

Nonlinear Oscillations of Black Holes

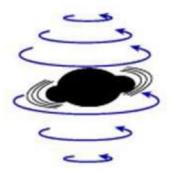
Huan Yang Astronomy Department, Tsinghua Universtiy

Collaborators: Neev Khera, Sizheng Ma

IBS-CTPU-CGA QNM & BH Perturbation Workshop, May 27, 2025

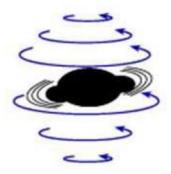
Content

- Classification of linear and nonlinear black hole perturbations.
- Quadratic modes: insights from numerical simulations.
- Quadratic modes: analytical theory.
- Recent progress on QNM tomography.



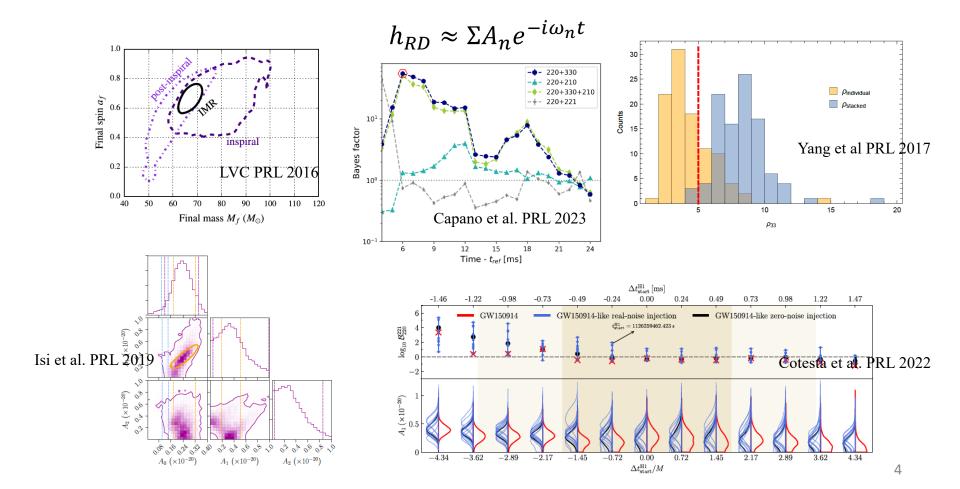
Content

- Classification of linear and nonlinear black hole perturbations.
- Quadratic modes: insights from numerical simulations.
- Quadratic modes: analytical theory.
- Recent progress on QNM tomography.



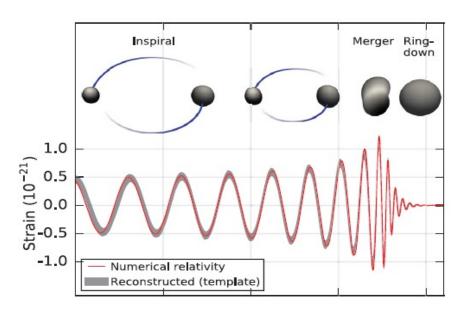
The simplicity and complexity of BH ringdown

• Black hole spectroscopy targets the QNM spectrum of the final black hole, which has been the main theme of ringdown study in the past decades.



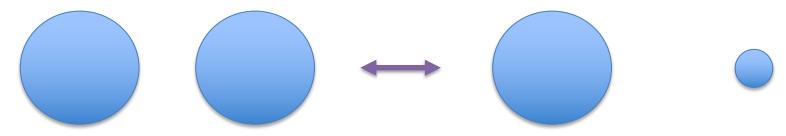
The simplicity and complexity of BH ringdown

- Black hole spectroscopy targets the QNM spectrum of the final black hole, which has been the main theme of ringdown study in the past decades.
- Ringdown SNR \sim O(10) for current detectors, but can be O(10²) for 3G detectors and LISA.
- From single mode to multiple modes; from mode frequencies to mode amplitudes; from late-time fit to fit-from-the-peak; We are advancing towards non-(linear) mode information of BH ringdown.



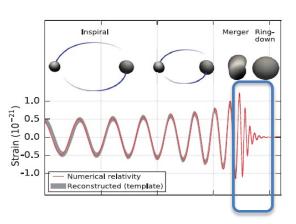
Beyond black hole spectroscopy

- Various mode and non-modal signals will be measured.
- Beyond black hole spectroscopy: a full ringdown waveform that includes various linear and nonlinear signals may be possible, expressed in mass-ratio expansions.



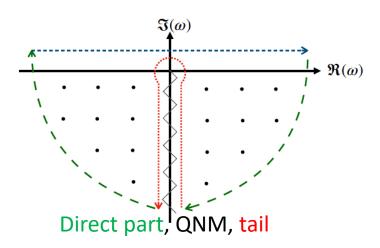
Theory has to catch up!

