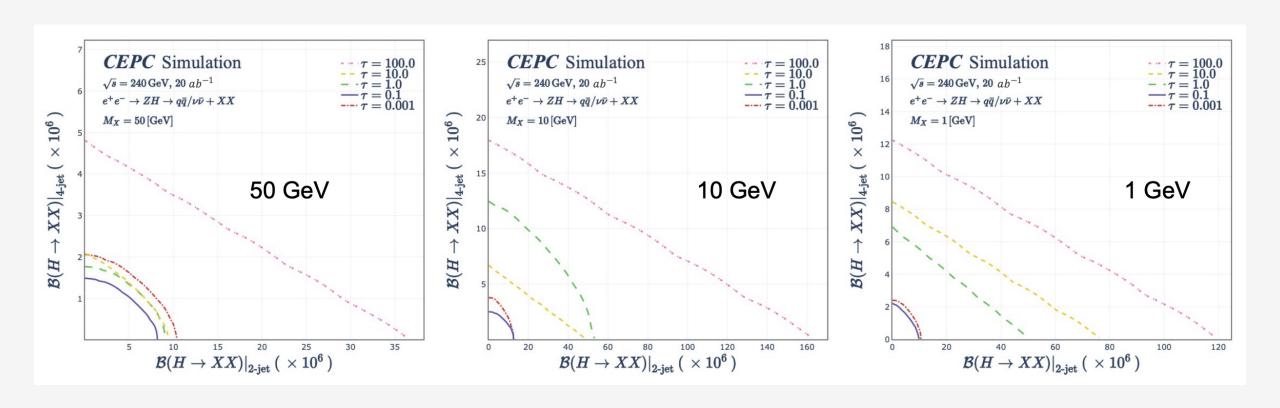
ILC Best limit: ~10⁻⁵



LHC Best limit: ~10⁻³

LLP 2D Sensitivity

- We also provide the 2D likelihood for 95% Confidence Level upper limit on BR(H → XX) with 2 jets and 4 jets final state
 - Keep $\epsilon_v = BR(X \rightarrow \bar{\nu}\nu)/BR(X \rightarrow \bar{q}q)$ float during limit extraction
- Higher mass and shorter lifetime scenarios have better sensitivities



Local-contrastive-learning Machine (LCLM)

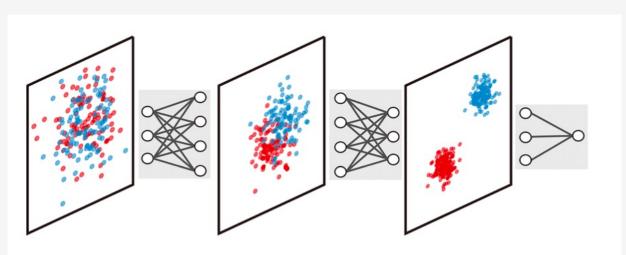
LCLM network utlizes the concept of the fermion and boson:

 $\mathcal{L} = \sum_{\mu=1}^{P} \frac{1}{2} \left[\sigma^{\mu} D_{\mu}^{2} + (1 - \sigma^{\mu}) \varphi \left(d_{F} - D_{\mu}^{2} \right) \right] + \frac{\lambda_{w}}{2} ||\mathbf{w}||_{2}^{2}$

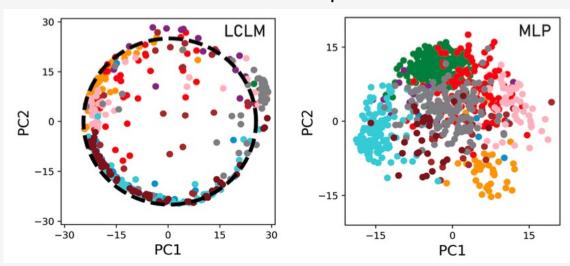
- Different pair of samples -> fermion
- Similar pair of samples -> boson

Fermi-boson network has good performance in both discrimination and robustness against class-preserving perturbations.

