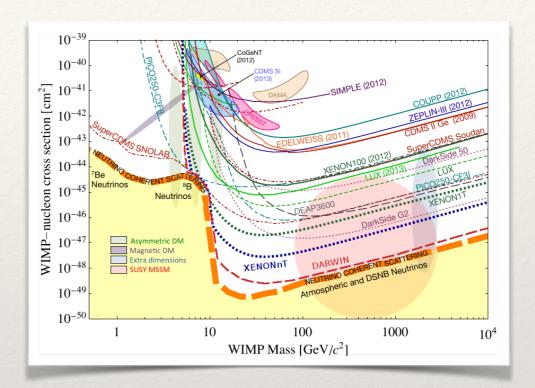


July 10th, DSU 2017

A Systematic Analysis of Semi-Annihilation

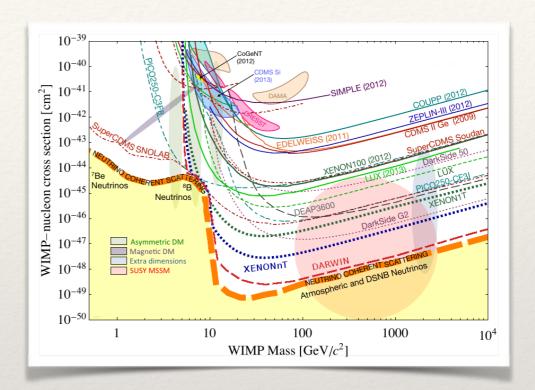
Yi Cai & Andrew Spray, 1611.09360

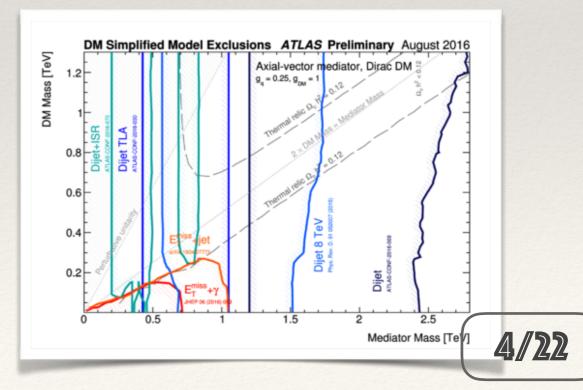

Outline

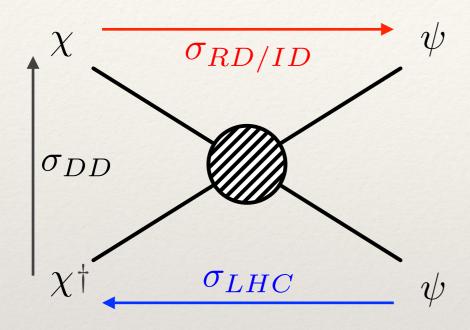

1. Semi-Annihilation

- 2. Effective Operators
- 3. Phenomenology & Constraints
- 4. Conclusions

Thermal Dark Matter

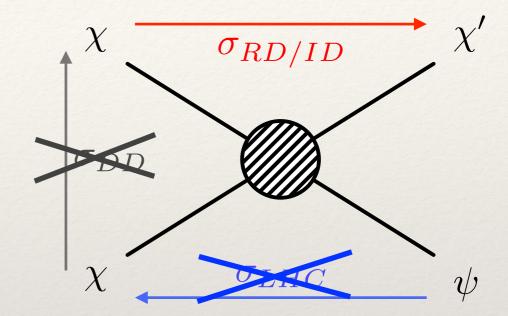

- Bounds on thermal DM starting to get quite strong
- Successful test of this idea!
- But we should be diligent in checking for loopholes
- What are our assumptions?
 What if we relax them?

