Constraints to dark energy using PADE parameterizations

Mohammad Malekjani

Bu-Ali Sina university, Hamadan-Iran

Jul, 2017

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran Constraints to dark energy using PADE parameteriz

Jul, 2017 1 / 22

Outline

1 PADE rational approximation

- 2 PADE cosmologies
- Observational constraints using background data in MCMC analysis
- Growth of perturbations in PADE cosmologies
- Joint MCMC analysis using geometrical+growth data
- 6 Conclusion

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran<mark>Constraints to dark energy using PADE parameteriz</mark>

< E

• • • • • • • • • •

Outline

- PADE rational approximation
- 2 PADE cosmologies
- Observational constraints using background data in MCMC analysis
- Growth of perturbations in PADE cosmologies
- Joint MCMC analysis using geometrical+growth data
- 6 Conclusion

-

- PADE rational approximation
- 2 PADE cosmologies
- 3 Observational constraints using background data in MCMC analysis
- Growth of perturbations in PADE cosmologies
- Joint MCMC analysis using geometrical+growth data
- 6 Conclusion

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran Constraints to dark energy using PADE parameteriz

Image: A matrix

- PADE rational approximation
- 2 PADE cosmologies
- 3 Observational constraints using background data in MCMC analysis
- Growth of perturbations in PADE cosmologies
- Joint MCMC analysis using geometrical+growth data

6 Conclusion

- PADE rational approximation
- 2 PADE cosmologies
- 3 Observational constraints using background data in MCMC analysis
- Growth of perturbations in PADE cosmologies
- 5 Joint MCMC analysis using geometrical+growth data

6 Conclusion

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran<mark>Constraints to dark energy using PADE parameteriz</mark>

- PADE rational approximation
- 2 PADE cosmologies
- 3 Observational constraints using background data in MCMC analysis
- Growth of perturbations in PADE cosmologies
- 5 Joint MCMC analysis using geometrical+growth data
- 6 Conclusion

PADE rational approximation

PADE rational approximation

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran<mark>Constraints to dark energy using PADE parameteriz</mark>

Jul, 2017 3 / 22

<ロ> <=> <=> <=> <=> <=>

PADE rational approximation

PADE approximations in Mathematics

$$f(x) = \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n}{b_0 + b_1 x + b_2 x^2 + \dots + b_n x^m},$$
(1)

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran<mark>Constraints to dark energy using PADE parameteriz</mark>

Jul, 2017 3 / 22

- E -

PADE rational approximation

PADE approximations in Mathematics

$$f(x) = \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n}{b_0 + b_1 x + b_2 x^2 + \dots + b_n x^m},$$
(1)

PADE(I)

$$w_{\rm de}(a) = \frac{w_0 + w_1(1-a)}{1 + w_2(1-a)}$$
.

 w_0 , w_1 and w_2 are the free parameters of the model.

(2)

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran Constraints to dark energy using PADE parameteriz

Simplified PADE(I)

$$w_{\rm de}(a) = \frac{w_0}{1 + w_2(1-a)}$$
.

 w_0 and w_2 are the free parameters of the model.

PADE(II)

$$w_{\rm de}(a) = \frac{w_0 + w_1 \ln a}{1 + w_2 \ln a}$$

 w_0 , w_1 and w_2 are the free parameters of the model.

(3)

Jul, 2017 4 / 22

Simplified PADE(I)

$$w_{\rm de}(a) = \frac{w_0}{1 + w_2(1 - a)}$$
.

 w_0 and w_2 are the free parameters of the model.

PADE(II)

$$w_{\rm de}(a) = \frac{w_0 + w_1 \ln a}{1 + w_2 \ln a} ,$$

 w_0 , w_1 and w_2 are the free parameters of the model.

(3)

(4)

Jul, 2017 4 / 22

Freidmann Equation

$$H^2=rac{8\pi G}{3}(
ho_{
m r}+
ho_{
m m}+
ho_{
m de})\;,$$

Continuity Equations

$$\dot{\rho_{\rm r}} + 4H\rho_{\rm r} = 0 , \qquad (6)$$

$$\dot{\rho_{\rm m}} + 3H\rho_{\rm m} = 0 , \qquad (7)$$

$$\dot{\rho_{\rm de}} + 3H(1 + w_{\rm de})\rho_{\rm de} = 0 , \qquad (8)$$

• • • • • • • • •

► < Ξ >

Freidmann Equation

$$H^2=rac{8\pi G}{3}(
ho_{
m r}+
ho_{
m m}+
ho_{
m de}) \ ,$$

Continuity Equations

$$\dot{\rho}_{\rm r} + 4H\rho_{\rm r} = 0 , \qquad (6)$$

$$\dot{\rho}_{\rm m} + 3H\rho_{\rm m} = 0 , \qquad (7)$$

$$\dot{\rho}_{\rm de} + 3H(1 + w_{\rm de})\rho_{\rm de} = 0 , \qquad (8)$$

(5)

