Particle Physics Models for DM-DR interactions

Pyungwon Ko (KIAS)

```
Based on P.Ko, Y. Tang; 1608.01083 (PLB)
1609.02307 (PLB)
(P.Ko, N. Nagata, Y. Tang; arXiv: 1706.05605)
```

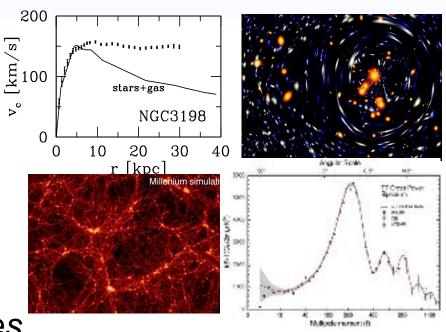
DSU 2017, IBS-CTPU Daejon, Korea (2017)

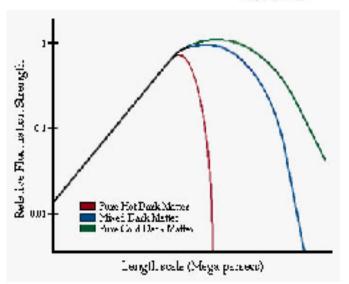
Outline

- Introduction & Motivation
 - Dark Matter evidence
 - Hubble constant and structure growth
- DM with dark gauge symmetries
- Interacting Dark Matter&Dark Radiation
 - U(1) dark photon
 - Residual Yang-Mills Dark Matter
- Summary

Only Higgs (~SM) and Nothing Else at the LHC & SM based on local gauge principle works very well!

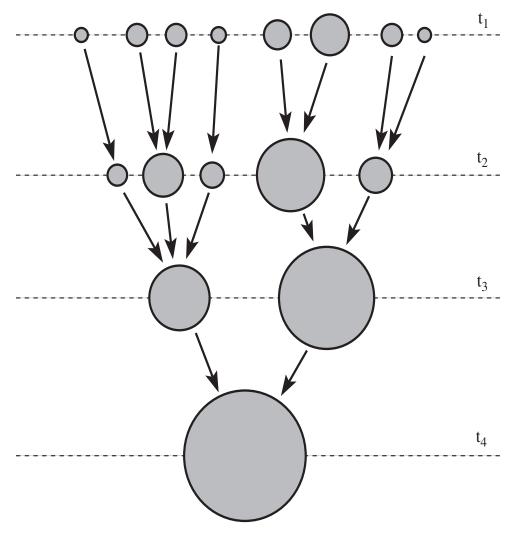
Dark Matter Evidence

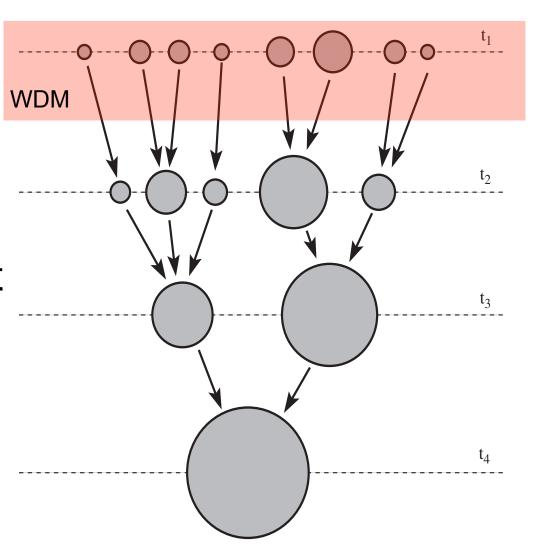

- Rotation Curves of Galaxies
- Gravitational Lensing
- Large Scale Structure
- CMB anisotropies, ...