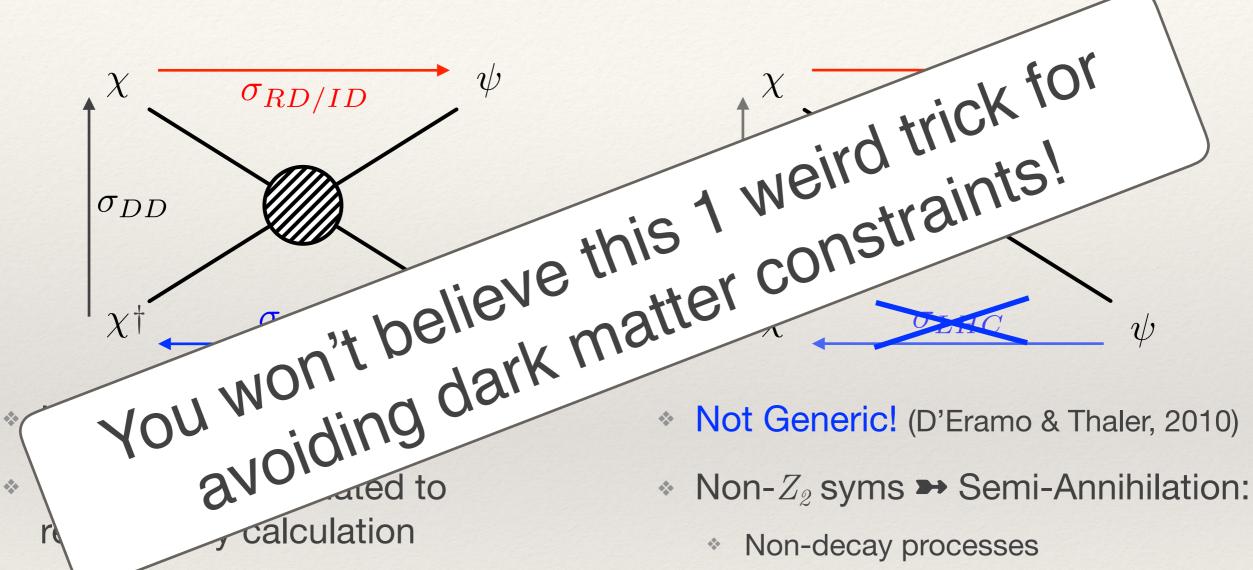




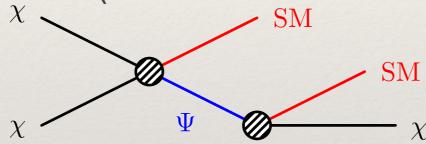
Thermal Dark Matter


- Bounds on thermal DM starting to get quite strong
- Successful test of this idea!
- But we should be diligent in checking for loopholes
- What are our assumptions?
 What if we relax them?
- Very basic assumption:
 DM stabilised by Z₂ symmetry




- Implies this familiar diagram
- Detection rates related to relic density calculation
- Leads to these strong bounds

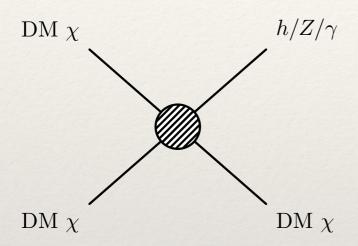
- Implies this familiar diagram
- Detection rates related to relic density calculation
- Leads to these strong bounds


- Not Generic! (D'Eramo & Thaler, 2010)
- * Non- \mathbb{Z}_2 syms \longrightarrow Semi-Annihilation:
 - Non-decay processes
 - Odd number of external dark states
- Irrelevant for colliders & DD

Leads to these strong bounds

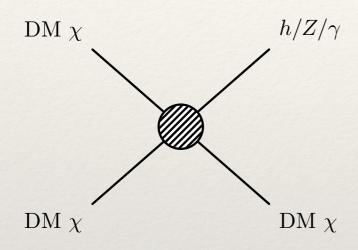
- - Non-decay processes
 - Odd number of external dark states
- Irrelevant for colliders & DD

- SA relaxes bounds from terrestrial searches
- SA affects indirect (cosmic ray) searches
 - * Different kinematics $E = \frac{(m_{i_1} + m_{i_2})^2 + m_V^2 m_f^2}{2(m_{i_1} + m_{i_2})}$
 - Dark sector cascades (from unstable dark states)

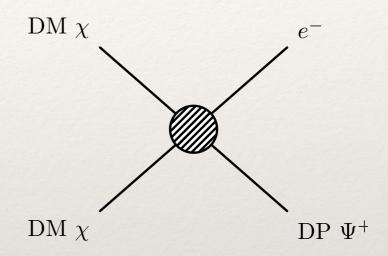

A number of studies so far

Bélanger et al, 1202.2962; D'Eramo et al, 1210.7817; Ko & Tang, 1402.6449; Aoki & Toma, 1405.5870; Berger et al, 1401.2246; Fonseca et al, 1507.08295; Cai & Spray, 1509.08481