- E

Freidmann Equation

$$H^{2} = \frac{8\pi G}{3}(\rho_{\rm r} + \rho_{\rm m} + \rho_{\rm de}) , \qquad (5)$$

Continuity Equations

$$\dot{\rho}_{\rm r} + 4H\rho_{\rm r} = 0 , \qquad (6)$$

$$\dot{\rho_{\rm m}} + 3H\rho_{\rm m} = 0 , \qquad (7)$$

$$\dot{\rho_{de}} + 3H(1 + w_{de})\rho_{de} = 0$$
, (8)

Image: A math and A

< E

Energy equations for DE in PADE parameterization

$$\rho_{\rm de}^{\rm (PADEI)} = \rho_{\rm de}^{(0)} a^{-3(\frac{1+w_0+w_1+w_2}{1+w_2})} [1+w_2(1-a)]^{-3(\frac{w_1-w_0w_2}{w_2(1+w_2)})} , \tag{9}$$

$$\rho_{\rm de}^{(\rm simp.PADEI)} = \rho_{\rm de}^{(0)} a^{-3(\frac{1+w_0+w_2}{1+w_2})} [1+w_2(1-a)]^{-3(\frac{-w_0w_2}{w_2(1+w_2)})} , \qquad (1$$

$$\rho_{\rm de}^{\rm (padeII)} = \rho_{\rm de}^0 a^{-3(\frac{w_1+w_2}{w_2})} (1+w_2\ln a)^{3(\frac{w_1-w_0w_2}{w_2^2})} \,. \tag{11}$$

Energy equations for DE in CPL parameterization

$$_{\rm de}^{\rm CPL} = \rho_{\rm de}^{(0)} a^{-3(1+w_0+w_1)} \exp\{-3w_1(1-a)\}$$
(12)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran<mark>Constraints to dark energy using PADE parameteria</mark>

Jul, 2017 6 / 22

Energy equations for DE in PADE parameterization

$$\rho_{\rm de}^{\rm (PADEI)} = \rho_{\rm de}^{(0)} a^{-3(\frac{1+w_0+w_1+w_2}{1+w_2})} [1+w_2(1-a)]^{-3(\frac{w_1-w_0w_2}{w_2(1+w_2)})} , \tag{9}$$

$$\rho_{\rm de}^{(\rm simp.PADEI)} = \rho_{\rm de}^{(0)} a^{-3(\frac{1+w_0+w_2}{1+w_2})} [1+w_2(1-a)]^{-3(\frac{-w_0w_2}{w_2(1+w_2)})}, \tag{10}$$

$$\rho_{\rm de}^{\rm (padeII)} = \rho_{\rm de}^0 a^{-3(\frac{w_1+w_2}{w_2})} (1+w_2\ln a)^{3(\frac{w_1-w_0w_2}{w_2^2})} \,. \tag{11}$$

Energy equations for DE in CPL parameterization

$$\rho_{\rm de}^{\rm CPL} = \rho_{\rm de}^{(0)} a^{-3(1+w_0+w_1)} \exp\{-3w_1(1-a)\}$$
(12)

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran<mark>Constraints to dark energy using PADE parameteria</mark>

Jul, 2017 6 / 22

Energy equations for DE in PADE parameterization

$$\rho_{\rm de}^{\rm (PADEI)} = \rho_{\rm de}^{(0)} a^{-3(\frac{1+w_0+w_1+w_2}{1+w_2})} [1+w_2(1-a)]^{-3(\frac{w_1-w_0w_2}{w_2(1+w_2)})} , \tag{9}$$

$$\rho_{\rm de}^{(\rm simp.PADEI)} = \rho_{\rm de}^{(0)} a^{-3(\frac{1+w_0+w_2}{1+w_2})} \left[1+w_2(1-a)\right]^{-3(\frac{-w_0w_2}{w_2(1+w_2)})},\tag{10}$$

$$\rho_{\rm de}^{\rm (padeII)} = \rho_{\rm de}^0 a^{-3(\frac{w_1+w_2}{w_2})} (1+w_2\ln a)^{3(\frac{w_1-w_0w_2}{w_2^2})} \,. \tag{11}$$

Energy equations for DE in CPL parameterization

$$\rho_{\rm de}^{\rm CPL} = \rho_{\rm de}^{(0)} a^{-3(1+w_0+w_1)} \exp\{-3w_1(1-a)\}$$
(12)