All confirmed evidence comes from gravitational interaction

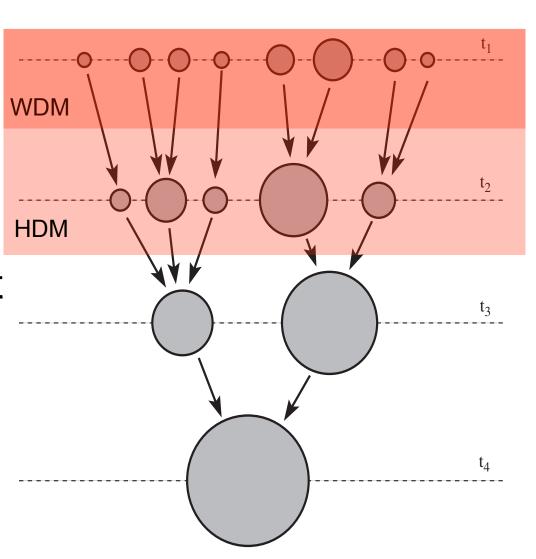
CDM: negligible velocity, WIMP

WDM: keV sterile neutrino

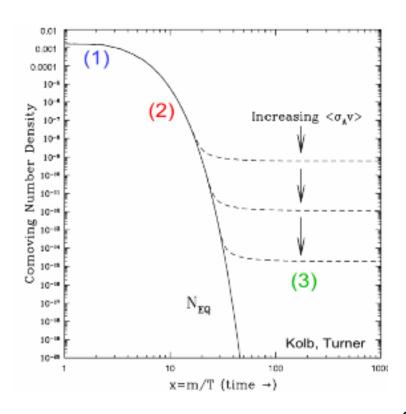

HDM: active neutrino


Merger History of Dark Halo

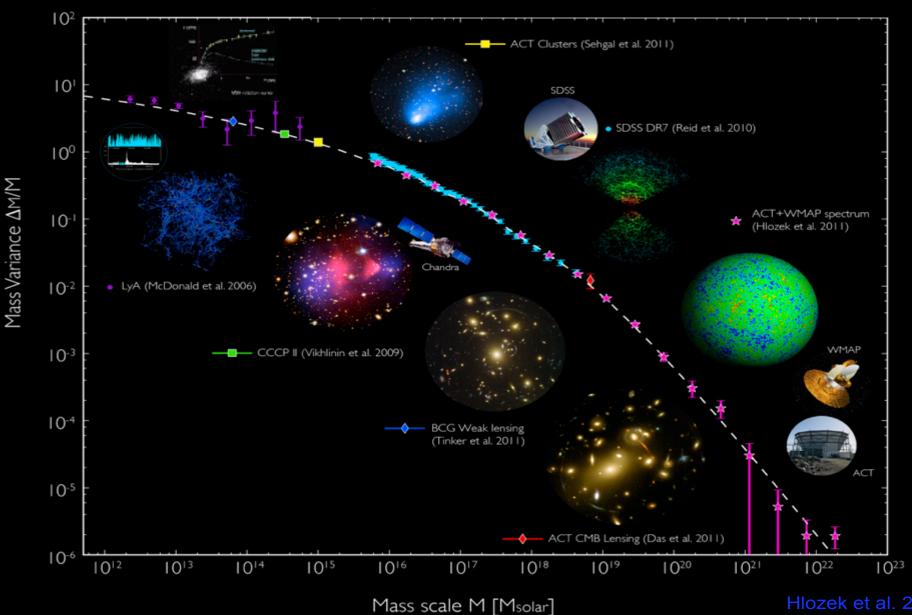
- Standard picture
- DM halo grow hierarchically
- Small scale structures form first
- then merge into larger halo


Merger History of Dark Halo

- Standard picture
- DM halo grow hierarchically
- Small scale structures form first
- then merge into larger halo


Merger History of Dark Halo

- Standard picture
- DM halo grow hierarchically
- Small scale structures form first
- then merge into larger halo



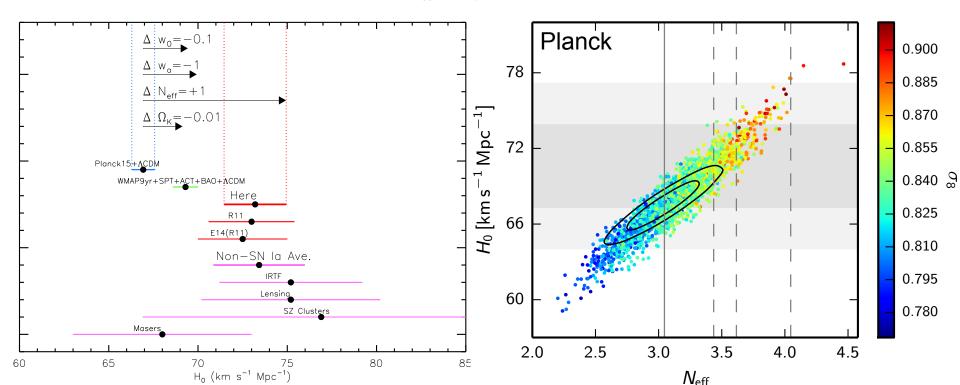
Weakly Interacting Massive Particle

- Mass around ~100GeV
- Coupling ~ 0.5
- Correct relic abundance Ω~0.3
- Thermal History
 - Equilibrium XX<>ff
 - Equilibrium XX >ff
 - Freeze-out
- Cold Dark Matter (CDM)

ACDM: successful on large scales

Interacting Dark Matter

Why Interacting DM?


- Theoretically interesting
 - Atomic DM, Mirror DM, Composite DM
 - Eventually, all DM is interacting in some way, the question is how strongly?
 - Self-Interacting DM $\frac{\sigma}{M_X} \sim {
 m cm}^2/{
 m g} \sim {
 m barn/GeV}$
- Possible new testable signatures
 - CMB, LSS, BBN
 - Other astrophysical effects,...
- Solution of CDM controversies
 - Cusp-vs-Core, Too-big-to-fail, missing satellite,...
 - H_{0} , σ_{8} ? 2-3 σ , systematic uncertainty

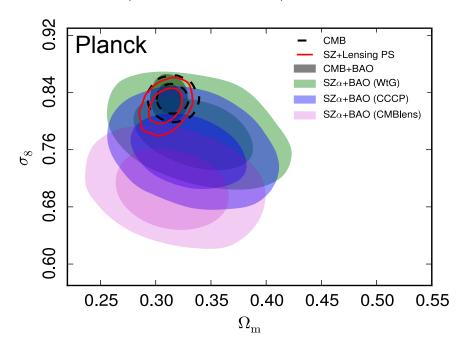
Tension in Hubble Constant?

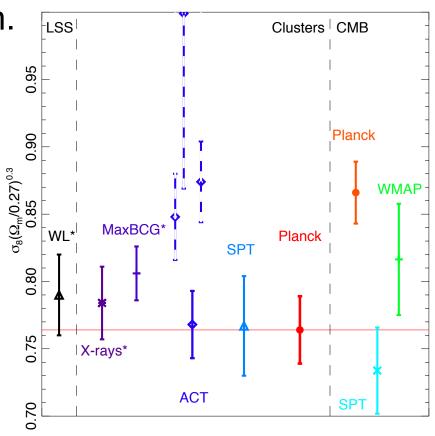
Hubble Constant H₀ defined as the present value of

$$H \equiv \frac{1}{a} \frac{da}{dt} = \frac{\sqrt{\rho_r + \rho_m + \rho_\Lambda}}{M_p}$$

- Planck(2015) gives $67.8 \pm 0.9 \text{ km s}^{-1} \text{Mpc}^{-1}$
- HST(2016) gives $73.24 \pm 1.74 \text{ km s}^{-1} \text{Mpc}^{-1}$

Tension in σ_8 ?