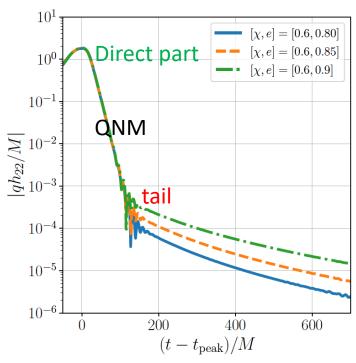
$$h = \epsilon h^{(1)} + \epsilon^2 h^{(2)} + \epsilon^3 h^{(3)} + \cdots$$



The decomposition of linear signals

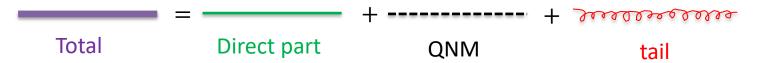
- The linear signal can be decomposed into three parts (Green function): QNMs, Direct part, and tail.
- QNMs are well understood, but the other two parts still requires more quantitative understandings.



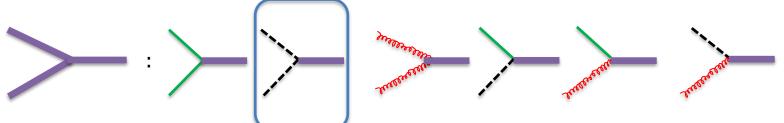


Classification of nonlinear signals

• The graphic representation of the Green's function:



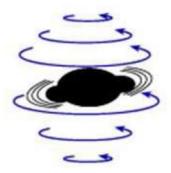
• Second order: mode-mode as the focus of this talk.



• Third order: future efforts.

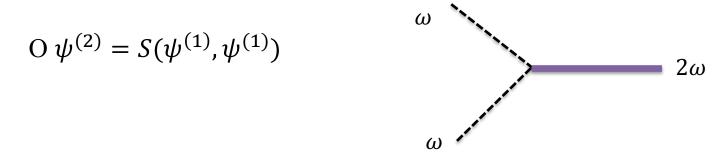
Content

- Classification of linear and nonlinear black hole perturbations.
- Quadratic modes: insights from numerical simulations.
- Quadratic modes: analytical theory.
- Recent progress on QNM tomography.



The early development of 2nd QNM

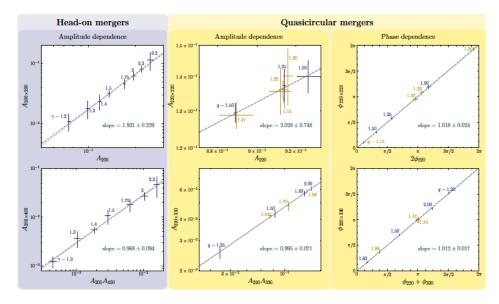
- Earlier work on second order perturbation of Schwarzschild may be traced back to Gleiser et al in 1996.
- The first calculation on Schwarzschild 2nd order QNM was performed by Nakano and Ioka in 2007 (on the coupling of even-parity modes); later work by [Bucciotti, Juliano, Khagias, Kuntz, Riotto, Trincherini...]

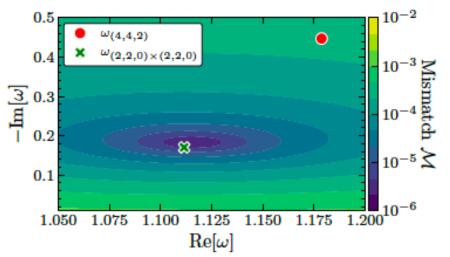


• Quadratic quasinormal mode: mode $(\omega) \times \text{mode } (\omega) \to \text{mode } (2\omega)$. The amplitude and phase of the quadratic mode is uniquely determined by the underlying linear mode.

Quadratic mode at infinity

- Quadratic quasinormal modes are indeed found in numerical simulations [Mitman et al., Cheung et al. PRL 2022]:
- Using linear modes plus additional modes for fitting. Checking the quadratic dependence in amplitudes and check the frequency of the additional mode.
- Spin dependence [Zhu et al.; Redondo-Yuste et al.; Mitman et al...]