M. Malekjani (Bu-Ali Sina university, Hamadan-IranConstraints to dark energy using PADE parameteriz

Hubble parameter in PADE parameterization

$$E_{\text{PADEI}}^{2} = \bar{\Omega}_{\text{r}0}a^{-4} + \Omega_{\text{m}0}a^{-3} + (1 - [\Omega_{\text{r}0} + \Omega_{\text{m}0}]) \times a^{-3(\frac{1+w_{0}+w_{1}+w_{2}}{1+w_{2}})} \times (1 + w_{2} - aw_{2})^{-3(\frac{w_{1}-w_{0}w_{2}}{1+w_{2}})}, \qquad (13)$$

$$\mathcal{E}_{\text{simPADEI}}^{2} = \Omega_{\text{r0}} a^{-4} + \Omega_{\text{m0}} a^{-3} + \left(1 - \left[\Omega_{\text{r0}} + \Omega_{\text{m0}}\right]\right) \times + \frac{-3\left(\frac{1+w_{0}+w_{2}}{1+w_{2}}\right)}{1+w_{2}} \times \left(1 + w_{2} - aw_{2}\right)^{-3\left(\frac{-w_{0}w_{2}}{w_{2}\left(1+w_{2}\right)}\right)},$$
(14)

$$E_{\text{PADEII}}^{2} = \Omega_{\text{r0}}a^{-4} + \Omega_{\text{m0}}a^{-3} + (1 - [\Omega_{\text{r0}} + \Omega_{\text{m0}}]) \times a^{-3(\frac{w_{1}+w_{2}}{w_{2}})} \times (1 + w_{2}\ln a)^{3(\frac{w_{1}-w_{0}w_{2}}{w_{2}})},$$
(15)

Hubble parameter in CPL parameterization

$$E_{\text{CPL}}^2 = \Omega_{\text{r0}} a^{-4} + \Omega_{\text{m0}} a^{-3} + (1 - \Omega_{\text{m0}} - \Omega_{\text{r0}}) \times a^{-3(1+w_0+w_1)} \exp[-3w_1(1-a)] , \qquad (16)$$

Buali Sina University

Jul, 2017 7 / 22

Hubble parameter in PADE parameterization

$$E_{\text{PADEI}}^{2} = \Omega_{\text{r0}}a^{-4} + \Omega_{\text{m0}}a^{-3} + (1 - [\Omega_{\text{r0}} + \Omega_{\text{m0}}]) \times a^{-3(\frac{1+w_{0}+w_{1}+w_{2}}{1+w_{2}})} \times (1 + w_{2} - aw_{2})^{-3(\frac{w_{1}-w_{0}w_{2}}{w_{2}(1+w_{2})})}, \qquad (13)$$

$$E_{\text{simPADEI}}^{2} = \Omega_{\text{r0}}a^{-4} + \Omega_{\text{m0}}a^{-3} + (1 - [\Omega_{\text{r0}} + \Omega_{\text{m0}}]) \times a^{-3(w_{1}-w_{2})}$$

$$a^{-3(\frac{1+w_0+w_2}{1+w_2})} \times (1+w_2-aw_2)^{-3(\frac{-w_0w_2}{w_2(1+w_2)})},$$
(14)

$$E_{\text{PADEII}}^{z} = \Omega_{\text{r0}}a^{-4} + \Omega_{\text{m0}}a^{-5} + (1 - [\Omega_{\text{r0}} + \Omega_{\text{m0}}]) \times a^{-3(\frac{w_{1}+w_{2}}{w_{2}})} \times (1 + w_{2}\ln a)^{3(\frac{w_{1}-w_{0}w_{2}}{w_{2}})},$$
(15)

Hubble parameter in CPL parameterization

$$E_{\rm CPL}^2 = \Omega_{\rm r0} a^{-4} + \Omega_{\rm m0} a^{-3} + (1 - \Omega_{\rm m0} - \Omega_{\rm r0}) \times a^{-3(1+w_0+w_1)} \exp[-3w_1(1-a)] ,$$

◆□ > ◆□ > ◆□ > ◆□ >

Buali Sina University

Hubble parameter in PADE parameterization

$$E_{\text{PADEI}}^{2} = \Omega_{\text{r0}}a^{-4} + \Omega_{\text{m0}}a^{-3} + (1 - [\Omega_{\text{r0}} + \Omega_{\text{m0}}]) \times a^{-3(\frac{1+w_{0}+w_{1}+w_{2}}{1+w_{2}})} \times (1 + w_{2} - aw_{2})^{-3(\frac{w_{1}-w_{0}w_{2}}{w_{2}(1+w_{2})})}, \qquad (13)$$

$$a^{-3(\frac{1+w_0+w_2}{1+w_2})} \times (1+w_2-aw_2)^{-3(\frac{-w_0w_2}{w_2(1+w_2)})},$$
(14)

$$E_{\text{PADEII}}^{2} = \Omega_{\text{r0}}a^{-4} + \Omega_{\text{m0}}a^{-3} + (1 - [\Omega_{\text{r0}} + \Omega_{\text{m0}}]) \times a^{-3(\frac{w_{1}+w_{2}}{w_{2}})} \times (1 + w_{2}\ln a)^{3(\frac{w_{1}-w_{0}w_{2}}{w_{2}})},$$
(15)