Variance of perturbation field→collapsed objects


$$\sigma^2(R) = \frac{1}{2\pi^2} \int W_R^2(k) P(k) k^2 dk,$$

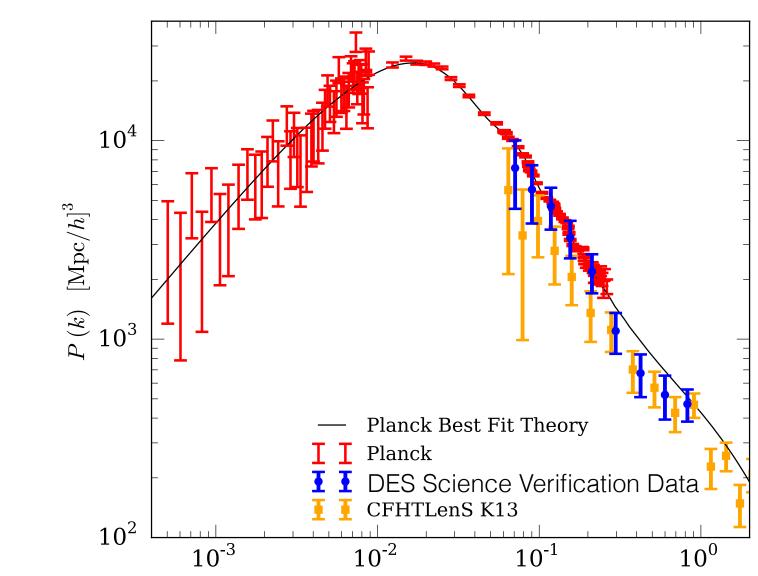
• where the filter function $W_R(k) = \frac{3}{(kR)^3} \left[\sin(kR) - kR\cos(kR) \right],$

P(k) is matter power spectrum.

• $\sigma_8 \equiv \sigma(8h^{-1}\mathrm{Mpc})$

Tension in σ_8 ?

Planck2015, Sunyaev–Zeldovich cluster counts

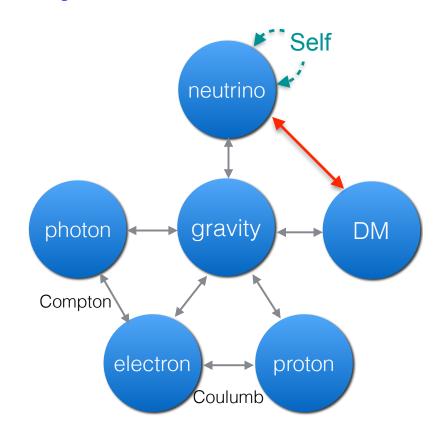

Data	$\sigma_8 \left(\frac{\Omega_{ m m}}{0.31}\right)^{0.3}$	$\Omega_{ m m}$	σ_8
$\overline{\text{WtG} + \text{BAO} + \text{BBN}}$	0.806 ± 0.032	0.34 ± 0.03	0.78 ± 0.03
CCCP + BAO + BBN [Baseline]	0.774 ± 0.034	0.33 ± 0.03	0.76 ± 0.03
CMBlens + BAO + BBN	0.723 ± 0.038	0.32 ± 0.03	0.71 ± 0.03
$\overline{\text{CCCP} + H_0 + \text{BBN}}$	0.772 ± 0.034	0.31 ± 0.04	0.78 ± 0.04

Planck2015, Primary CMB

Parameter	[1] Planck TT+lowP	[2] Planck TE+lowP	[3] Planck EE+lowP	[4] Planck TT,TE,EE+lowP
$\overline{\Omega_{ m b}h^2 \ldots \ldots}$	0.02222 ± 0.00023	0.02228 ± 0.00025	0.0240 ± 0.0013	0.02225 ± 0.00016
$\Omega_{\rm c} h^2 \ldots \ldots$	0.1197 ± 0.0022	0.1187 ± 0.0021	$0.1150^{+0.0048}_{-0.0055}$	0.1198 ± 0.0015
$100\theta_{\mathrm{MC}}$	1.04085 ± 0.00047	1.04094 ± 0.00051	1.03988 ± 0.00094	1.04077 ± 0.00032
au	0.078 ± 0.019	0.053 ± 0.019	$0.059^{+0.022}_{-0.019}$	0.079 ± 0.017
$ln(10^{10}A_s)$	3.089 ± 0.036	3.031 ± 0.041	$3.066^{+0.046}_{-0.041}$	3.094 ± 0.034
$n_{\rm s}$	0.9655 ± 0.0062	0.965 ± 0.012	0.973 ± 0.016	0.9645 ± 0.0049
H_0	67.31 ± 0.96	67.73 ± 0.92	70.2 ± 3.0	67.27 ± 0.66
Ω_{m}	0.315 ± 0.013	0.300 ± 0.012	$0.286^{+0.027}_{-0.038}$	0.3156 ± 0.0091
$\sigma_8 \dots \dots$	0.829 ± 0.014	0.802 ± 0.018	0.796 ± 0.024	0.831 ± 0.013
$10^9 A_{\rm s} e^{-2\tau} \dots \dots$	1.880 ± 0.014	1.865 ± 0.019	1.907 ± 0.027	1.882 ± 0.012

Matter Power Spectrum

DES astroph/150705552



Interacting DM-DR

Since all components are connected by Einstein's equation

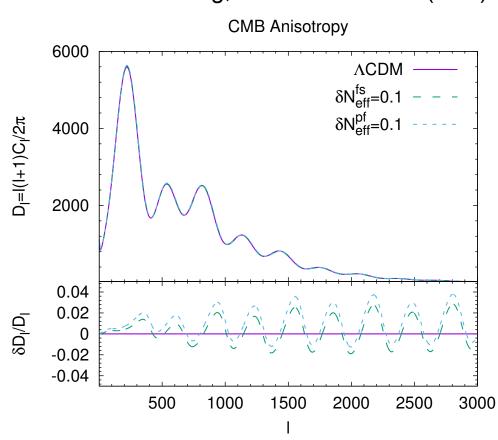
 $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$

- first-order perturbation of Boltzmann equation
 - anisotropy in CMB
 - matter power spectrum for LSS
- (Self-)Interaction sometimes also matters

Interacting Radiation

free-streaming

$$\begin{split} \dot{\delta}_{\nu} &= -\frac{4}{3} \, \theta_{\nu} + 4 \dot{\phi} \; , \\ \dot{\theta}_{\nu} &= k^2 \bigg(\frac{1}{4} \, \delta_{\nu} - \sigma_{\nu} \bigg) + k^2 \psi \; , \\ \dot{F}_{\nu l} &= \frac{k}{2l+1} \left[l F_{\nu (l-1)} - (l+1) F_{\nu (l+1)} \right] \; , \end{split}$$


