

The Universe after G-inflation

Jun'ichi Yokoyama

横山順一

G=Galileon

Why is Our Universe Big, Old, and full of structures?

All of them are big mysteries in the context of evolving Universe.

inflation

時間

multiproduction of universes?

Rapid Accelerated Expansion or INFLATION in the early Universe can solve The Horizon Problem

Why is our Universe Big?

The Flatness Problem

Why is our Universe Old?

The Monopole/Relic Problem

Why is our Universe free from exotic relics?

The Origin-of-Structure Problem

Why is our Universe full of structures?

IIIIIalioi

時間

multiproduction of universes '

Generalized G-inflation

The most general single scalar action with second order field equations

$$S = \sum_{i=2}^{5} \int d^4x \ \sqrt{-g} \mathcal{L}_i$$
 Kobayashi, Yamaguchi, JY (2011)
$$\mathcal{L}_2 = K(\phi, X), \qquad X = -\frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \qquad G_{iX} = \frac{\partial G_i}{\partial X}$$

$$\mathcal{L}_3 = -G_3(\phi, X) \Box \phi,$$

$$\mathcal{L}_4 = G_4(\phi, X) R + G_{4X} \left[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2 \right],$$

$$\mathcal{L}_5 = G_5(\phi, X) G_{\mu\nu} \nabla^\mu \nabla^\nu \phi - \frac{1}{6} G_{5X} \left[(\Box \phi)^3 - 3 \Box \phi (\nabla_\mu \nabla_\nu \phi)^2 + 2 (\nabla_\mu \nabla_\nu \phi)^3 \right],$$

During inflation the Universe must have been very dark, being dominated by the inflaton's energy density...

or entropy production to realize Big Bang

- ★ In some models, inflation may end abruptly without being followed by its coherent field oscillation and reheating proceeds through gravitational particle creation.
- ★ Such inflation models include k-inflation and G-inflation models driven by kinetic energy of a scalar field with non-canonical kinetic terms.

The original kinetically driven
$$\mathcal{L} = K(\phi, X) - G_3(\phi, X) \square \phi \quad X = -\frac{1}{2} (\partial \phi)^2 \quad G_4 = \frac{M_G^2}{2} \quad \text{Einstein gravity}$$

★The case with full shift symmetry

 M_c : Reduced Planck Mass

$$K(X) = -X + \frac{X^2}{2M'^3\mu}$$
 $G_3 = \frac{X}{M'^3}$ $\longrightarrow X = M'^3\mu$, $H_{inf}^2 = \frac{M'^3\mu}{6M_G^2}$.

De Sitter inflation (never ends)

★Inflation can be terminated by flipping the sign here.

$$K(X) = -X + \frac{X^2}{2M'^3\mu}$$
 $K(X) = -A(\phi)X + \frac{X^2}{2M'^3\mu}$

A simple choice: $A(\phi) \equiv \tanh \left[\beta \left(\phi_f - \phi \right) / M_G \right]$ with $\beta = O(1)$.

Numerical solutions indicate ϕ stalls within one e-fold after crossing ϕ_f and all higher derivative terms become negligible.

This function breaks the shift symmetry (severely) only around $\phi \approx \phi_f$.

Despite its appearance, the linear perturbation $\delta\phi(x,t)$ around the background $\phi(t)$, $\phi_{total}(x,t) = \phi(t) + \delta\phi(x,t)$ is stable.