Hubble parameter in CPL parameterization

$$E_{\text{CPL}}^2 = \Omega_{\text{r0}} a^{-4} + \Omega_{\text{m0}} a^{-3} + (1 - \Omega_{\text{m0}} - \Omega_{\text{r0}}) \times a^{-3(1+w_0+w_1)} \exp[-3w_1(1-a)] , \qquad (16)$$

◆□ > ◆□ > ◆□ > ◆□ >

Buali Sina University

Jul, 2017 7 / 22

Data used in background level

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran<mark>Constraints to dark energy using PADE parameteriz</mark>

Jul, 2017 8 / 22

<ロ> <=> <=> <=> <=> <=>

Snla [1], CMB [2], BAO [3], BBN [4, 5], H(z) [6, 7, 8, 9]

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran Constraints to dark energy using PADE parameteriz

Jul, 2017 8 / 22

- Snla [1], CMB [2], BAO [3], BBN [4, 5], H(z) [6, 7, 8, 9]
- Using the above data, we perform the statistical analysis using the Markov Chain Monte Carlo (MCMC) method

- Snla [1], CMB [2], BAO [3], BBN [4, 5], H(z) [6, 7, 8, 9]
- Using the above data, we perform the statistical analysis using the Markov Chain Monte Carlo (MCMC) method
- In this framework, the joint likelihood function is the product of the individual likelihoods:

$$\mathcal{L}_{tot}(\mathbf{p}) = \mathcal{L}_{sn} \times \mathcal{L}_{bao} \times \mathcal{L}_{cmb} \times \mathcal{L}_{h} \times \mathcal{L}_{bbn} , \qquad (17)$$

- Snla [1], CMB [2], BAO [3], BBN [4, 5], H(z) [6, 7, 8, 9]
- Using the above data, we perform the statistical analysis using the Markov Chain Monte Carlo (MCMC) method
- In this framework, the joint likelihood function is the product of the individual likelihoods:

$$\mathcal{L}_{tot}(\mathbf{p}) = \mathcal{L}_{sn} \times \mathcal{L}_{bao} \times \mathcal{L}_{cmb} \times \mathcal{L}_{h} \times \mathcal{L}_{bbn} , \qquad (17)$$

Total chi-square χ^2_{tot} is given by:

$$\chi_{\text{tot}}^2(\mathbf{p}) = \chi_{\text{sn}}^2 + \chi_{\text{bao}}^2 + \chi_{\text{cmb}}^2 + \chi_{\text{h}}^2 + \chi_{\text{bbn}}^2 .$$
(18)

Free parameters of PADE models

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran<mark>Constraints to dark energy using PADE parameteriz</mark>

Jul, 2017 9 / 22

Free parameters of PADE models

Vector p in likelihood function indicates the free parameters of cosmological model as described at follows

Jul, 2017 9 / 22

Free parameters of PADE models

- Vector p in likelihood function indicates the free parameters of cosmological model as described at follows
- **p** = { $\Omega_{\text{DM0}}, \Omega_{\text{b0}}, h, w_0, w_1, w_2$ } for PADE (I) and (II) parameterisations

Free parameters of PADE models

- Vector p in likelihood function indicates the free parameters of cosmological model as described at follows
- **p** = { $\Omega_{\text{DM0}}, \Omega_{\text{b0}}, h, w_0, w_1, w_2$ } for PADE (I) and (II) parameterisations
- **p** = { $\Omega_{DM0}, \Omega_{b0}, h, w_0, w_2$ } for simplified PADE (I)

Free parameters of PADE models

- Vector p in likelihood function indicates the free parameters of cosmological model as described at follows
- **p** = { $\Omega_{\text{DM0}}, \Omega_{\text{b0}}, h, w_0, w_1, w_2$ } for PADE (I) and (II) parameterisations
- **p** = { $\Omega_{DM0}, \Omega_{b0}, h, w_0, w_2$ } for simplified PADE (I)
- **p** = { $\Omega_{\text{DM0}}, \Omega_{\text{b0}}, h, w_0, w_1$ } in the case of CPL parameterisation.
- **p** = { $\Omega_{DM0}, \Omega_{b0}, h$ } in the case of concordance ΛCDM model.

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran<mark>Constraints to dark energy using PADE parameteriz</mark>

Jul, 2017 10 / 22

<ロ> <=> <=> <=> <=> <=>

Table: The statistical results for the various DE parameterisations used in the analysis. These results are based on the expansion data. The concordance ΛCDM model is shown for comparison.