• perfect fluid $\Gamma\gg \mathcal{H}$

$$\dot{\delta}_{v} = -\frac{4}{3} \theta_{v} + 4\dot{\phi} ,$$

$$\dot{\theta}_{v} = k^{2} \left(\frac{1}{4} \delta_{v} - \sigma_{v} \right) + k^{2} \psi ,$$

$$\sigma_{v} = 0$$

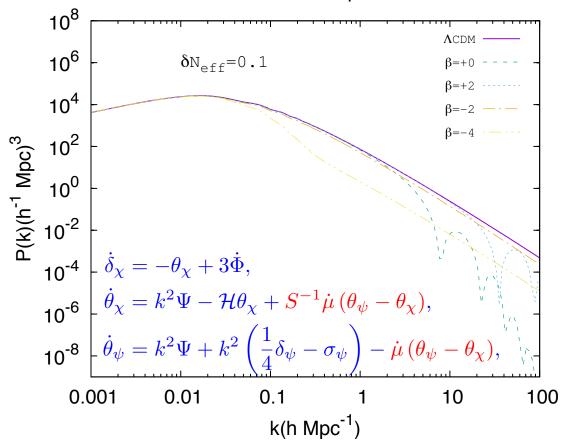
Y.Tang, arXiv:1603.00165(PLB)

Neutrinos as perfect fluid excluded, *Audren* et al 1412.5948

Relation to Particle Physics

- The precise form of the scattering term, <σc>, is fully determined by the underlying microscopic or particle physics model, for example
 - electron-photon, <σc>~1/m²
 Thomson scattering -> CMB, BAO
 - DM-radiation with massive mediator, <σc>~T²/m⁴
 Boehm *et al*(astro-ph/0410591,1309.7588)
 - non-Abelian radiation, <σc>~1/T²
 Schmaltz et al(2015), 1507.04351,1505.03542
 - (pseudo-)scalar radiation, <σc>~1/T², μ²/T⁴, T²/μ⁴ Y.Tang,1603.00165(PLB)

Effects on LSS


Parametrize the cross section ratio

Y.Tang,1603.00165(PLB)

$$u_0 \equiv \left[rac{\sigma_{\chi\psi}}{\sigma_{\mathrm{Th}}} \right] \left[rac{100 \mathrm{GeV}}{m_{\chi}} \right], u_{\beta}(T) = u_0 \left(rac{T}{T_0}
ight)^{\beta},$$

where $\sigma_{\rm Th}$ is the Thomson cross section, $0.67 \times 10^{-24} {\rm cm}^{-2}$.

Matter Power Spectrum

Why dark gauge sym?

Questions about DM

- Electric Charge/Color neutral
- How many DM species are there?
- Their masses and spins?
- Are they absolutely stable or very long lived?
- How do they interact with themselves and with the SM particles?
- Where do their masses come from ? Another (Dark) Higgs mechanism ? Dynamical SB ?
- In order to answer these questions, we must find DM in particle physics experiments (direct/indirect detections, collider searches, etc.) and study their properties

21

DM phenomenology often requires

- New force mediators (scalar, vector,) in order to solve some puzzles in the standard collision less CDM paradigm
- Extra particles in the dark sector (excited DM, dark radiation, force mediators, etc.) often used for phenomenological reasons
- Any good organizing principles for these extra particles?
- Answer: Dark gauge symmetry (dark gauge boson/dark Higgs appear naturally, their dynamics is completely fixed by gauge principle)

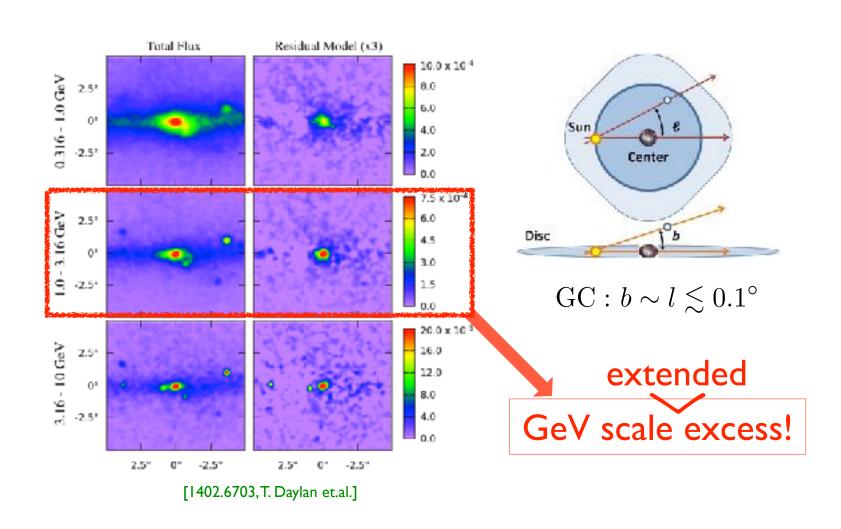
What is going on in the SM?