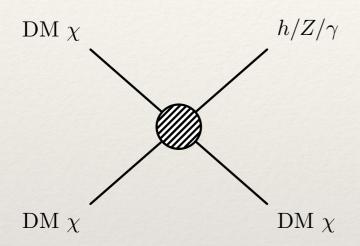
But based on particular models; no general study so far


♦ Two classes of 2 → 2 SA, depending on SM final state

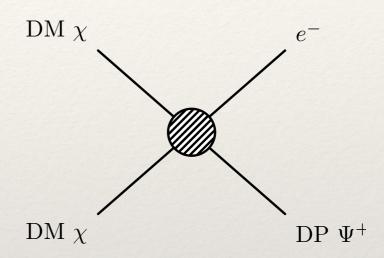
Gauge singlet


 Minimal theories: dark sectors (can be) all DM ♦ Two classes of 2 → 2 SA, depending on SM final state

Gauge singlet

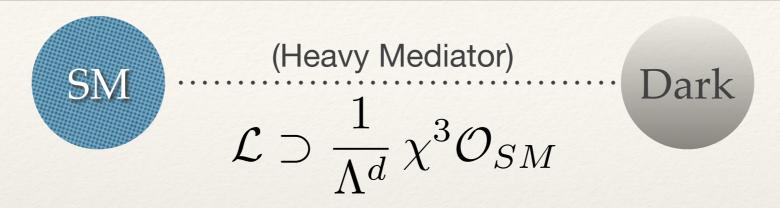

 Minimal theories: dark sectors (can be) all DM

Gauge charged


 Must be light charged unstable dark states ♦ Two classes of 2 → 2 SA, depending on SM final state

Gauge singlet

 Minimal theories: dark sectors (can be) all DM


Gauge charged

- Must be light charged unstable dark states
- Call states with dark & SM symmetries Dark Partners
- DM-DM initial states: dark partners conjugate to SM

Effective Operators

Exploring Model Space: EFTs

- Standard tool for model-independent studies
 - Two sectors: dark and visible
 - Integrate out mediators to generate EFT
- Easy to exhaust possibilities
- Direct connection to initial & final states
- Very applicable for Semi-annihilation:
 - Mediators must be more massive than DM
 - Freeze out & indirect detection non-relativistic so EFT valid

Assumptions

- 1. DM is gauge singlet complex scalar or fermion, charged under exact global symmetry $D \neq Z_2$
- 2. Consider $2 \rightarrow 2$ processes with 3 dark sector fields i.e. operators with 4 fields after EWSB
- 3. Allow dark partners, at most 1 per operator
- 4. Allow multi-component dark matter
- Consider all possible terms to dimension 6
 Leading terms at dimension 7

General Results

- See paper/back-up slides for operator lists
- Small number of operators; e.g. for unique DM,

	DM-only	Scalar DP	Fermion DP
Scalar DM	1	9	6
Fermion DM	1 x gens.	19 x gens.	28 x gens.

- DM-only operators involve 5 fields before EWSB
- * No operators leading to γ -ray line signatures for < 3 DM
- Lowest-dimension operators involve dark partners

General Results

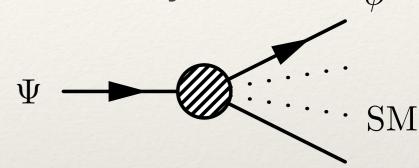
- See paper/back-up slides for operator lists
- Small number of operators; e.g. for unique DM,

	DM-only		
Scalar DM	1	$\phi^3 H^\dagger H$	Belanger <i>et al</i> , 1211.1014
Fermion DM	1 x gens.	$\bar{\chi}^c P_L \chi \left(L^{\dagger} \tilde{H} \right) \chi$	Aoki & Toma, 1405.5870


- DM-only operators involve 5 fields before EWSB
- Lowest-dimension operators involve dark partners
- * No operators leading to γ -ray line signatures for < 3 DM