-	Model	PADE I	simp. PADE I	PADE II	CPL	ΛCDM
	k	6	5	6	5	3
	$\chi^2_{\rm min}$	567.6	567.7	567.9	567.6	574.4
-	AIC	579.6	577.7	579.9	577.6	580.4

The AIC is given by

$$AIC = -2\ln \mathcal{L}_{max} + 2k ,$$

< 口 > < 同

(19)

Table: The statistical results for the various DE parameterisations used in the analysis. These results are based on the expansion data. The concordance ΛCDM model is shown for comparison.

Model	PADE I	simp. PADE I	PADE II	CPL	ΛCDM
k	6	5	6	5	3
$\chi^2_{\rm min}$	567.6	567.7	567.9	567.6	574.4
AIC	579.6	577.7	579.9	577.6	580.4

The AIC is given by

$$AIC = -2\ln \mathcal{L}_{max} + 2k , \qquad (19)$$

• We find $\Delta AIC = AIC - AIC_{\Lambda} < 4$ hence, the DE parameterisations explored in this study are consistent with the expansion data as equally as standard model.

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran<mark>Constraints to dark energy using PADE parameteriz</mark>

Jul, 2017 11 / 22

<ロ> <=> <=> <=> <=> <=>

Table: A summary of the best-fit parameters for the various DE parameterisations using the background data.

Model	PADE I	simplified PADE I	PADE II	CPL	ΛCDM
$\Omega_{\rm m}^{(0)}$	0.286 ± 0.010	0.270 ± 0.010	0.2864 ± 0.0096	0.2896 ± 0.0090	0.2891 ± 0.009
h	0.682 ± 0.012	0.682 ± 0.012	0.686 ± 0.013	0.682 ± 0.012	0.6837 ± 0.008
w ₀	-0.825 ± 0.091	-0.845 ± 0.039	-0.889 ± 0.080	-0.80 ± 0.11	-
<i>w</i> ₁	$-0.09^{+0.39}_{-0.32}$	-	$0.37^{+0.29}_{-0.23}$	$-0.51^{+0.48}_{-0.38}$	-
w2	$-0.683^{+0.040}_{-0.034}$	-0.387 ± 0.034	$-0.353^{+0.038}_{-0.034}$	_	-
$w_{\rm de}(z=0)$	-0.825	-0.845	-0.889	-0.80	-1.0
$\Omega_{\rm de}(z=0)$	0.714	0.730	0.7136	0.7104	0.7109

All PADE parameterizations remains in quintessence regime with $-1 < w_{de} < -1/3$ and can not cross the phantom line.

Basic equations in linear regime

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran<mark>Constraints to dark energy using PADE parameteriz</mark>

Jul, 2017 12 / 22

Image: A math a math

Basic equations in linear regime

The basic equations that govern the evolution of non-relativistic matter and DE perturbations in linear regime are given by [10]

$$\dot{\delta_{\rm m}} + \frac{\theta_{\rm m}}{a} = 0 , \qquad (20)$$

$$\dot{\delta_{de}} + (1 + w_{de})\frac{\theta_{de}}{a} + 3H(c_{eff}^2 - w_{de})\delta_{de} = 0$$
, (21)

$$\dot{\theta}_{\rm m} + H\theta_{\rm m} - \frac{k^2\phi}{a} = 0$$
, (22)

$$\dot{\theta}_{de} + H\theta_{de} - \frac{k^2 c_{eff}^2 \theta_{de}}{(1+w_{de})a} - \frac{k^2 \phi}{a} = 0$$
, (23)

Buali

Basic equations in linear regime

The basic equations that govern the evolution of non-relativistic matter and DE perturbations in linear regime are given by [10]

$$\dot{\delta_{\rm m}} + \frac{\theta_{\rm m}}{a} = 0 , \qquad (20)$$

$$\dot{\delta_{de}} + (1 + w_{de})\frac{\theta_{de}}{a} + 3H(c_{eff}^2 - w_{de})\delta_{de} = 0$$
, (21)

$$\dot{\theta_{\rm m}} + H\theta_{\rm m} - \frac{k^2\phi}{a} = 0 , \qquad (22)$$

$$\dot{\theta_{de}} + H\theta_{de} - \frac{k^2 c_{\text{eff}}^2 \theta_{de}}{(1+w_{de})a} - \frac{k^2 \phi}{a} = 0 , \qquad (23)$$

The Poisson equation also reeds

$$-\frac{k^2}{a^2}\phi = \frac{3}{2}H^2[\Omega_{\rm m}\delta_{\rm m} + (1+3c_{\rm eff}^2)\Omega_{\rm de}\delta_{\rm de}], \qquad (24)$$

Jul, 2017 12 / 22

Two types of DE models

- In homogeneous DE models $c_{eff} = 1$ and $\delta_{de} = 0$, Equations for perturbations are simplified to those in standard cosmology.
- In clustered DE models $c_{eff} = 0$ and δ_{de} can grow due to gravitational instability in similar way to dark matter fluctuations.