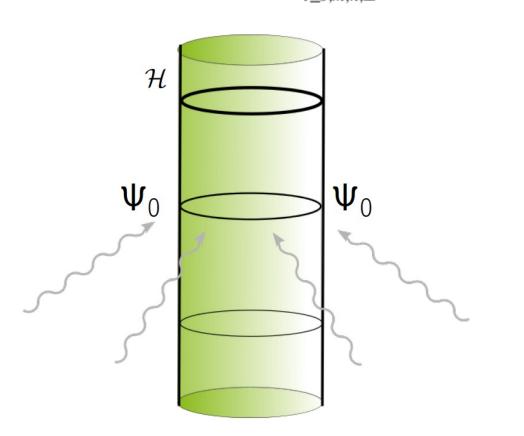




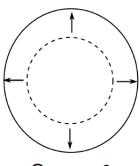
Quadratic mode on the horizon

• Black hole (isolated) horizon geometry may be described by the shear and other quantities.

$$\sigma(t,\theta,\varphi) = \sum_{l \geq s,m,n,\pm} \mathcal{A}_{lmn} e^{-i\omega_{lmn}^{\pm}(t-t_{\rm rd})+i\phi_{lmn}} {}_{2}Y_{lm}(\theta,\varphi)$$

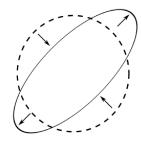


Expansion



$$\Theta_{(\ell)} = 0$$

Shear



Quadratic mode on the horizon

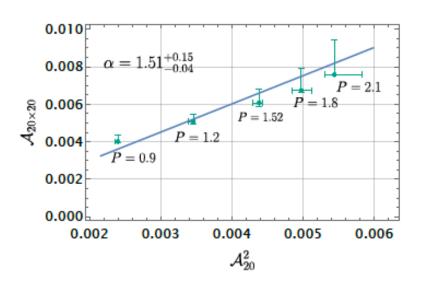
• Black hole horizon geometry may be described by the shear and other quantities.

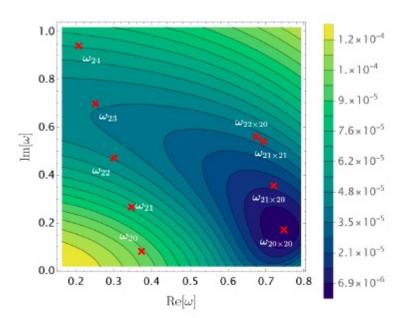
$$\sigma(t,\theta,\varphi) = \sum_{l \geq s,m,n,\pm} \mathcal{A}_{lmn} e^{-i\omega_{lmn}^{\pm}(t-t_{\rm rd}) + i\phi_{lmn}} {}_{2}Y_{lm}(\theta,\varphi)$$

• We have prepared a set of numerical simulations with head-on collisions of non-spinning black holes [Khera,.. HY, PRL 2023].

• We have searched for quadratic modes in the horizon shear and indeed we

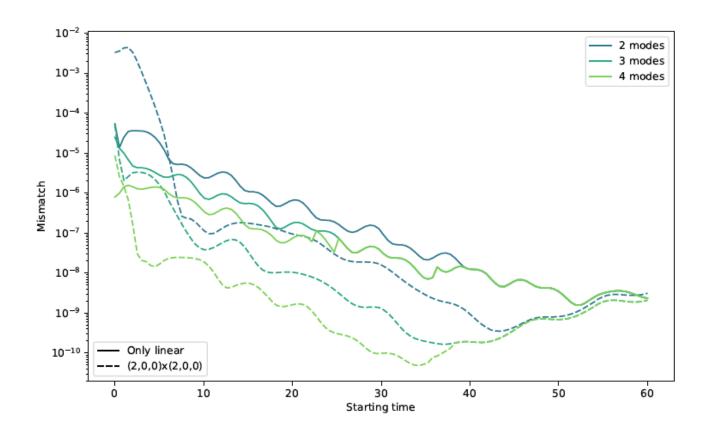
found them





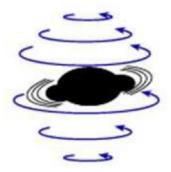
Quadratic mode fitting

• The evidence of QQNM may be also seen from the mismatch plot: fitting with only modes v.s. fitting with a QQNM.



Content

- Classification of linear and nonlinear black hole perturbations.
- Quadratic modes: insights from numerical simulations.
- Quadratic modes: analytical theory[2401.15516;2410.14529]
- Recent progress on QNM tomography.



General Formalism

• Let us consider an expansion of gravitational perturbations of Kerr:

$$\Psi_4 = \epsilon \Psi_4^{(1)} + \epsilon^2 \Psi_4^{(2)} + \mathcal{O}(\epsilon^3) \qquad g_{ab} = g_{ab}^{(0)} + \epsilon h_{ab}^{(1)} + \epsilon^2 h_{ab}^{(2)} + \mathcal{O}(\epsilon^3)$$

• The second order Teukolsky equation may be written as (the source term is a bilinear function on $h^{(1)}$)

$$\mathcal{T}\left[\bar{\Gamma}^4\Psi_4^{(2)}\right] = S_4^{(2)}$$

• Notice that Ψ is complex-valued, but h is real. For any particular QNM, Ψ can have one particular temporal and azimuthal angle dependent term, but h also has its conjugation.