Higgs Portals

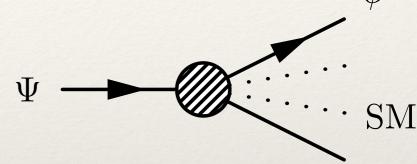
- Operators for scalar/fermion DM at dimension 5+/6+
- Compare this to the always-allowed Higgs portals:


$$\mathcal{O}_{\phi H} = \lambda_{\phi H} \, \phi^{\dagger} \phi \, H^{\dagger} H \,, \qquad \mathcal{O}_{\chi H} = \frac{c_{\chi H}}{\Lambda} \, \bar{\chi} \gamma^5 \chi \, H^{\dagger} H$$

- * If SA is to dominate, these must be suppressed
 - SA (Portal) generated at tree-level (one loop)
 - ♦ UV scale ≤ 5—10 TeV
- Constrains UV particle content:
 - No gauge- and D-singlet scalars
 - No EW doublets in conjugate D-rep, same spin as DM

Dark Partner Decay

- Dark partners cannot decay in minimal theory:
 - * $\Psi \to \phi \phi + \mathrm{SM}$ kinematically forbidden
 - * Need new coupling $\Psi \to \phi^\dagger + SM$

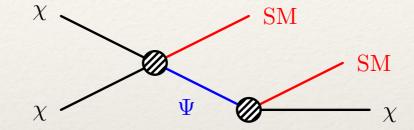


- Additional model dependence
 - Minimal allowed by symmetries? Or similar to SA operator?
 - * Fermion DM particularly problematic: 2-body decays forbidden
- Lower bound on decay rate from BBN

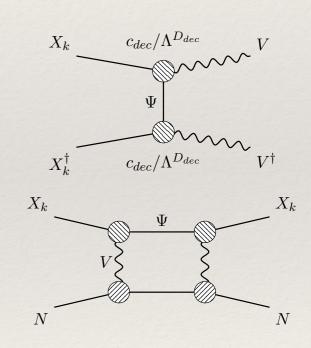
$$\tau \lesssim 0.05 \,\mathrm{s}, \qquad \therefore c_{dec} \gtrsim 10^{-11} (4\pi)^{n-2} \left(\frac{\Lambda}{m_{DP}}\right)^{D_{dec}-4}$$

Dark Partner Decay

- Dark partners cannot decay in minimal theory:
 - * $\Psi \rightarrow \phi \phi + SM$ kinematically forbidden
 - * Need new coupling $\Psi \to \phi^\dagger + \mathrm{SM}$



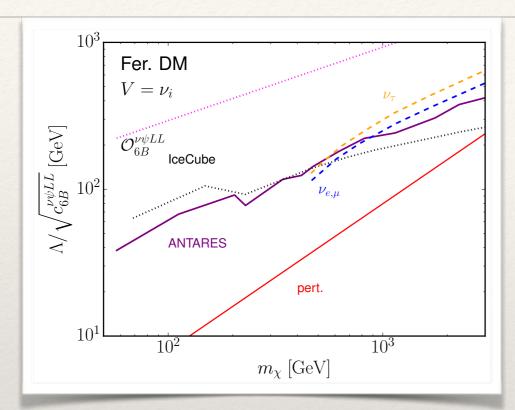
- Additional model dependence
 - Minimal allowed by symmetries? Or similar to SA operator?
 - Fermion DM particularly problematic: 2-body decays forbidden
- Lower bound on decay rate from BBN

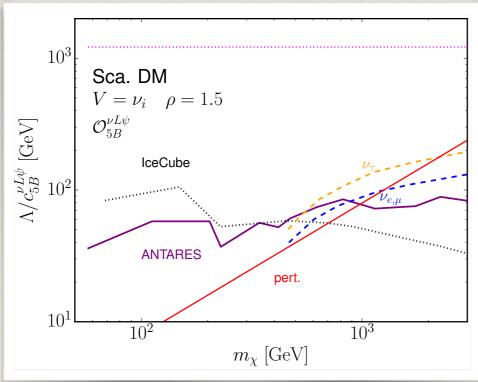

$$\tau \lesssim 0.05 \,\mathrm{s}, \qquad \therefore c_{dec} \gtrsim 10^{-11} (4\pi)^{n-2} \left(\frac{\Lambda}{m_{DP}}\right)^{D_{dec}-4}$$

Impact of Decay Operators

- Prompt decays contribute to cosmic ray signals
 - Function of dark partner mass
 - Depends on decay mode

- Lead to upper bounds on Wilson coefficient:
 - DM annihilation through t-channel Dark partner
 - DM-Dark partner coannihilation
 - Enhanced contributions to direct detection
 - Possible DM-Dark partner mixing
- * General bound $c_{dec} \leq 0.1-0.01$