- SM based on Poincare + local gauge symmetry within 4-dim QFT: extremely successful and provides qualitative answers to light neutrino masses, non-observation of proton decay (Lepton # and baryon #: accidental symmetry of the renormalizable SM, and broken only by higher dim operators)
- Electron is stable, because electric charge is conserved and electron is the lightest particle with nonzero electric charge
- Proton is long lived because B-violation in SM comes from dim-6 operator

DM with dark gauge symmetries

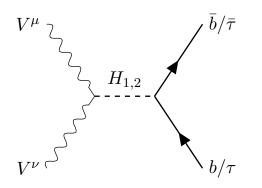
- DM: either absolutely stable or long lived (could be due to local gauge symmetry or some accidental symmetry) and both can be accommodated by local dark gauge symmetries
- Global sym could be broken by gravity, and may not be good enough for DM stability/longevity
- The only issue is the mass scales of DM, dark gauge bosons/dark Higgs, and their gauge/ Yukawa couplings, all of which are unknown yet
- DM phenomenology can be very rich, if these new particles are not too heavy

Singlet Portal

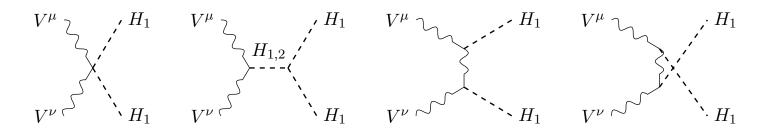

- If there is a hidden (dark) sector with its own dark gauge symmetry and DM is thermal, then we need a portal to it
- There are only three unique gauge singlets in the SM + RH neutrinos

Baek, Ko, Park, arXiv:1303.4280, JHEP

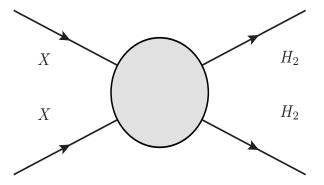
SM Sector
$$\longleftrightarrow$$
 $H^{\dagger}H, \ B_{\mu\nu}, \ N_R$ \longleftrightarrow Hidden Sector $N_R \leftrightarrow \widetilde{H}l_I$ $e.g. \ \phi_X^{\dagger}\phi_X, X_{\mu\nu}, \psi_X^{\dagger}\phi_X$


Example: Fermi-LAT γ-ray excess

Gamma-ray excess in the direction of GC


GC gamma ray in VDM

[1404.5257, P. Ko, WIP & Y. Tang] JCAP (2014) (Also Celine Boehm et al. 1404.4977, PRD)



H₂: I25 GeV Higgs H₁: present in VDM with dark gauge sym

Figure 2. Dominant s channel $b + \bar{b}$ (and $\tau + \bar{\tau}$) production

Figure 3. Dominant s/t-channel production of H_1 s that decay dominantly to $b+\bar{b}$

P.Ko, Yong Tang. arXiv: 1504.03908

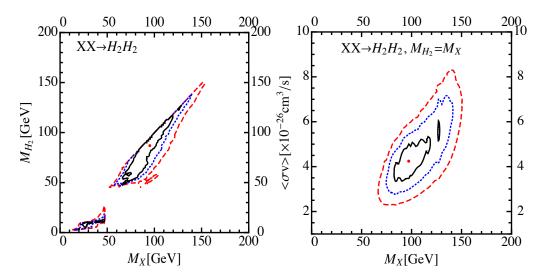


FIG. 3: The regions inside solid(black), dashed(blue) and long-dashed(red) contours correspond to 1σ , 2σ and 3σ , respectively. The red dots inside 1σ contours are the best-fit points. In the left panel, we vary freely M_X , M_{H_2} and $\langle \sigma v \rangle$. While in the right panel, we fix the mass of H_2 , $M_{H_2} \simeq M_X$.

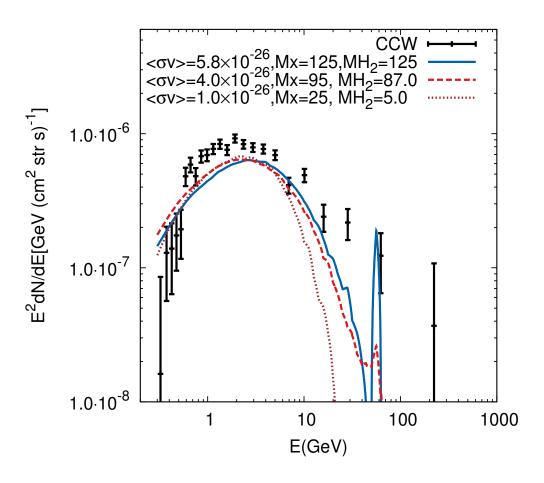


FIG. 2: Three illustrative cases for gamma-ray spectra in contrast with CCW data points [11]. All masses are in GeV unit and σv with cm³/s. Line shape around $E \simeq M_{H_2}/2$ is due to decay modes, $H_2 \to \gamma \gamma, Z \gamma$.

Thanks to C. Weniger for the covariant matrix

This explanation is possible only in DM models with dark gauge symmetry

P.Ko, Yong Tang. arXiv:1504.03908

Channels	Best-fit parameters	$\chi^2_{\rm min}/{\rm d.o.f.}$	<i>p</i> -value
$XX o H_2H_2$	$M_X \simeq 95.0 \text{GeV}, M_{H_2} \simeq 86.7 \text{GeV}$	22.0/21	0.40
(with $M_{H_2} \neq M_X$)	$\langle \sigma v \rangle \simeq 4.0 \times 10^{-26} \text{cm}^3/\text{s}$		
$XX o H_2H_2$	$M_X \simeq 97.1 { m GeV}$	22.5/22	0.43
(with $M_{H_2} = M_X$)	$\langle \sigma v \rangle \simeq 4.2 \times 10^{-26} \text{cm}^3/\text{s}$		
$XX o H_1H_1$	$M_X \simeq 125 { m GeV}$	24.8/22	0.30
with $M_{H_1} = 125 \text{GeV}$	$\langle \sigma v \rangle \simeq 5.5 \times 10^{-26} \text{cm}^3/\text{s}$		
$XX o b\bar{b}$	$M_X \simeq 49.4 { m GeV}$	24.4/22	0.34
	$\langle \sigma v \rangle \simeq 1.75 \times 10^{-26} \text{cm}^3/\text{s}$		

TABLE I: Summary table for the best fits with three different assumptions.