Initial conditions

Two types of DE models

- In homogeneous DE models $c_{eff} = 1$ and $\delta_{de} = 0$, Equations for perturbations are simplified to those in standard cosmology.
- In clustered DE models $c_{eff} = 0$ and δ_{de} can grow due to gravitational instability in similar way to dark matter fluctuations.

Initial conditions

Initial conditions for solving the equations of perturbations are [11, 12, 13]

$$\begin{split} \delta'_{\rm mi} &= \frac{\delta_{\rm mi}}{a_{\rm i}} ,\\ \delta_{\rm dei} &= \frac{1 + w_{\rm dei}}{1 - 3w_{\rm dei}} \delta_{\rm mi} ,\\ \delta'_{\rm dei} &= \frac{4w'_{\rm dei}}{(1 - 3w_{\rm dei})^2} \delta_{\rm mi} + \frac{1 + w_{\rm dei}}{1 - 3w_{\rm dei}} \delta'_{\rm mi} , \end{split}$$
(25)

where we fix $a_i = 10^{-4}$ and $\delta_{mi} = 1.5 \times 10^{-5}$.

Two types of DE models

- In homogeneous DE models $c_{eff} = 1$ and $\delta_{de} = 0$, Equations for perturbations are simplified to those in standard cosmology.
- In clustered DE models $c_{eff} = 0$ and δ_{de} can grow due to gravitational instability in similar way to dark matter fluctuations.

Initial conditions

Initial conditions for solving the equations of perturbations are [11, 12, 13]

$$\begin{aligned} \delta'_{\rm mi} &= \frac{\delta_{\rm mi}}{a_{\rm i}} ,\\ \delta_{\rm dei} &= \frac{1 + w_{\rm dei}}{1 - 3w_{\rm dei}} \delta_{\rm mi} ,\\ \delta'_{\rm dei} &= \frac{4w'_{\rm dei}}{(1 - 3w_{\rm dei})^2} \delta_{\rm mi} + \frac{1 + w_{\rm dei}}{1 - 3w_{\rm dei}} \delta'_{\rm mi} , \end{aligned}$$
(25)

where we fix $a_i = 10^{-4}$ and $\delta_{mi} = 1.5 \times 10^{-5}$.

From the above equations, we first calculate $\delta_m(z)$ and $\delta_{de}(z)$ and then the observable quantity $f(z)\sigma_8(z)$ for different PADE parameterizations considered in this analysis.

Joint MCMC analysis using geometrical+growth data

Joint Likelihood analysis in background and perturbation levels

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran Constraints to dark energy using PADE parameteriz

Jul, 2017 14 / 22

Joint Likelihood analysis in background and perturbation levels

Growth data used in our analysis

• We use the latest observational data for the growth rate $f(z)\sigma_8(z)$ from [14]

2	$f\sigma_8$	Survey
0.02	0.36 ± 0.04	
0.067	0.423 ± 0.055	6dF Galaxy Survey
0.15	0.49 ± 0.15	SDSS DR7 MGS
0.17	0.51 ± 0.06	2dF Galaxy Rodshift Survey
0.22	0.42 ± 0.07	WiggleZ Dark Energy Survey
0.25	0.351 ± 0.058	SDSS II LRG
0.3	0.407 ± 0.055	SDSS I/II LRG + SDSS III BOSS CMASS
0.32	0.394 ± 0.062	SDSS III BOSS DR12 LOWZ
0.35	0.440 ± 0.05	SD88 DR5 LRG
0.37	0.460 ± 0.038	SDSS II LRG
0.38	0.430 ± 0.054	SDSS III BOSS DR12
0.4	0.419 ± 0.041	SDSS I/II LRG + SDSS III BOSS CMASS
0.41	0.45 ± 0.04	WiggleZ Dark Energy Survey
0.44	0.413 ± 0.080	WiggleZ Dark Energy Survey + Alcock-Pacaynski distortion
0.5	0.427 ± 0.043	SDSS I/II LRG + SDSS III BOSS CMASS
0.51	0.452 ± 0.057	SDSS III BOSS DR12
0.57	0.444 ± 0.038	SDSS III BOSS DR12 CMASS
0.59	0.488 ± 0.06	SDSS III BOSS DR12 CMASS
0.60	0.43 ± 0.04	WiggleZ Dark Energy Survey
0.6	0.433 ± 0.067	SDSS I/II LRG + SDSS III BOSS CMASS
0.60	0.390 ± 0.063	WiggleZ Dark Energy Survey + Alcode-Paczynski distortion
0.61	0.457 ± 0.052	SDSS III BOSS DR12
0.73	0.437 ± 0.072	WiggleZ Dark Energy Survey + Alcock-Paczynski distortion
0.77	0.490 ± 0.18	VIMOS-VLT Deep Survey
0.78	0.38 ± 0.04	WiggleZ Dark Energy Survey
0.8	0.470 ± 0.08	VIMOS Public Extragalactic Redshift Survey
1.36	0.482 ± 0.116	FastSound

