On a reinterpretation of the Higgs field in supersymmetry and a proposal for new quarks

Carlos Muñoz

DSU 2017, Daejeon, July 10-14, 2017
Work in collaboration with

Daniel E. López-Fogliani
(CONICET, Univ. Buenos Aires, Argentina)

arXiv: 1701.02652, PLB
The Higgs is intriguing

- the only elementary scalar in the spectrum of the SM
- introduces the hierarchy problem
- no three-fold replication, unlike the rest of the matter

In SUSY the presence of the Higgs(es) is more natural:

- scalar particles exist by construction
- the hierarchy problem can be solved
- models predict the Higgs mass $\lesssim 140$ GeV

BUT

- NO explanation is given for the existence of only one family
- Their behaviour is very different from the rest of the matter
Higgses do not have a three-fold replication as the rest of the matter

\[
L_i = \begin{pmatrix} \nu_i \\ e_i \end{pmatrix}_{Y = -1/2}, \quad Q_i = \begin{pmatrix} u_i \\ d_i \end{pmatrix}, \quad \begin{pmatrix} e_i^c \\ \nu_i \end{pmatrix}_{Y = +1/2}
\]

3 families of superfields in SUSY

\[
W = Y_e H_d^T \epsilon L e^c + Y_d H_d^T \epsilon Q d^c - Y_u H_u^T \epsilon Q u^c
\]

but since \(H_d\) and \(L\) have the same SM quantum numbers, \(Y = -1/2\)

this might lead one to interpret the Higgs superfield \(H_d\) as a fourth family of lepton superfields

\[
L_4 = \begin{pmatrix} \nu_4 \\ e_4 \end{pmatrix} = \begin{pmatrix} H_0^d \\ H_d^- \end{pmatrix} = H_d
\]

Unfortunately, one cannot interpret naturally the superfield \(H_u\) in a similar way, given that it is a doublet with no leptonic counterpart for its neutral component (...right-handed neutrinos)
Higgses are NOT sleptons and Higgsinos are NOT leptons

thus their behaviour is very different, e.g.:

\[<H_u^0> \neq 0 \ , \ <H_d^0> \neq 0 \ , \]

\[<\tilde{\nu}_{eL}> = 0 \ , \ <\tilde{\nu}_{\mu L}> = 0 \ , \ <\tilde{\nu}_{\tau L}> = 0 \]

This connection is ONLY posible if R-parity is violated
e.g. the Yukawa couplings of the **MSSM**

\[W = Y^e_{ij} H_d L_i e^c_j + Y^d_{ij} H_d Q_i d^c_j - Y^u_{ij} H_u Q_i u^c_j \]

have effectively a \(Z_2 \) discrete symmetry (**R parity**)

\[R_p \text{(particle)} = +1 \]
\[R_p \text{(sparticle)} = -1 \]

i.e. sparticles must appear in pairs

because of these couplings, there are **mixing** between sparticles, e.g. gauginos & higgsinos

\[
\begin{pmatrix}
\tilde{B}^0, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0
\end{pmatrix}
\]

4 neutralinos:

2 charginos:

\[
\tilde{\chi}^0_1 = N_{11} \tilde{B}^0 + N_{12} \tilde{W}^0 + N_{13} \tilde{H}_d^0 + N_{14} \tilde{H}_u^0
\]

\[
(\tilde{W}^+, \tilde{H}^+)
\]

BUT because of the different \(R_p \) quantum numbers, there can be no mixing between particles and sparticles, e.g. between neutralinos and neutrinos, ...
The gauge-invariant trilinear superpotential containing right-handed neutrinos:

\[
W = Y_{ij}^e H_d L_i e_j^c + Y_{ij}^d H_d Q_i d_j^c - Y_{ij}^u H_u Q_i u_j^c - Y_{ij}^\nu H_u L_i \nu_j^c \\
+ \lambda_{ijk} L_i L_j e_k^c + \lambda_{ijk}^l L_i Q_j d_k^c + \frac{1}{3} \kappa_{ijk} \nu_i^c \nu_j^c \nu_k^c + \lambda_i H_u H_d \nu_i^c.
\]

violates explicitly \(R_p \)

\[
<H_u^0>, <H_d^0>, <\tilde{\nu}_i L>, <\tilde{\nu}_i R> \neq 0
\]

Fields with the same color, electric charge and spin naturally mix, e.g.:

"Neutrinos"

\[
(\tilde{B}^0, \tilde{W}^0, \tilde{H}_d, \tilde{H}_u, \nu_{R_i}, \nu_{L_i}).
\]

Parameter which determines the violation of \(R_p \) : \(Y^\nu \)

\(Y^\nu \rightarrow 0 \) the \(\nu^c \) are no longer neutrinos, they are just ordinary singlets like the \(N \) of the NMSSM: \(N H_1 H_2 + NNN \), and R-parity is conserved
A simple re-interpretation of the spectrum

neutrinos/leptons neutral Higgs exist in Nature (SM)

neutrinos/leptons neutral/charged Higgsinos

neutrinos/leptons neutral/charged Higgses

neutrinos/leptons neutral/charged Higgses

sneutrinos/sleptons neutral/charged Higgsinos

sneutrinos/sleptons neutral/charged Higgses

There are only neutrinos/leptons (and quarks) and their scalar partners

\[
L_i = \begin{pmatrix} \nu_i \\ e_i \end{pmatrix}, \quad e_i^c, \quad Q_i = \begin{pmatrix} u_i \\ d_i \end{pmatrix}, \quad d_i^c, \quad u_i^c
\]

\[
H_d = \begin{pmatrix} H_d^0 \\ H_d \end{pmatrix}, \quad H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}
\]

Higgses are vector-like

leptons of a fourth family

In this framework, the first scalar particle discovered at the LHC is a sneutrino belonging to a 4th-family vector-like doublet representation.
Extra bonuses

\[W = Y_{ij}^e H_d L_i e_j^e + Y_{ij}^d H_d Q_i d_j^c - Y_{ij}^u H_u Q_i u_j^c - Y_{ij}^\nu H_u L_i \nu_j^c + \lambda_{ijk} L_i L_j e_k^c + \lambda_{ijk}^l L_i Q_j d_k^c + \frac{1}{3} \kappa_{ijk} \nu_i^c \nu_j^c \nu_k^c + \lambda_i H_u H_e \nu_i^c. \]

When the right sneutrinos acquire VEVs of order the EW scale, an effective \(\mu \)-term from \(\nu \) is generated (\(\mu \nu \) SSM)

 produc ing higgsino masses beyond the experimental bounds \(\mu \geq 100 \) GeV

solving the \(\mu \) problem: What is the origin of \(\mu \), and why is so small \(\ll M_{\text{Planck}} \)

-as well as effective Majorana masses for neutrinos: EW scale seesaw

\[m_\nu \sim m_D^2/M_M = (Y_\nu \nu_u)^2/(\kappa v_R) \sim (10^{-6} 10^2)^2/10^3 = 10^{-11} \text{ GeV} = 10^{-2} \text{ eV} \]

Like the electron Yukawa

solving the \(\nu \) problem: How to accommodate the neutrino data
Since R parity is violated, SUSY particles can decay to standard model particles, there is no missing energy as a special signal, and the bounds become significantly weaker.

Interesting LHC phenomenology because of R-parity violation

- Novel signals with displaced vertices, multilepton final states, multijets

...
E.g.: Left Sneutrino LSP

\(\tilde{\nu}_i \) \(i = e, \mu, \tau \)

\((\tilde{\nu}_e, \mu, \tau \text{ LSP}) \) diphoton + missing energy

\((\tilde{\nu}_\tau \text{ LSP}) \) diphoton + leptons

\((\tilde{\nu}_\tau \text{ LSP}) \) multileptons

\(Y_\nu \sim 10^{-6} \to 45 \lesssim m_{\tilde{\nu}_L} \lesssim 300 \text{ GeV} \) in order to observe its production at the LHC

\(m_{\tilde{\nu}_L} \sim 45 - 100 \text{ GeV} \) have decay lengths \(\sim \text{ mm} \)

Carlos Muñoz
UAM & IFT

Novel signals from novel R-parity violation
Proposal for new quarks

\[L_i = \begin{pmatrix} \nu_i^c \\ e_i \\ \nu_i \end{pmatrix}, \quad Q_i = \begin{pmatrix} u_i \\ d_i \\ u_i \end{pmatrix}, \quad Q^c = \begin{pmatrix} d_i^c \\ u_i^c \end{pmatrix}, \]

\[L_4 = \begin{pmatrix} \nu_4 \\ e_4 \end{pmatrix} \quad L_4^c = \begin{pmatrix} e_4^c \nu_4 \end{pmatrix} \quad Q_4 = \begin{pmatrix} u_4 \\ d_4 \end{pmatrix} \quad Q_4^c = \begin{pmatrix} d_4^c \\ u_4^c \end{pmatrix} \]

For the first 3 families, each lepton representation has its quark counterpart.