In Short, Dark Gauge Symmetry

- guarantees the absolute stability of weak scale
 DM due to unbroken (sub)group
- or guarantees its longevity due to accidental global symmetry of the underlying gauge symmetry (like baryon # in the SM)
- naturally houses DM, DR, Dark Force Carriers (dark photon, dark Higgs etc.) and interactions among them and interactions with the SM particles, resulting rich dark phenomenology
- the only issues: mass scales and coupling strengths

Models for Interacting DM-DR

- Light sterile fermion DR + Dark photon
- Nonabelian DM + DR
- (Hidden charged DM and chiral DR)

A Light Dark Photon

Lagrangian

P.Ko, YT,1608.01083(PLB)

$$\mathcal{L} = -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + D_{\mu}\Phi^{\dagger}D^{\mu}\Phi + \bar{\chi}\left(i\not\!\!D - m_{\chi}\right)\chi + \bar{\psi}i\not\!\!D\psi$$
$$-\left(y_{\chi}\Phi^{\dagger}\bar{\chi}^{c}\chi + y_{\psi}\Phi\bar{\psi}N + h.c.\right) - V(\Phi, H),$$

- DM χ (+1), dark radiation ψ (+2), scalar(+2)
- U(1) symmetry (unbroken), massless dark photon V_{μ} (Phi VEV = 0)

$$\Omega h^2 \simeq 0.1 \times \left(\frac{y_{\chi}}{0.7}\right)^{-4} \left(\frac{m_{\chi}}{\text{TeV}}\right)^2.$$

• Φ can decay into ψ and N.

Dark Radiation δN_{eff}

Effective Number of Neutrinos, Neff

$$\rho_R = \left[1 + N_{\text{eff}} \times \frac{7}{8} \left(\frac{4}{11}\right)^{4/3}\right] \rho_{\gamma},$$

$$\rho_{\gamma} \propto T_{\gamma}^4$$

- In SM cosmology, N_{eff} = 3.046. Neutrinos decouple around MeV, and then freely stream.
- Cosmological bounds

Joint CMB+BBN, 95% CL preferred ranges Planck 2015, arXiv:1502.01589

$$N_{\text{eff}} = \begin{cases} 3.11_{-0.57}^{+0.59} & \text{He+}Planck \ \text{TT+lowP,} \\ 3.14_{-0.43}^{+0.44} & \text{He+}Planck \ \text{TT+lowP+BAO,} \\ 2.99_{-0.39}^{+0.39} & \text{He+}Planck \ \text{TT,TE,EE+lowP,} \end{cases}$$

Constraint on New Physics

$$\left. \begin{array}{l} N_{\rm eff} < 3.7 \\ m_{\nu, \, \rm sterile}^{\rm eff} < 0.52 \, \, {\rm eV} \end{array} \right\} = 95\%, Planck \, \rm TT+lowP+lensing+BAO.$$

Dark Radiation δN_{eff}

Massless dark photon and fermion will contribute

$$\delta N_{\text{eff}} = \left(\frac{8}{7} + 2\right) \left[\frac{g_{*s}(T_{\nu})}{g_{*s}(T^{\text{dec}})} \frac{g_{*s}^{D}(T^{\text{dec}})}{g_{*s}^{D}(T_{D})} \right]^{\frac{4}{3}},$$

where T_{ν} is neutrino's temperature,

 g_{*s} counts the effective number of dof for entropy density in SM,

 g_{*s}^D denotes the effective number of dof being in kinetic equilibrium with V_{μ} .

For instance, when $T^{\rm dec} \gg m_t \simeq 173 {\rm GeV}$ for $|\lambda_{\Phi H}| \sim 10^{-6}$, we can estimate $\delta N_{\rm eff}$ at the BBN epoch as

$$\delta N_{\text{eff}} = \frac{22}{7} \left[\frac{43/4}{427/4} \frac{11}{9/2} \right]^{\frac{4}{3}} \simeq 0.53, \tag{1}$$

δN_{eff}=0.4~1 for relaxing tension in Hubble constant

Diffusion Damping

Dark Matter scatters with radiation, which induces new contributions in the cosmological perturbation equations,

$$\begin{split} \dot{\delta}_{\chi} &= -\theta_{\chi} + 3\dot{\Phi}, \\ \dot{\theta}_{\chi} &= k^{2}\Psi - \mathcal{H}\theta_{\chi} + S^{-1}\dot{\mu}\left(\theta_{\psi} - \theta_{\chi}\right), \\ \dot{\theta}_{\psi} &= k^{2}\Psi + k^{2}\left(\frac{1}{4}\delta_{\psi} - \sigma_{\psi}\right) - \dot{\mu}\left(\theta_{\psi} - \theta_{\chi}\right), \end{split}$$

where dot means derivative over conformal time $d\tau \equiv dt/a$ (a is the scale factor), θ_{ψ} and θ_{χ} are velocity divergences of radiation ψ and DM χ 's, k is the comoving wave number, Ψ is the gravitational potential, δ_{ψ} and σ_{ψ} are the density perturbation and the anisotropic stress potential of ψ , and $\mathcal{H} \equiv \dot{a}/a$ is the conformal Hubble parameter. Finally, the scattering rate and the density ratio are defined by $\dot{\mu} = an_{\chi} \langle \sigma_{\chi\psi} c \rangle$ and $S = 3\rho_{\chi}/4\rho_{\psi}$, respectively.

Scattering Cross Section

The averaged cross section $\langle \sigma_{\chi\psi} \rangle$ can be estimated from the squared matrix element for $\chi\psi \to \chi\psi$:

$$\overline{|\mathcal{M}|^2} \equiv \frac{1}{4} \sum_{\text{pol}} |\mathcal{M}|^2 = \frac{2g_X^4}{t^2} \left[t^2 + 2st + 8m_\chi^2 E_\psi^2 \right], \quad (9)$$

where the Mandelstam variables are $t = 2E_{\psi}^{2}(\cos \theta - 1)$ and $s = m_{\chi}^{2} + 2m_{\chi}E_{\psi}$, where θ is the scattering angle, and E_{ψ} is the energy of incoming ψ in the rest frame of χ . Integrated with a temperature-dependent Fermi-Dirac distribution for E_{ψ} , we find that $\langle \sigma_{\chi\psi} \rangle$ goes roughly as $g_{X}^{4}/(4\pi T_{D}^{2})$.