Fermi-boson network



PCA outputs



Fermi-Boson Network

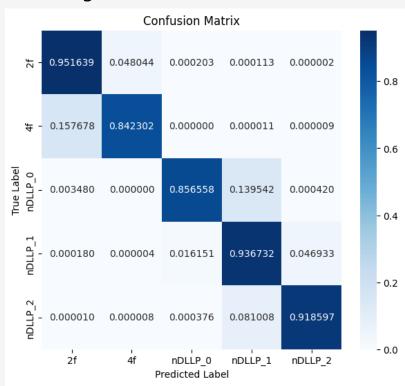
- Training the CNN block with Fermi-boson loss: CNN block has 5 layers
- During calculating the Fermi-boson loss, a simple average pooling is applied
- Replacement: replacing the input by the LCLM output, [batch, 2, 100,100]

200 100 25 128 25 200 2

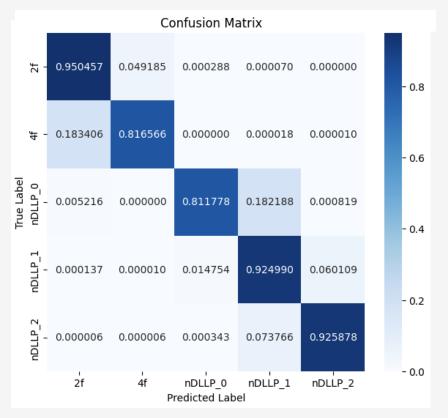
Training procedure

Fermi-Boson Network Performance

- The confusion matrix of the LCLM shows that the separation between the background and signal is larger for LCLM:
 - 5-class classification during training
 - SM Background: 2 fermions(2f) and 4 fermions (4f)
 - LLP Signal: nLLPs_0,1,2



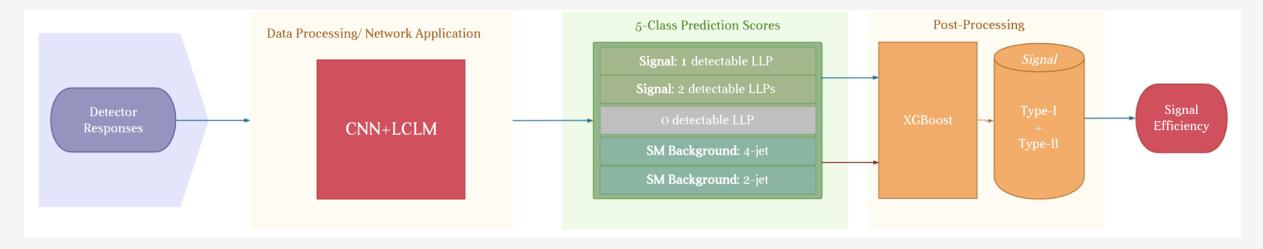
Default CNN, trace: 4.5 mass=50 GeV, lifetime=10 ns



LCLM trace: 4.4 mass=50 GeV, lifetime=10 ns

Fermi-Boson Network Performance

- LLP signal efficiency are derived after applying a score threshold to reject all backgrounds.
- XGBoost is used to for further optimizations when combing signal and background regions.
- Small difference seen in efficiency and uncertainty



category	LCLM+XGBoost (5×10 ⁵ events)	CNN+XGBoost (5×10 ⁵ events)
Signal efficiency	0.99	0.98
Training uncertainty	0.30%	0.33%

Summary and Outlook

LLPs Search with Deep Learning at Lepton Collider

- Clean environment with distinct detector signature
- Best exclusion limit on BR(H→LLPs) @ 20 ab⁻¹: 1.2*10⁻⁶
- 1D and 2D sensitivity results
- Significant enhancement from deep learning techniques
 - Simplified analysis strategy compared to the traditional method
 - Low-level detector information without full reconstruction
 - Signal efficiency as high as 99%
 - biggest improvement in shorter lifetime region
- Application of LCLM algorithm to improve network stability and reduce training uncertainty
 - Study ongoing

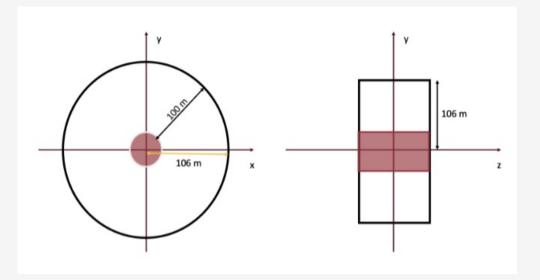
Backups

Far Barrel Detector (FBD)