$$\Psi \sim e^{i\omega_{lmn}t} e^{im\varphi}$$

$$h \sim Ae^{+i\omega_{lmn}t} e^{+im\varphi} + A^* e^{-i\omega_{lmn}^*t} e^{-im\varphi}$$

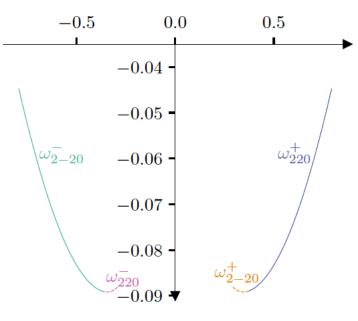
Classification of modes

- Classes of linear modes:
 - $p = \operatorname{sgn}(Re(\omega))$
 - Prograde: $p \times \text{sgn}(m) > 0$; retrograde: $p \times \text{sgn}(m) < 0$
 - Temporal and angular dependence

$$(l,m,n,p) \rightarrow e^{i\omega_{lmn}^p t} e^{im\varphi}$$

• The Kerr symmetry implies that

$$\omega_{\ell mn}^p = -(\omega_{\ell - mn}^{-p})^*$$



Giesler et al, 2025

Classification of mode couplings

Given a QQNM with a certain frequency, what are its parent mode?

$$\begin{pmatrix} \ell_1, & m_1, & n_1, & p_1 \\ \ell_2, & m_2, & n_2, & p_2 \end{pmatrix} \sim e^{-i(\omega_{\ell_1, m_1, n_1}^{p_1} + \omega_{\ell_2, m_2, n_2}^{p_2})t} e^{i(m_1 + m_2)\phi}$$

• There are four possible channels of couplings (L, \overline{L}) :

$$\begin{array}{lll} \mathsf{A}_1 & (\ell_1, m_1, n_1, p_1), & (\ell_1, -m_1, n_1, -p_1), & \mathsf{A}_{-1} \\ \mathsf{A}_2 & (\ell_2, m_2, n_2, p_2), & (\ell_2, -m_2, n_2, -p_2), & \mathsf{A}_{-2} \end{array}$$

- $(L_1 \otimes L_2)$: two frequency components $\omega_{l_1 m_1 n_1}^{p_1}$ and $\omega_{l_2 m_2 n_2}^{p_2}$ (++)
- $(\overline{L}_1 \otimes L_2)$: two frequency components $-\overline{\omega}_{l_1-m_1n_1}^{-p_1}$ and $\omega_{l_2m_2n_2}^{p_2}$ (-+)
- $(L_1 \otimes \overline{L}_2)$: two frequency components $\omega_{l_1 m_1 n_1}^{p_1}$ and $-\overline{\omega}_{l_2 m_2 n_2}^{-p_2}$. (+-)

$$-(\bar{L}_1 \otimes \bar{L}_2)$$
: zero (--)

Excitation of a QQNM

• As a result, the QQNM amplitude can be written as

$$\begin{split} A_Q = & \mathcal{R}_{++} A_1 A_2 + \mathcal{R}_{+-} A_1 \bar{A}_{-2} + \mathcal{R}_{-+} \bar{A}_{-1} A_2 \,, \\ \mathcal{R}^{\rm total} \equiv \frac{A_Q}{A_1 A_2} = & \mathcal{R}_{++} + (-1)^{\ell_2} \mathcal{R}_{+-} + (-1)^{\ell_1} \mathcal{R}_{-+} \end{split} \qquad \text{for non-precessional binaries} \end{split}$$

• For linear modes, (L, \overline{L}) are mirrors for each other; similarly for QQNM, (L_1, L_2) and $(\overline{L}_1, \overline{L}_2)$ are mirrors of each other. It can be shown that

$$\mathcal{R}_{c_1c_2}^{(L_1;L_2)} = (-1)^{\ell_Q + \ell_1 + \ell_2} \bar{\mathcal{R}}_{c_1c_2}^{(\bar{L}_1;\bar{L}_2)}, \quad \text{with} \quad c_1, c_2 = (\pm, \pm).$$

• Mode couplings also preserve parities:

$$(\text{even}) \otimes (\text{even}) \rightarrow (\text{even}), \quad (\text{odd}) \otimes (\text{odd}) \rightarrow (\text{even}), \quad (\text{odd}) \otimes (\text{even}) \rightarrow (\text{odd})$$

Computation method: complex contours

Coming back to the second order Teukolsky equation:

$$\mathcal{T}\left[\bar{\Gamma}^4\Psi_4^{(2)}\right] = S_4^{(2)}$$

Consider the solution written as

$$\psi^{(2)} = e^{-2i\omega_L t} e^{2im_L \phi} \sum_{l} R_l^{(2)}(r) S_l^{(2)}(\theta)$$