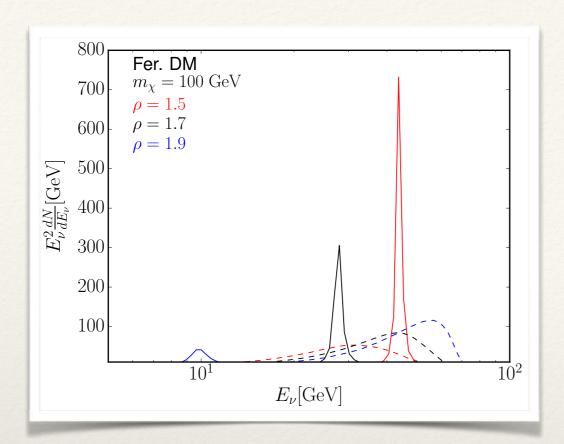

Phenomenology & Constraints

Overview

- * Derive limits from γ -ray, positron & neutrino telescopes
- Additional assumptions:
 - DM is single component
 - Fix dark partner-DM mass ratio to 1.5
- Set limits on EW broken phase operators
 - Direct connection to amplitudes
 - More easily applicable to general models
- Only time & space to show a small selection of results

SA to Neutrinos

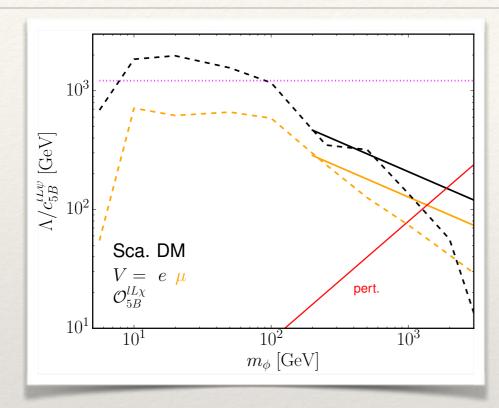
* Top: Bounds on dim-6 ops

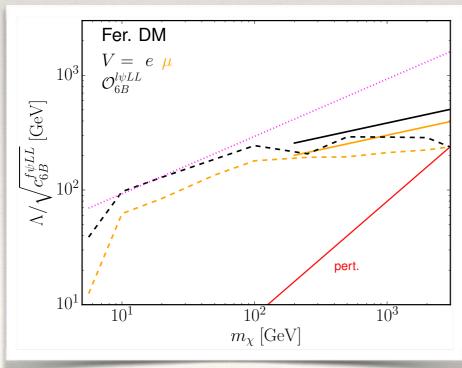

$$\frac{1}{6\Lambda^2} \chi^3 \nu \quad \& \quad \frac{1}{2\Lambda^2} (\chi \chi) (\bar{\nu} \psi)$$


Bottom: dim-5 ops

$$\frac{1}{2\Lambda} \, \phi^2 \left(\bar{\nu} \psi \right)$$

- Regions below lines exluded
 - Red: perturbativity (EFT)
 - Solid: as marked (current)
 - Dashed: CTA (projected)
- Dots: relic density from SA alone


18/22



- Neutrino spectra for same operators as on last slide
- Varied DM—DP mass ratio
- Solid lines:
 - SA final state neutrinos
 - Nearly monochromatic
- Dashed lines
 - Dark partner decay neutrinos
 - Broad spectrum; more so for fermion DM due to 3-body decay
 - More important for heavier DPs

Leptonic Dark Partner Limits

- * Top: bounds on d = 5 ops $\frac{1}{2\Lambda} \, \phi^2 \, \bar{f} \psi$
- * Bottom: bounds on d = 6 ops $\frac{1}{2\Lambda^2} \left(\chi \chi \right) \bar{f} \psi$
- Regions below lines exluded
 - Red: perturbativity (EFT)
 - Solid: AMS (current)
 - Dashed: CMB (current)
- Exclude RD params for electron channel and 10 ≤ m ≤ 100 GeV

Conclusions

- Semi-Annihilation is a generic feature of dark matter
- Constructed all SA operators up to dimension 6
- Model space for DM-only theories is small
- Dark partners lead to more varied phenomenology at cost of dependence on dark partner decay modes
- Derived limits & prospects from cosmic ray searches;
 close to relic cross section in some fermionic channels
- Many questions remain, e.g. UV completions

- Semi-Annihilation is a generic feature of dark matter
- Constructed all SA operators up to dimension 6
- Model space for DM-only theories is small
- Dark partners lead to more varied phenomenology at cost of dependence on dark partner decay modes
- Derived limits & prospects from cosmic ray searches;
 close to relic cross section in some fermionic channels
- Many questions remain, e.g. UV completions

Thank You!