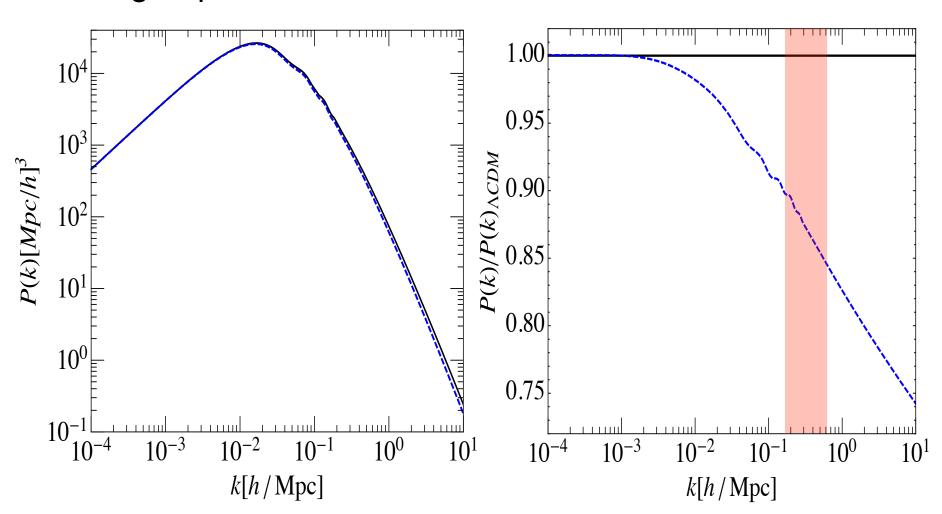
 In general, the cross section could have different temperature dependence, depending on the underlying particle models.

Numerical Results

We take the central values of six parameters of Λ CDM from Planck,

$$\Omega_b h^2 = 0.02227,$$
 Baryon density today $\Omega_c h^2 = 0.1184,$ CDM density today $100\theta_{\rm MC} = 1.04106,$ $100 \times {\rm approximation~to~} r_*/D_A$ $\tau = 0.067,$ Thomson scattering optical depth $\ln\left(10^{10}A_s\right) = 3.064,$ Log power of primordial curvature perturbations $n_s = 0.9681,$ Scalar Spectrum power-law index

which gives $\sigma_8 = 0.817$ in vanilla ΛCDM cosmology.


With the same input as above, now take

$$\delta N_{\rm eff} \simeq 0.53, m_\chi \simeq 100 {\rm GeV} \ {\rm and} \ g_X^2 \simeq 10^{-8}$$

in the interacting DM case, we have $\sigma_8 \simeq 0.744$.

Matter Power Spectrum

DM-DR scattering causes diffuse damping at relevant scales, resolving σ_8 problem

Results

We take the central values of six parameters of ΛCDM from Planck [1],

$$\Omega_b h^2 = 0.02227, \Omega_c h^2 = 0.1184, 100\theta_{\text{MC}} = 1.04106,$$

$$\tau = 0.067, \ln(10^{10} A_s) = 3.064, n_s = 0.9681, \tag{11}$$

which gives $\sigma_8 = 0.817$ in vanilla Λ CDM cosmology. With the same input as above, now we take $\delta N_{\rm eff} \simeq 0.53$, $m_\chi \simeq 100 {\rm GeV}$ and $g_X^2 \simeq 10^{-8}$ in the interacting DM case, we have $\sigma_8 \simeq 0.744$ which is much closer to the value $\sigma_8 \simeq 0.730$ given by weak lensing survey CFHTLenS [3].

Residual Non-Abelian DM&DR

P.Ko&YT, 1609.02307

 Consider SU(N) Yang-Mills gauge fields and a Dark

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu}^{a} F^{a\mu\nu} + (D_{\mu}\Phi)^{\dagger} (D^{\mu}\Phi) - \lambda_{\phi} (|\Phi|^{2} - v_{\phi}^{2}/2)^{2},$$

Take SU(3) as an example,

$$A^{a}_{\mu}t^{a} = \frac{1}{2} \begin{pmatrix} A^{3}_{\mu} + \frac{1}{\sqrt{3}}A^{8}_{\mu} & A^{1}_{\mu} - iA^{2}_{\mu} & A^{4}_{\mu} - iA^{5}_{\mu} \\ A^{1}_{\mu} + iA^{2}_{\mu} & -A^{3}_{\mu} + \frac{1}{\sqrt{3}}A^{8}_{\mu} & A^{6}_{\mu} - iA^{7}_{\mu} \\ A^{4}_{\mu} + iA^{5}_{\mu} & A^{6}_{\mu} + iA^{7}_{\mu} & -\frac{2}{\sqrt{3}}A^{8}_{\mu} \end{pmatrix}.$$

$$\bullet \quad SU(3) \rightarrow SU(2)$$

$$\langle \Phi \rangle = \begin{pmatrix} 0 & 0 & \frac{v_{\phi}}{\sqrt{2}} \end{pmatrix}^{T}, \Phi = \begin{pmatrix} 0 & 0 & \frac{v_{\phi} + \phi(x)}{\sqrt{2}} \end{pmatrix}^{T},$$

The massive gauge bosons $A^{4,\dots,8}$ as dark matter obtain masses,

$$m_{A^{4,5,6,7}} = \frac{1}{2}gv_{\phi}, \ m_{A^8} = \frac{1}{\sqrt{3}}gv_{\phi},$$

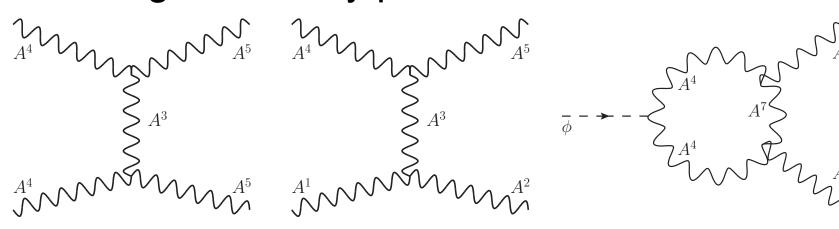
and massless gauge bosons $A_{\mu}^{1,2,3}$. The physical scalar ϕ can couple to $A_{\mu}^{4,\cdots,8}$ at tree level and to $A^{1,2,3}$ at loop level.