• The Teukolsky equation may be written as

$$e^{-2i\omega_L t + 2im\phi} \sum_{l} S_l^{(2)}(\theta)$$

$$\times (\Delta \mathcal{D}_{-1}^{\dagger (2)} \mathcal{D}_0^{(2)} - 12i\omega_L r - \lambda_l^{(2)}) R_l^{(2)}(r) = -2\bar{\Gamma}^4 \Sigma S_4^{(2)}$$

• (t, φ) dependence can be factored out and θ dependence can be removed with projection with spin-weighted spheroidal harmonics.

Complex contours: eigenvalue perturbation

- A complex contour technique may be applied to deal with divergences of wavefunctions near horizon and infinity.
- This method was previously used to study the eigenvalue perturbation theory [Yang, Zimmerman, Mark, Chen,...]. Imagine an operator equation

$$\mathcal{T}(\omega_0)\psi_0=0$$

• If the operator is perturbed:

$$[\mathcal{T}(\omega_0 + \epsilon \omega_1) + \epsilon \Delta \mathcal{T}(\omega_0 + \epsilon \omega_1)] (\psi_0 + \epsilon \psi_1) = 0$$
$$\mathcal{T}(\omega_0) \psi_1 + \omega_1 \partial_\omega \mathcal{T} \psi_0 + \Delta \mathcal{T}(\omega_0) \psi_0 = 0$$

• The perturbation of eigenvalue is (if the product is self-adjoint)

$$\langle \chi | \mathcal{T} \eta \rangle = \langle \mathcal{T} \chi | \eta \rangle$$

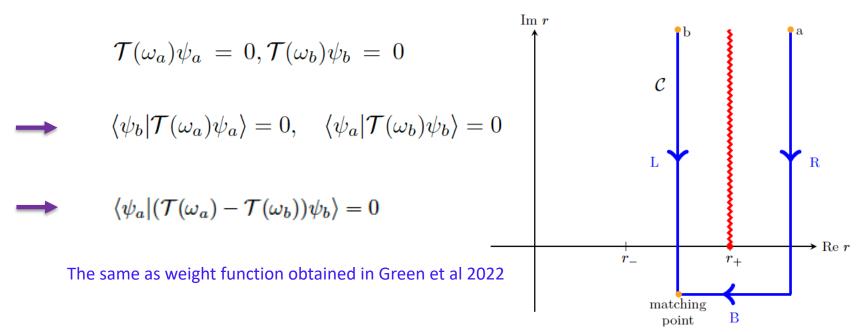
$$\omega_1 = -\frac{\langle \psi_0 | \Delta \mathcal{T} \psi_0 \rangle}{\langle \psi_0 | \partial_\omega \mathcal{T} \psi_0 \rangle}$$

Complex contours: eigenvalue perturbation

• This self-adjoint "inner product" or bilinear form may be constructed on a complex contour through

$$\langle \chi | \eta \rangle = \int_{\mathcal{C}} (r - r_{+})^{s} (r - r_{-})^{s} dr \int \sin \theta d\theta \, \chi(r, \theta) \eta(r, \theta)$$

• It has many successful applications [KN QNMs, parametric instability, Chern-Simon QNMs, etc.] Also naturally leads to QNM orthogonality.

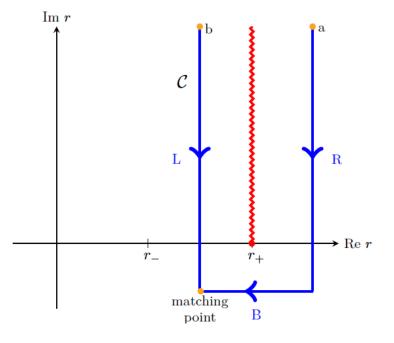


Complex contours: eigenvalue perturbation

• This self-adjoint "inner product" or bilinear form may be constructed on a complex contour through

$$\langle \chi | \eta \rangle = \int_{\mathcal{C}} (r - r_{+})^{s} (r - r_{-})^{s} dr \int \sin \theta d\theta \, \chi(r, \theta) \eta(r, \theta)$$

- It has many successful applications [KN QNMs, parametric instability, Chern-Simon QNMs, etc.] Also naturally leads to QNM orthogonality.
- In this problem it can be used to compute the wavefunction on the complex contour and obtain the amplitude at infinity through a matching calculation.