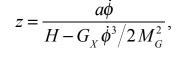
The action for the curvature perturbation $\varsigma_{\phi} = -H \frac{\omega \psi}{\dot{\phi}}$

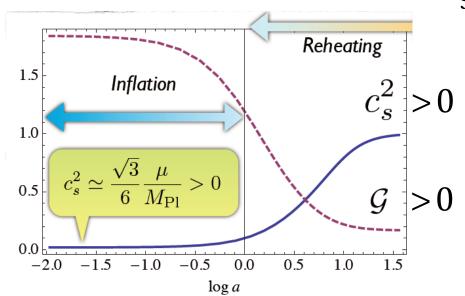
$$S^{(2)} = \frac{1}{2} \int d\tau d^3x z^2 \left[\mathcal{G} \zeta_{\phi}^{\prime 2} - \mathcal{F} (\nabla \zeta_{\phi})^2 \right]$$

$$S^{(2)} = \frac{1}{2} \int d\tau d^3x z^2 \left[G \zeta_{\phi}^{\prime 2} - F (\nabla \zeta_{\phi})^2 \right] \qquad F = K_x + 2G_x (\ddot{\phi} + 2H\dot{\phi}) - 2\frac{G_x^2}{M_G^2} X^2 + 2G_{xx} X \ddot{\phi} - 2(G_{\phi} - XG_{\phi x}), \\ G = K_x + 2XK_{xx} + 6G_x H\dot{\phi} + 6\frac{G_x^2}{M_G^2} X^2 - 2(G_{\phi} - XG_{\phi x}) + 6G_{xx} HX\dot{\phi}.$$

Perturbation is not a ghost if G > 0

There is no gradient instability if
$$c_s^2 = \frac{T}{G} > 0$$





Both are satisfied throughout.

Unique signature of G-inflation

In G-inflation, the null energy condition may be violated,

$$2M_G^2\dot{H} = -(\rho + p) = -(2K_XX + 3G_{3X}H\dot{\phi}^3 - 4G_{3\phi}X - 2G_{3X}\ddot{\phi}X) > 0.$$

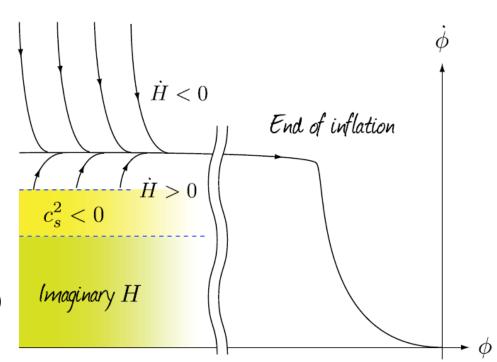
It can be violated without instabilities, keeping $c_s^2 > 0$.

The tensor spectral index can be positive,

$$n_T = -2\varepsilon = 2\frac{\dot{H}}{H^2} > 0.$$

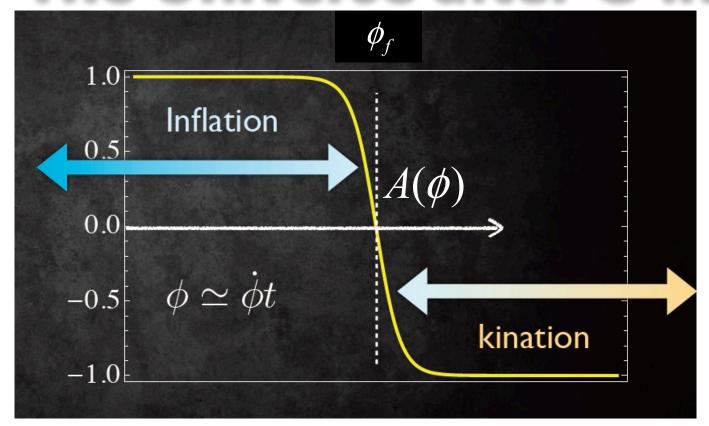
BLUE tensor spectrum!!

(This is not the case with k-inflation.)



Short wave tensor fluctuations may have a larger amplitude at formation.