Joint MCMC analysis using geometrical+growth data

Joint Likelihood analysis in background and perturbation levels

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran Constraints to dark energy using PADE parameteriz

Jul, 2017 15 / 22

Joint Likelihood analysis in background and perturbation levels

The total likelihood function using the combined cosmological data in background level and growth data in perturbation level is given by

$$\mathcal{L}_{tot}(\mathbf{p}) = \mathcal{L}_{sn} \times \mathcal{L}_{bao} \times \mathcal{L}_{cmb} \times \mathcal{L}_{h} \times \mathcal{L}_{bbn} \times \mathcal{L}_{gr} , \qquad (26)$$

hence

$$\chi_{\text{tot}}^{2}(\mathbf{p}) = \chi_{\text{sn}}^{2} + \chi_{\text{bao}}^{2} + \chi_{\text{cmb}}^{2} + \chi_{\text{h}}^{2} + \chi_{\text{bbn}}^{2} + \chi_{\text{gr}}^{2} , \qquad (27)$$

where the statistical vector **p** contains an additional free parameter, namely $\sigma_8 \equiv \sigma_8(z=0)$

Table: The statistical results for homogeneous (clustered) DE parameterisations used in the analysis. These results are based on the expansion+growth rate data. The concordance Λ CDM model is shown for comparison.

Model	PADEI	simplified PADE I	PADE II	CPL	ACDM
k	7	6	7	6	4
	576.4(576.5)	576.4(576.7)	576.9(577.1)		582.6
AIC	590.4(590.5)	588.4(588.7)	590.9(591.1)		

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran Constraints to dark energy using PADE parameteriz

Jul, 2017 16 / 22

Table: The statistical results for homogeneous (clustered) DE parameterisations used in the analysis. These results are based on the expansion+growth rate data. The concordance Λ CDM model is shown for comparison.

-	Model	PADE I	simplified PADE I	PADE II	CPL	ΛCDM
	k	7	6	7	6	4
	$\chi^2_{\rm min}$	576.4(576.5)	576.4(576.7)	576.9(577.1)	576.5(576.7)	582.6
	AIC	590.4(590.5)	588.4(588.7)	590.9(591.1)	588.5(588.7)	590.6

16 / 22

Jul, 2017

Table: A summary of the best-fit parameters for homogeneous (clustered) DE parameterisations using the background+growth rate data.

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran Constraints to dark energy using PADE parameteriz

Jul, 2017 17 / 22

< E

Table: A summary of the best-fit parameters for homogeneous (clustered) DE parameterisations using the background+growth rate data.

Model	PADE I	simplified PADE I	PADE II	CPL	ΛCDM
$\Omega_{m}^{(0)}$	$0.288 \pm 0.010 \ (0.288 \pm 0.010)$	$0.288 \pm 0.010 (0.2888 \pm 0.0099)$	$0.2721 \pm 0.0097 \ (0.2723 \pm 0.0098)$	$0.2875 \pm 0.0095 \ (0.2882 \pm 0.0093)$	0.2902 ± 0.0
h	$0.681 \pm 0.012 \ (0.681 \pm 0.012)$	$0.680 \pm 0.012 (0.679 \pm 0.012)$	$0.684 \pm 0.012 \ (0.683 \pm 0.012)$	$0.681 \pm 0.011 \ (0.680 \pm 0.011)$	0.6833 ± 0.0
wo	$-0.856 \pm 0.088 (-0.874^{+0.086}_{-0.097})$	$-0.839 \pm 0.038 \; (-0.836 \pm 0.037)$	$-0.893 \pm 0.075 \ (-0.896 \pm 0.078)$	$-0.81^{+0.10}_{-0.12}$ (-0.81 ± 0.10)	-
WI	$0.07^{+0.37}_{-0.29}$ $(0.14^{+0.38}_{-0.29})$	-	$0.41^{+0.26}_{-0.22} (0.43^{+0.27}_{-0.22})$	$-0.41^{+0.46}_{-0.37}$ $(-0.39^{+0.42}_{-0.36})$	-
w2	$-0.694^{+0.040}_{-0.036}$ $(-0.699^{+0.042}_{-0.038})$	$-0.388 \pm 0.034 \; (-0.388 \pm 0.035)$	$-0.357^{+0.039}_{-0.033}(-0.358^{+0.038}_{-0.034})$	-	-
σ_8	$0.751 \pm 0.015 (0.755 \pm 0.016)$	$0.751 \pm 0.015 (0.758 \pm 0.015)$	$0.771 \pm 0.015 (0.771 \pm 0.016)$	$0.751 \pm 0.015 (0.756 \pm 0.015)$	0.744 ± 0.0
$w_{de}(z = 0)$	-0.856(-0.874)	-0.839(-0.836)	-0.893(-0.896)	-0.81(-0.81)	-1.0
$\Omega_{de}(z = 0)$	0.712(0.712)	0.712(0.7112)	0.7279(0.7277)	0.7125(0.7118)	0.7098