Computation method: hyperboloidal slicing

• Alternative formulation: consider the expansion of the metric perturbation and the expansion of the Einstein tensor

$$g_{ab} = g_{ab}^{(0)} + \epsilon h_{ab}^{(1)} + \epsilon^2 h_{ab}^{(2)} + \mathcal{O}\left(\epsilon^3\right)$$
$$G_{ab}[g_{ab}] = \epsilon G_{ab}^{(1)}[h_{ab}^{(1)}] + \epsilon^2 G_{ab}^{(1)}[h_{ab}^{(2)}] + \epsilon^2 G_{ab}^{(2)}[h_{ab}^{(1)}, h_{ab}^{(1)}]$$

At second order we expect

$$G_{ab}^{(1)}[h_{ab}^{(2)}] = -G_{ab}^{(2)}[h_{ab}^{(1)},h_{ab}^{(1)}]$$

• First order metric perturbation h⁽¹⁾ can be computed from Hertz potential for QNMs in the Outgoing Radiation Gauge

Computation method: hyperboloidal slicing

- We adopt the hyperboloidal slicing to regularize the wavefunctions and formulate the wave equation [Ripley 2022]. This enables numerical treatment of the reduced Teukolsky equation [Spiers 2022].
- It only gives $\Psi^{(2)}$ that comes from $h^{(2)}$, but in ORG the rest piece is zero.
- We apply the spectral method: quantities are expanded in Chebyshev Polynomials radially and spin-weighted spheroidal harmonics in the angular direction. For example, the Hertz potential is

$$\Phi = R \mathcal{R}(R) \mathcal{S}(\theta, \Phi) e^{-i\omega T}$$

$$\mathcal{R}(R) = \sum_{n=0}^{\infty} c_n T_n (1 - 2Rr_+),$$

$$\mathcal{S}(\theta, \Phi) = \sum_{\ell} s_{\ell} \, {}_{2}Y_{\ell m}(\theta, \Phi).$$

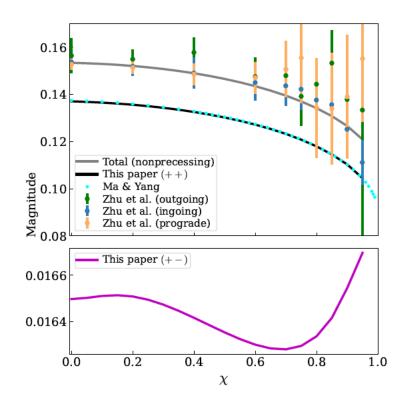
• At the end the truncated Teukilsky equation turns into a matrix eigenvalue problem.

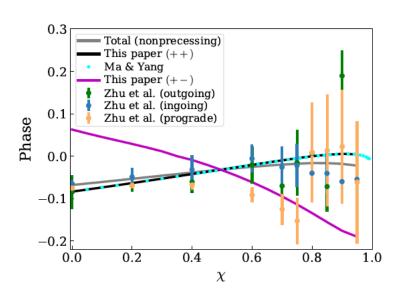
Results and comparisons

• For nonprecessing systems the reflection symmetry implies that $A_{-1} = (-1)^{l_1}\overline{A_1}$, which suggests that

$$\mathcal{R}^{\text{total}} \equiv \frac{A_Q}{A_1 A_2} = \mathcal{R}_{++} + (-1)^{\ell_2} \mathcal{R}_{+-} + (-1)^{\ell_1} \mathcal{R}_{-+}$$

• For Schwarzschild black hole $R_{++}\sim0.137$ (computed with both approaches), $R_{+-}\sim0.0165$, and $R^{total}\sim0.1534$ e^{-0.06787i}, consistent with [Bucciotti et al.]



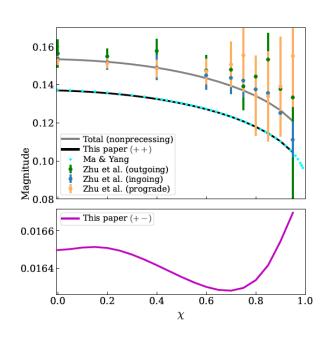


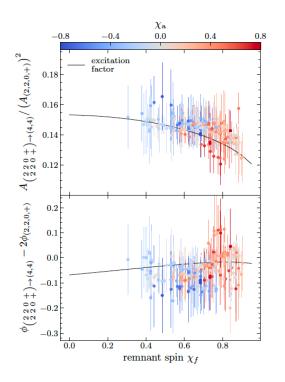
Results and comparisons

• For nonprecessing systems the reflection symmetry implies that $A_{-1} = (-1)^{l_1}\overline{A_1}$, which suggests that

$$\mathcal{R}^{\text{total}} \equiv \frac{A_Q}{A_1 A_2} = \mathcal{R}_{++} + (-1)^{\ell_2} \mathcal{R}_{+-} + (-1)^{\ell_1} \mathcal{R}_{-+}$$

• For Schwarzschild black hole $R_{++}\sim0.137$ (computed with both approaches), $R_{+-}\sim0.0165$, and $R^{total}\sim0.1534$ e^{-0.06787i}, consistent with [Bucciotti et al.]