Back-Up Slides

Dark Matter Only

Write down all operators consistent with assumptions

Scalar

Operator	Definition
\mathcal{O}_{5U}^{H}	$s^{ijk}\phi_i\phi_j\phi_kH^\dagger H$
\mathcal{O}^Z_{7U}	$\left (x^{ikj} + y^{ijk}) \phi_i \phi_j (\partial^\mu \phi_k) (iH^\dagger \overrightarrow{D_\mu} H) \right $
\mathcal{O}_{7U}^{H}	$\left[(x^{ikj} + y^{ijk}) (\partial_{\mu}\phi_i)(\partial^{\mu}\phi_j)\phi_k H^{\dagger} H \right]$

* Fermion

Operator	Definition	
\mathcal{O}_{7U}^{LL}	$\left \left(s^{ijk} + y^{ijk} + x^{ikj} \right) \left(\eta_i \eta_j \right) \left((L^{\dagger} \tilde{H}) \overline{\xi}_k^{\dagger} \right) \right $	
\mathcal{O}^{LR}_{7U}	$ (y^{ijk} + x^{ikj}) (\bar{\xi}_i^{\dagger} \bar{\xi}_j^{\dagger}) ((L^{\dagger} \tilde{H}) \bar{\xi}_k^{\dagger}) $	

* Both

Operator	Definition
$\mathcal{O}_{6U}^{LH^\dagger}$	$s^{ij} \phi_i \phi_j \left((L^{\dagger} \tilde{H}) \bar{\xi}^{\dagger} \right)$
\mathcal{O}^L_{7U}	$a^{ij}\phi_i(\partial_\mu\phi_j)\left((L^\dagger\tilde{H})\bar{\sigma}^\mu\eta\right)$
\mathcal{O}_{6U}^{HS}	$s^{ij}ar\chi_i^c\chi_j\phiH^\dagger H$
$\mathcal{O}_{6U}^{ar{H}P}$	$s^{ij}ar{\chi}^c_i\gamma^5\chi_j\phiH^\dagger H$
$reve{\mathcal{O}}_{6U}^B$	$a^{ij}ar{\chi}^c_i\sigma^{\mu u}\chi_j\phireve{B}_{\mu u}$
\mathcal{O}_{7U}^{ZV}	$a^{ij}\bar{\chi}^c_i\gamma^\mu\chi_j\phi\left(iH^\dagger \overrightarrow{D}_\mu H\right)$
\mathcal{O}_{7U}^{ZA}	$\left[s^{ij} ar{\chi}^c_i \gamma^\mu \gamma^5 \chi_j \phi \left(i H^\dagger \overleftrightarrow{D_\mu} H \right) \right]$
\mathcal{O}_{7U}^{HV}	$a^{ij}\bar{\chi}_i^c\gamma^\mu\chi_j\left(\phi\overleftrightarrow{\partial_\mu}(H^\dagger H)\right)$
\mathcal{O}_{7U}^{HA}	$s^{ij} \bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j \left(\phi \overleftrightarrow{\partial_\mu} (H^\dagger H) \right) $

- Small number of operators;
 Only TWO for unique DM
- * Only neutral SM: h, Z, γ , ν
- * (Almost) all lead to 2 \rightarrow 3 SA
- Very simple model space