Jul, 2017 17 / 22

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran<mark>Constraints to dark energy using PADE parameteriz</mark>

Jul, 2017 18 / 22

<ロ> <=> <=> <=> <=> <=>

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran<mark>Constraints to dark energy using PADE parameteriz</mark>

Jul, 2017 18 / 22

Jul, 2017 18 / 22

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran<mark>Constraints to dark energy using PADE parameteriz</mark>

Jul, 2017 19 / 22

<ロ> <=> <=> <=> <=> <=>

Simplified PADE I

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran Constraints to dark energy using PADE parameteriz

Jul, 2017 19 / 22

イロト イヨト イヨト イヨト

PADE II

・ロト ・ 四ト ・ ヨト ・ ヨト

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran Constraints to dark energy using PADE parameteriz

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran<mark>Constraints to dark energy using PADE parameteriz</mark>

Jul, 2017 20 / 22

<ロ> <=> <=> <=> <=> <=>

All PADE models are well fitted to growth rate data as equally as Λ CDM case.

sound one conversely

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran<mark>Constraints to dark energy using PADE parameteriz</mark>

Jul, 2017 20 / 22

• • • • • • • • • • • • •

Combining the geometrical data with growth rate data in perturbation level, we showed that all PADE parameterizations are well fitted to the full set of observatioal data similar to that of the CPL and Λ CDM models.

The current data of growth rate are not sufficient to discriminate between homogeneous and clustered DE models.

Combining the geometrical data with growth rate data in perturbation level, we showed that all PADE parameterizations are well fitted to the full set of observatioal data similar to that of the CPL and Λ CDM models.

The current data of growth rate are not sufficient to discriminate between homogeneous and clustered DE models.

Image: A matrix

Combining the geometrical data with growth rate data in perturbation level, we showed that all PADE parameterizations are well fitted to the full set of observatioal data similar to that of the CPL and Λ CDM models.

The current data of growth rate are not sufficient to discriminate between homogeneous and clustered DE models.

Combining the geometrical data with growth rate data in perturbation level, we showed that all PADE parameterizations are well fitted to the full set of observatioal data similar to that of the CPL and Λ CDM models.

The current data of growth rate are not sufficient to discriminate between homogeneous and clustered DE models.

Conclusion

References

- N. Suzuki, D. Rubin, C. Lidman, G. Aldering, and et.al, Apj **746**, 85 (2012), 1105.3470.
- Q.-G. Huang, K. Wang, and S. Wang, JCAP 1512(12), 022 (2015), 1509.00969.
- G. Hinshaw et al. (WMAP), Astrophys.J.Suppl. 208, 19 (2013), 1212.5226.
- P. Serra, A. Cooray, D. E. Holz, A. Melchiorri, S. Pandolfi, *et al.*, Phys. Rev. D **80**, 121302 (2009).
- S. Burles, K. M. Nollett, and M. S. Turner, ApJ 552, L1 (2001).
- M. Moresco *et al.*, JCAP **1208**, 006 (2012), 1201.3609.
 - E. Gaztanaga, A. Cabre, and L. Hui, Mon. Not. Roy. Astron. Soc. **399**, 1663 (2009), 0807.3551.
- C. Blake et al., Mon. Not. Roy. Astron. Soc. 425, 405 (2012), 1204.3674.
 - L. Anderson et al. (BOSS), Mon. Not. Roy. Astron. Soc. 441(1), 24 (2014), 1312.4877.
 - L. R. Abramo, R. C. Batista, L. Liberato, and R. Rosenfeld, Phys. Rev. D79, 023516 (2) 0806.3461.
 - R. Batista and F. Pace, JCAP **1306**, 044 (2013).

A. Mehrabi, S. Basilakos, M. Malekjani, and Z. Davari, Phys. Rev. **D92**(12), 123513 (20) and 1510.03996.

M. Malekjani (Bu-Ali Sina university, Hamadan-Iran<mark>Constraints to dark energy using PADE parameteriz</mark>

Jul, 2017 22 / 22