$$SU(N) \to SU(N-1)$$

- 2N-1 massive gauge bosons: Dark Matter
- (N-1)²-1 massless gauge bosons: Dark Radiation
- mass spectrum

$$m_{A^{(N-1)^2,...,N^2-2}} = \frac{1}{2}gv_{\phi}, \ m_{A^{N^2-1}} = \frac{\sqrt{N-1}}{\sqrt{2N}}gv_{\phi},$$

This can be proved by looking at the structure of f^{abc} . Divide the generators t^a into two subset,


$$a \subset [1, 2, ..., (N-1)^2 - 1], a \subset [(N-1)^2, ..., N^2 - 1].$$

Since $[t^a, t^b] = if^{abc}t^c$ for the first subset forms closed SU(N-1) algebra, we have $f^{abc} = 0$ when only one of a, b and c is from the second subset. If one index is $N^2 - 1$, then other two must be among the second subset to give no vanishing f^{abc} , because t^{N^2-1} commutes with t^a from SU(N-1).

Phenomenology

Scattering and decay processes

P.Ko&**YT**, 1609.02307

Constraints

$$\delta N_{\text{eff}} = \frac{8}{7} \left[(N-1)^2 - 1 \right] \times 0.055,$$

$$g^2\lesssim rac{T_\gamma}{T_A}\left(rac{m_A}{M_P}
ight)^{1/2}\sim 10^{-7},$$
 • small coupling, • non-thermal pro-

$$\frac{m_A}{T_{\rm reh}} \sim \ln \left[\frac{\Omega_b M_P g^4}{\Omega_X m_p \eta} \right] \sim \mathcal{O}(30).$$

- N<6 if thermal
- non-thermal production,
- low reheating temperature

Schmaltz et al(2015) EW charged DM

Matter Power Spectrum

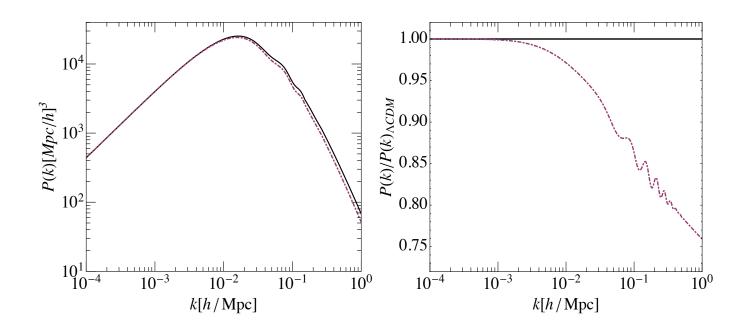
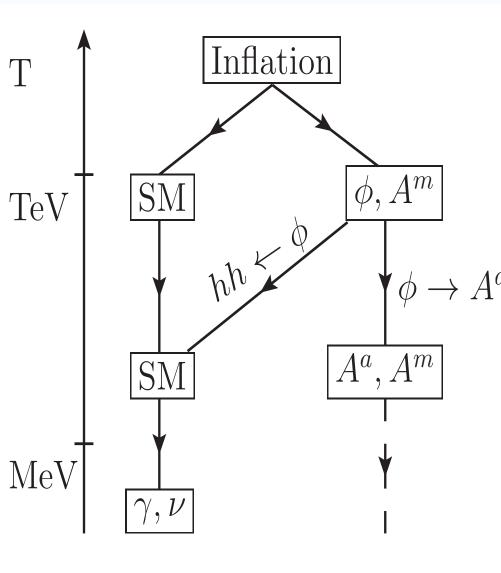


FIG. 3. Matter power spectrum P(k) (left) and ratio (right) with $m_{\chi} \simeq 10 \text{TeV}$ and $g_X^2 \simeq 10^{-7}$, in comparison with ΛCDM . The black solid lines are for ΛCDM and the purple dot-dashed lines for interacting DM-DR case, with input parameters in Eq. 21. We can easily see that P(k) is suppressed for modes that enter horizon at radiation-dominant era. Those little wiggles are due to the well-known baryon acoustic oscillation.

Results


$$\Omega_b h^2 = 0.02227, \Omega_c h^2 = 0.1184, 100\theta_{\rm MC} = 1.04106,$$

$$\tau = 0.067, \ln \left(10^{10} A_s \right) = 3.064, n_s = 0.9681,$$
(21)

and treat neutrino mass the same way as Planck did with $\sum m_{\nu} = 0.06 \text{eV}$, which gives $\sigma_8 = 0.815$ in vanilla Λ CDM cosmology. Together with the same inputs as above, we take $\delta N_{\text{eff}} \simeq 0.5$, $m_{\chi} \simeq 10 \text{TeV}$ and $g_X^2 \simeq 10^{-7}$ in the interacting DM-DR case, we have $\sigma_8 \simeq 0.746$ which is much closer to the value $\sigma_8 \simeq 0.730$ given by weak lensing survey CFHTLenS [12].

- Within DM models with local dark SU(3) broken into SU(2), DM, DR and their interactions have common origin!
- And we could increase Neff, H_0 whereas making σ_8 decrease, thereby relaxing the tension between H_0 and σ_8

Thermal History

- The minimal setup with Higgs portal interaction $\lambda_{\phi H} \Phi^{\dagger} \Phi H^{\dagger} H$
- SM and DS are decoupled early, DM is produced by freeze-in mechanism
- Late time decay, entropy production due to nonrelativistic decay, DR(δN_{eff})
- DM and DS scattering suppress the matter power spectrum

Summary

- We discussed some cosmological effects with interacting Dark Matter and Dark Radiation within DM models with dark gauge symmetries
- This scenario is motivated theoretically and also from observational tensions, H_0 and σ_8
- We present two particle physics models:
 - A massless dark photon with unbroken U(1) gauge symmetry
 - Residual non-Abelian Dark Matter and Dark Radiation
- It is possible to resolve tensions simultaneously