The Universe after G-inflation



*After $A(\phi)$ has flipped its sign the Universe is soon dominated by the kinetic energy of the inflaton field now with the canonical kinetic term.

$$K(X) \cong X$$
 $p = \rho_{tot} = \frac{\phi^2}{2} \propto a^{-6}(t)$ $a(t) \propto t^{\frac{1}{3}}$

★Gravitational particle production takes place due to this rapid change of the expansion law.

$$a(t) \propto e^{n_{\inf}t}$$

$$a(t) \propto t^{\frac{1}{3}}$$

Vacuum state in de Sitter space is different from that in the power-law expanding Universe.

$$\langle 0_{dS} | a_{powerlawk}^{\dagger} a_{powerlawk} | 0_{dS} \rangle \neq 0$$

 \star This process can be calculated using the Bogolubov coefficients eta_k . Consider production of a massless boson $\mathcal X$, whose mode function reads

$$\ddot{\chi}_k + 3H\dot{\chi}_k + \frac{k^2}{a^2}\chi_k = 0 \xrightarrow{dt = a(t)d\tau \text{ conformal time}} X_k'' + \left(k^2 - \frac{a''}{a}\right)X_k = 0$$

$$X_k \equiv a^{-1}\chi_k$$

★ Bogolubov coefficient

$$\beta_k = \frac{i}{2k} \int_{-\infty}^{\infty} e^{-2ik\tau} V(\tau) d\tau \quad \Longrightarrow \quad \langle 0_{dS} | a_{powerlawk}^{\dagger} a_{powerlawk} | 0_{dS} \rangle = |\beta_k|^2$$

Energy density

$$\rho(\tau) = \frac{1}{2\pi^2 a^4(\tau)} \int_0^\infty |\beta_k|^2 k^3 dk \cong \frac{9H_{\text{inf}}^4}{32\pi^2 a^4} \ln\left(\frac{1}{H_{\text{inf}}\Delta t}\right)$$

setting a = 1 at the end of inflation.

(Ford 1987, Kunimitsu & JY 2014)

- \star Gravitational particle production produces radiation energy of order of the Hawking temperature of the de Sitter space $T \approx \frac{H_{\text{inf}}}{2\pi}$ at the end of inflation.
- \star Suppose there are effectively N modes and neglect the logarithmic factor.

energy density
$$\rho_r = \frac{9NH_{\rm inf}^4}{32\pi^2a^4} \quad \ll \rho_{tot} = 3M_G^2H_{\rm inf}^2 \quad \text{initially.}$$
 energy density
$$\frac{1}{2\pi} \frac{1}{2\pi} \frac{1}$$

* The reheating temperature at the onset of the radiation domination is

$$T_R = \frac{3N^{\frac{3}{4}}}{(32\pi^2)^{\frac{3}{4}}} \left(\frac{30}{\pi^2 g_*}\right)^{\frac{1}{4}} \frac{H_{\text{inf}}^2}{M_G} \simeq 3.9 \times 10^6 N^{\frac{3}{4}} \left(\frac{g_*}{106.75}\right)^{-\frac{1}{4}} \left(\frac{r}{0.01}\right) \text{GeV}.$$

Here
$$r=0.01\left(\frac{H_{\rm inf}}{2.4\times10^{13}{\rm GeV}}\right)^2$$
 is the tensor-scalar ratio.

The maximum temperature after inflation can be much higher (if thermalized sufficiently rapidly):

$$T_f \approx \frac{H_{\text{inf}}}{2\pi} = 4 \times 10^{12} \left(\frac{r}{0.01}\right)^{\frac{1}{2}} \text{GeV}$$

If we consider the case the Universe is thermalized through 2 body scattering,

from $\Gamma_2 = \langle n\sigma v \rangle \approx \frac{N'T^3}{\pi^2} \frac{\alpha^2}{T^2} > H = H_{inf} a^{-3}$, we find the thermalization temperature

$$T_{th} \approx 8 \times 10^{10} \left(\frac{r}{0.01}\right)^{\frac{1}{2}} \left(\frac{N'}{10}\right)^{\frac{1}{2}} \left(\frac{\alpha}{0.05}\right) \text{GeV}$$
 $\frac{\alpha}{N'}$: number of modes

Reheating through direct interaction

(Bazrafshan Moghaddam, Brandenberger, & JY 2017)

 \star More efficient reheating is possible if χ is directly coupled with the inflaton.

$$\mathcal{L}_{int} = \frac{1}{2M^2} (\partial \phi)^2 \chi^2 = -\frac{1}{2M^2} \dot{\phi}^2 \chi^2$$
 which preserve

which preserves the shift symmetry of ϕ .