Mitman et al. 2025

Results and comparisons

More general mode couplings are considered, where the amplitudes are fitted:

$$R = Ae^{i\phi}$$
, with $A = \sum_{i=0}^{7} A_i \chi^i$, $\phi = \sum_{i=0}^{7} \phi_i \chi^i$

They are summarized in the tables in [Khera et al. PRL 2025], e.g.

QQNM	Child Harmonic (ℓ, m)	Channel	A_0	A_1	A_2	A_3	A_4	A_5	A_6	A_7
$ \begin{pmatrix} 2 & 2 & 0 & + \\ 2 & 2 & 0 & + \end{pmatrix} $	(4, 4)	(+,+) (+,-)	$0.1371 \\ 0.0165$	-0.005585 -0.0001457	0.01943 0.006129	-0.2619 -0.04495	$0.8867 \\ 0.1308$	-1.592 -0.1975	$1.412 \\ 0.1517$	-0.4997 -0.04564
$\begin{pmatrix} 3 & 3 & 0 & + \\ 2 & 2 & 0 & + \end{pmatrix}$	(5, 5)	(+,+) (+,-) (+,-)	$0.3608 \\ 0.05032 \\ 0.009198$	$\begin{array}{c} 0.02932 \\ 0.003027 \\ 0.001532 \end{array}$	0.07302 0.01122 -0.0002162	-0.8313 -0.1226 0.003541	2.784 0.4119 -0.0189	-4.999 -0.7302 0.04243	$\begin{array}{c} 4.432 \\ 0.6395 \\ -0.04322 \end{array}$	-1.568 -0.2213 0.01752
$ \begin{pmatrix} 4 & 4 & 0 & + \\ 2 & -2 & 0 & - \end{pmatrix} $	(2, 2)	(+, +) (+, -) (-, +)	0.0289 0.4171 0.01829	0.01489 0.01512 0.02588	0.0405 0.05565 -0.06939	-0.3652 -0.5754 0.05871	1.065 1.934 0.1518	-1.568 -3.438 -0.3899	1.171 3.019 0.3364	-0.3534 -1.052 -0.101
$ \begin{pmatrix} 2 & 2 & 0 & + \\ 2 & 0 & 0 & + \end{pmatrix} $	(2, 2)	(+, +) (+, -) (-, +)	0.05129 0.002267 0.002277	0.002777 0.007251 -0.002326	-0.03533 -0.04791 -0.0002231	0.2996 0.3853 0.002508	-1.03 -1.324 -0.00836	$\begin{array}{c} 1.837 \\ 2.365 \\ 0.01393 \end{array}$	-1.623 -2.092 -0.01062	$\begin{array}{c} 0.569 \\ 0.7351 \\ 0.002952 \end{array}$
$ \begin{pmatrix} 3 & 3 & 0 & + \\ 2 & -2 & 0 & - \end{pmatrix} $	(2, 1)	(+, +) (+, -) (-, +)	$\begin{array}{c} 1.554 \\ 0.1214 \\ 1.359 \end{array}$	-12.84 -0.07163 -11.42	50.72 -0.7033 44.2	-123.4 5.926 -99.21	195.0 -18.9 142.2	-193.3 29.89 -130.1	108.1 -23.39 69.21	-25.79 7.367 -16.1

TABLE I. Polynomial fit coefficients for the magnitude of R. Spin-weighted spherical harmonics are used as the angular basis.

Future detectability

• With the theoretical mode couplings we forecast the detectability of various 2nd order QNMs for 3rd generation ground-based detector and LISA.