Dark Partner

Operator	Definition	ω/ψ
\mathcal{O}_{4U}^H	$s^{ij} \phi_i \phi_j (H^{\dagger} \omega)$	$(1, 2, \frac{1}{2})$
$\mathcal{O}_{5U}^{ H _1^2}$	$s^{ij} \phi_i \phi_j \omega H^{\dagger} H$	(1, 1, 0)
$\mathcal{O}_{5U}^{ H _3^2}$	$s^{ij} \phi_i \phi_j \omega^a H^\dagger \sigma^a H$	(1, 3, 0)
$\mathcal{O}_{5U}^{H^2}$	$s^{ij} \phi_i \phi_j \omega^a H^\dagger \sigma^a \tilde{H}$	(1, 3, 1)
\mathcal{O}_{6U}^{Hd}	$s^{ij} \phi_i \phi_j (H^{\dagger} \omega) (H^{\dagger} H)$	$(1, 2, \frac{1}{2})$
\mathcal{O}_{6U}^{Hq}	$s^{ij} \phi_i \phi_j \omega^{IJK} H_I^{\dagger} H_J^{\dagger} \tilde{H}_K^{\dagger}$	$(1, 4, \frac{1}{2})$
$\mathcal{O}_{6U}^{H^3}$	$s^{ij} \phi_i \phi_j \omega^{IJK} H_I^{\dagger} H_J^{\dagger} H_K^{\dagger}$	$(1, 4, \frac{3}{2})$
$\mathcal{O}_{6U}^{H\partial^2}$	$s^{ij} (\partial_{\mu} \phi_i)(\partial^{\mu} \phi_j)(H^{\dagger} \omega)$	$(1, 2, \frac{1}{2})$
$\mathcal{O}_{6U}^{H\partial D}$	$a^{ij} \phi_i(\partial_\mu \phi_j) \left(H^\dagger \overleftrightarrow{D_\mu} \omega \right)$	$(1, 2, \frac{1}{2})$
$\mathcal{O}_{6U}^{HD^2}$	$s^{ij} \phi_i \phi_j (D^{\mu} H)^{\dagger} (D_{\mu} \omega)$	$(1, 2, \frac{1}{2})$
${\cal O}_{5U}^{ar f\psi}$	$s^{ij}\phi_i\phi_jar f\zeta$	$(ar{R}_{ar{f}},1,-Y_{ar{f}})$
$\mathcal{O}_{5U}^{F\psi}$	$s^{ij} \phi_i \phi_j F^{\dagger} \bar{v}^{\dagger}$	$(R_F, 2, Y_F)$
${\cal O}_{6U}^{ar f H \psi}$	$s^{ij} \phi_i \phi_j \bar{f}(\tilde{H}^\dagger \zeta)$	$(\bar{R}_{\bar{f}}, 2, -Y_{\bar{f}} - \frac{1}{2})$
${\cal O}_{6U}^{ar f H^\dagger \psi}$	$s^{ij} \phi_i \phi_j \bar{f}(H^\dagger \zeta)$	$(\bar{R}_{\bar{f}}, 2, -Y_{\bar{f}} + \frac{1}{2})$
$\mathcal{O}_{6U}^{FH\psi_1}$	$s^{ij} \phi_i \phi_j (F^\dagger H) \bar{v}^\dagger$	$(R_F, 1, Y_F - \frac{1}{2})$
$\mathcal{O}_{6U}^{FH^\dagger\psi_1}$	$s^{ij} \phi_i \phi_j (F^{\dagger} \tilde{H}) \bar{v}^{\dagger}$	$(R_F, 1, Y_F + \frac{1}{2})$
$\mathcal{O}_{6U}^{FH\psi_3}$	$s^{ij} \phi_i \phi_j (F^{\dagger} \sigma^a H) \bar{v}^{a\dagger}$	$(R_F, 3, Y_F - \frac{1}{2})$
$\mathcal{O}_{6U_{-}}^{FH^{\dagger}\psi_{3}}$	$s^{ij} \phi_i \phi_j (F^{\dagger} \sigma^a \tilde{H}) \bar{v}^{a\dagger}$	$(R_F, 3, Y_F + \frac{1}{2})$
$\mathcal{O}_{6U}^{f\partial}$	$a^{ij}\phi_i(\partial_\mu\phi_j)\bar{f}\sigma^\mu\bar{v}^\dagger$	$(ar{R}_{ar{f}},1,-Y_{ar{f}})$
$\mathcal{O}_{6U}^{F\partial}$	$a^{ij}\phi_i(\partial_\mu\phi_j)F^{\dagger}\bar{\zeta}^\mu\eta$	$(R_F,2,Y_F)$

- Possibilities vastly increased
- Scalar DM plus
 - Scalar dark partner (top)
 - Fermion dark partner (bottom)
 - One renormalisable operator
- * Multiple d = 5 operators
- Situation for fermion and scalar-fermion DM similar
- All SM final states possible
 - * γ/g require multi-component DM