In analogy, we add to the 4th family a vector-like quark doublet representation as counterpart of the vector-like lepton/Higgs doublet representation.

\[W = Y_{ij} e_i^c H_d L_i e_j + Y_{ij} d_i^c H_d Q_i d_j^c - Y_{ij} u_i^c H_u Q_i u_j - Y_{ij} H_u Q_i L_i \nu_j^c \]

\[+ \lambda_{ijk} L_i e_j e_k^c + \lambda'_{ijk} L_i Q_j d_k^c + \frac{1}{3} \kappa_{ijk} \nu_i^c \nu_j^c \nu_k^c + \lambda_i H_u H_d \nu_i^c \]

\[+ \lambda'_{i4k} L_i Q_4 d_k^c + Y_{4k} d_i^c H_d Q_4 d_k^c - Y_{4k} u_i^c H_u Q_4 u_k^c + Y_{4k} Q_j Q_4 \nu_k^c \]

Mass term for the new quarks.
The presence of extra vector-like matter is a common situation in string constructions: Orbifolds, Branes,…

Font, Ibañez, Nilles, Quevedo, 88; Font, Ibañez, Quevedo, Sierra, 90
Casas, Katehou, C.M., 87; Casas, C.M., 88
Cvetic, Shiu, Uranga, 01

…
Novel signatures for vector-like quarks

Work in collaboration with

J. A. Aguilar-Saavedra
(Univ. Granada, Spain)

D. E. López-Fogliani
(CONICET, Univ. Buenos Aires, Argentina)

arXiv: 1705.02526, JHEP
Detection of heavy vector-like quarks (T B) at the LHC

Many searches for heavy quark pair or single production focus on the standard decay modes:

- \(T \rightarrow W^+ b \)
- \(T \rightarrow Z t \)
- \(T \rightarrow h^0 t \)
- \(B \rightarrow W^- t \)
- \(B \rightarrow Z b \)
- \(B \rightarrow h^0 b \)

New BRs are possible in models with non-minimal scalar sectors, modifying the analyses:

- \(T \rightarrow H^+ b \)
- \(T \rightarrow H_k^0 t \)
- \(T \rightarrow P_k^0 t \)
- \(B \rightarrow H_k^0 b \)
- \(B \rightarrow P_k^0 b \)

New signals can be produced:

- \(T \rightarrow t \bar{t} t \)
- \(T \rightarrow h^0 h^0 t \)
- \(B \rightarrow t \bar{t} b \)
- \(B \rightarrow h^0 h^0 b \)
Detection of heavy vector-like quarks (T B) at the LHC

\[T \rightarrow t \bar{b} \ b \]

\[B \rightarrow t \bar{t} \ b \]

Carlos Muñoz
UAM & IFT

Novel signals from novel R-parity violation

B \rightarrow h^0h^0b
The lower limits on the (T,B) quark masses are less stringent

\[\text{T} \rightarrow W^+ b \quad \text{T} \rightarrow Z t \quad \text{T} \rightarrow h^0 t \quad \text{Br}(W) + \text{Br}(Z) + \text{Br}(h^0) = \rho = 1 \]

New decay modes \[\text{Br}(W) + \text{Br}(Z) + \text{Br}(h^0) = \rho < 1 \]

Figure 6: Lower limits on the T quark mass for several values of \(\rho \) from a recast of the limits of the heavy quark search in ATLAS-CONF-2016-101

Carlos Muñoz
UAM & IFT

Novel signals from novel R-parity violation
Conclusions

SUSY with right-handed neutrinos naturally produces R-parity violation

- Interesting theoretical advantages:
 - solves the μ problem
 - solves the ν problem
 - reinterpretation of the Higgs(es) as a “4th family” of lepton superfields

- Interesting LHC phenomenology:
 - Novel signals with displaced vertices, multilepton final states, multijets, diphoton + leptons, diphoton + missing energy

 new vector-like quarks:

 $T \rightarrow t \bar{t} t$ $T \rightarrow h^0 h^0 t$ $B \rightarrow t \bar{t} b$ $B \rightarrow h^0 h^0 b$
DSU 2005

SURVIVORS OF THE WORKSHOP PREPARED TO ENTER IN THE DARK SIDE OF THE UNIVERSE

Dark Side of the Universe 2017