Mode function satisfies

$$\ddot{\chi}_k + 3H\dot{\chi}_k + \left(\frac{k^2}{a^2} + M^{-2}\dot{\phi}^2\right)\chi_k = 0$$

$$X_k \equiv a^{-1}\chi_k$$

$$X_k'' + \left(k^2 + M^{-2}\dot{\phi}^2a^2 - \frac{a''}{a}\right)X_k = 0$$

$$\equiv -V(\tau)$$

This problem can also be solved using the Bogolubov coefficients.

$$\rho_r(\tau) = \frac{1}{2\pi^2 a^4(\tau)} \int_0^\infty |\beta_k|^2 k^3 dk \qquad \beta_k = \frac{i}{2k} \int_{-\infty}^\infty e^{-2ik\tau} V(\tau) d\tau$$

$$V(\tau) = \begin{pmatrix} 12\frac{M_G^2}{M^2} - 2 \end{pmatrix} \frac{1}{\tau^2}$$
 During inflation
$$a(\tau_f) = -\frac{1}{H_{\text{inf}}\tau_f} = 1$$

$$V(\tau) = \begin{pmatrix} 3\frac{M_G^2}{M^2} - \frac{1}{4} \end{pmatrix} \frac{1}{\left(\tau + \frac{3}{2H_{\text{inf}}}\right)^2}$$
 Kination regime after inflation

gravitational particle production

★The final radiation energy density is given by

direct interaction

$$\rho_{r}(\tau) = \frac{-1}{32\pi^{2}a^{4}} \int_{-\infty}^{\tau} d\tau_{1}d\tau_{2} \ln(\mu |(\tau_{1} - \tau_{2})|) V'(\tau_{1}) V'(\tau_{2})$$

 \star If $M \leq M_G$ the direct interaction is more important than gravitational particle production and realizes a higher reheating temperature.

★ The reheating temperature when direct interaction is dominant.

$$T_R = \frac{5H_{\inf}^2 M_G^2}{32\pi^2 (3g_*)^{1/4} M^3} = 1.2 \times 10^{13} \left(\frac{g_*}{106.75}\right)^{-\frac{1}{4}} \left(\frac{r}{0.01}\right) \left(\frac{M}{10^{16} \text{GeV}}\right)^{-3} \text{GeV}$$

★ The maximum possible temperature after inflation is enhanced as

$$T_f \approx \frac{H_{\text{inf}}}{2\pi} \frac{2M_G}{3M} = 6 \times 10^{14} \left(\frac{r}{0.01}\right)^{\frac{1}{2}} \left(\frac{M}{10^{16} \text{GeV}}\right)^{-1} \text{GeV}$$

* The thermalization temperature by 2 body scattering is given by

$$T_{th} = 2 \times 10^{14} \left(\frac{r}{0.01}\right)^{\frac{1}{2}} \left(\frac{N'}{10}\right)^{\frac{1}{2}} \left(\frac{\alpha}{0.05}\right) \left(\frac{M}{10^{16} \text{GeV}}\right)^{-\frac{3}{2}} \text{GeV}$$

Higher thermalization and reheating temperatures are possible.

Conclusion

The Universe after G-inflation (as well as k-inflation) is dominated by the kinetic energy density of the inflaton field which evolves as $\dot{\phi} = \dot{\phi}_f a^{-3} = \sqrt{6} M_g H_{\rm inf} a^{-3}$

The reheating proceeds through gravitational particle production and/or direct interaction through derivative coupling preserving the shift symmetry of the theory.

One can consider spontaneous baryogenesis or asymmetric dark matter genesis by introducing a derivative coupling between the inflaton and their respective currents.