The gain attributable to the FBD, located 100 meters outside the near detector, can be estimated by comparing the LLP signal yields (background free)

$$F_{gain} = \frac{\Delta\Omega}{4\pi} \left(\frac{1 - e^{-\frac{L + \Delta L}{d}}}{1 - e^{-\frac{L}{d}}} - 1 \right) + 1$$

- L is the length of the muon to IP
- d is the exptected decay length of LLP
- $\frac{\Delta\Omega}{4\pi}$ is the angular acceptance
- ΔL is the gap between the FBD and the muon detector



- $p_{llp} = 70 \text{ GeV}, m_{llp} = 1 \text{ GeV}, \tau = 100 \text{ns}, d = \gamma \beta c \tau = \frac{P}{m} c \tau \approx 70 * 3 * 10^{-8} \frac{m}{s} * 100 * 10^{-9} \text{s} = 2100 \text{m}$
- The angular acceptance ($\Delta\Omega$ /4 π) is 0.72 (non-uniform distribution in theta, see backup slides)
- The gain at 100ns for 1GeV FBD is $F_{gain} = 1 + 0.72 * (\frac{1 e^{-\frac{100 \, m}{2100 \, m}}}{1 e^{-\frac{6 \, m}{2100 \, m}}} 1) = 12.7$

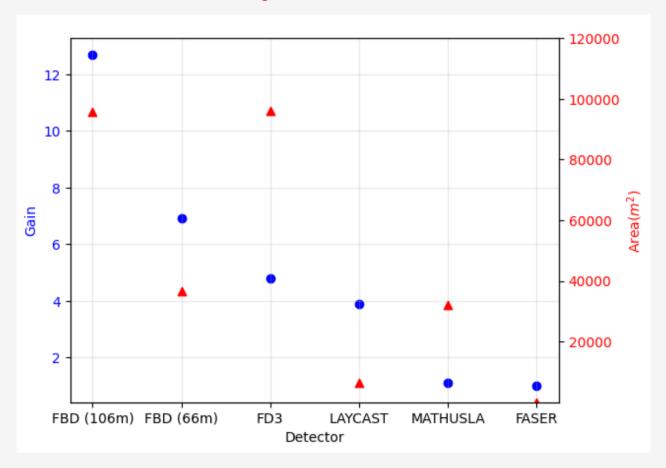
Far Barrel Detector (FBD)

The gain attributable to the FBD, located 100 meters outside the near detector, can be estimated by comparing the LLP signal yields (background free)

$$F_{gain} = \frac{\Delta\Omega}{4\pi} \left(\frac{1 - e^{-\frac{L + \Delta L}{d}}}{1 - e^{-\frac{L}{d}}} - 1 \right) + 1$$

- L is the length of the muon to IP
- d is the exptected decay length of LLP
- $\frac{\Delta\Omega}{4\pi}$ is the angular acceptance
- ΔL is the gap between the FBD and the muon detector

- Estimating the cost by the surface area and comparing the gain factor with different LLP detector scenarios
 - One advantage comes from good angular acceptance
 - Another big advantage comes from combined detection with near detector sharing time information



Cut-based Method

Selections generated	LLPs Signal with $Z \rightarrow j\bar{j}$ 1.0×10^6	$\begin{array}{c} ee \rightarrow q\bar{q} \\ 2.5 \times 10^8 \end{array}$	$\begin{array}{c} ee \rightarrow ZH \\ 0.99 \times 10^7 \end{array}$
decay in muon detector	134559	6516657	796596
$ m_{q\bar{q}} - m_Z < 15 GeV$	113723	4013875	39631
$ m_{q\bar{q}} - m_H < 15 GeV$	104942	229703	26862
$0.23 < y_{12} < 0.72$	93,517	$129,\!546$	20,041
$E_{2jets} > 30 \text{GeV}$	$69,\!468$	72	16
$min(\Delta T_{j_1}, \Delta T_{j_2}) > 3$ ns	68,368	50	11
Efficiency	50.80%	7.7×10^{-6}	1.4×10^{-5}