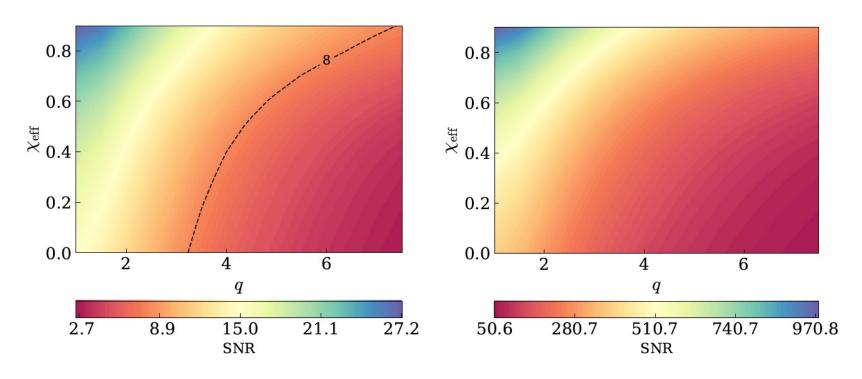
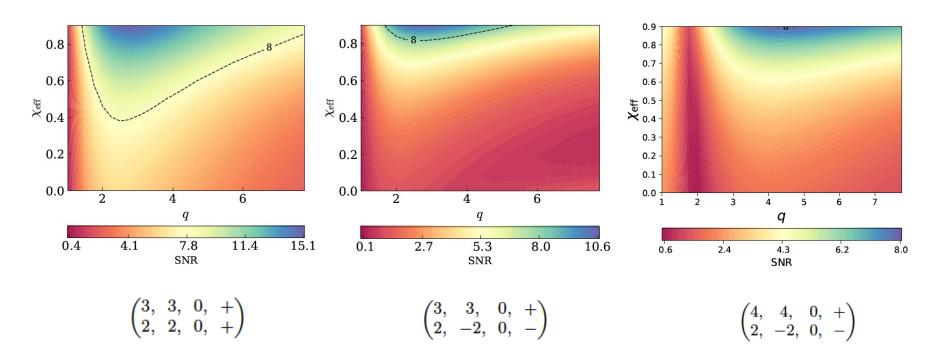


FIG. 6. The SNR of $\begin{pmatrix} 2, & 2, & 0, & + \\ 2, & 2, & 0, & + \end{pmatrix}$, assuming CE (left) and LISA (right).

Future detectability

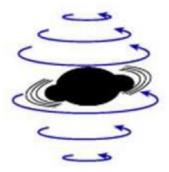
• More modes will be detected by CE (even more for LISA):



Better approach for multi-signal fitting for BH ringdowns is needed.

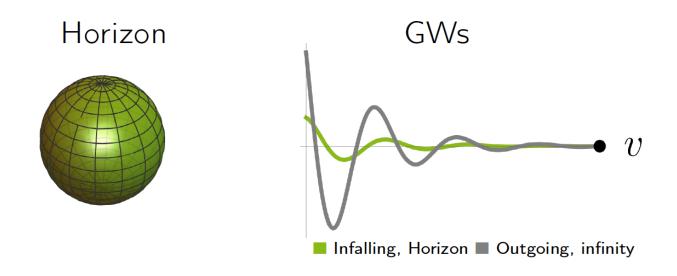
Content

- Classification of linear and nonlinear black hole perturbations.
- Quadratic modes: insights from numerical simulations.
- Quadratic modes: analytical theory.
- Recent progress on QNM tomography.



Black hole tomography

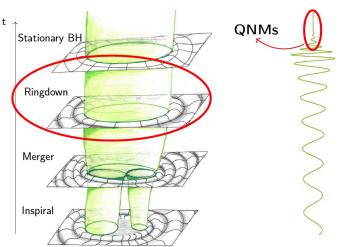
• For the QQNMs we have observed their signatures at infinity and at black hole horizon.



• Interesting to explore the mapping/relation between the two null surfaces, e.g. during the ringdown stage.

QNM tomography

- Studying the geometry of the horizon can provide insights into the physics of the system at its most strong-field regime..
- Analyzing the ringdown regime can help us distinguish between QNM models and which models are truly present.
- The QNM tomography is well understood in the perturbative regime [e.g. Mitidieri et al.]. We'd like to directly build the connection with the data from numerical simulations.



Quasilocal method to find time t_{BL}

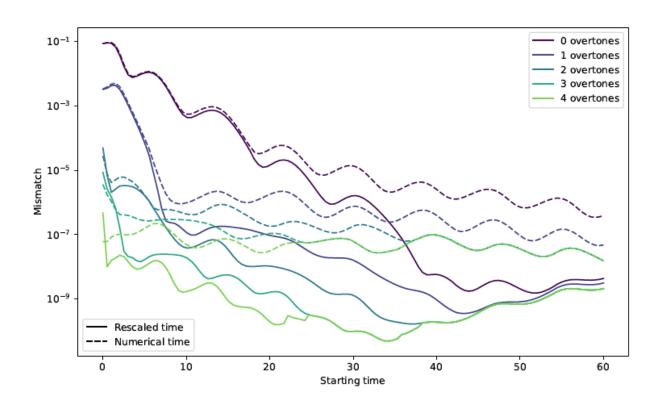
- Perturbation theory predicts $I_{lm} \sim A_{lmn}^H e^{-i\omega_{lmn}t_{BL}}$. Here t_{BL} is Boyer-Linquist time.
- Numerical simulations give $I_{lm}(t_{NR})$, where t_{NR} is the simulation time. Relating t_{NR} to t_{BL} is a nontrivial task.
- It turn out that, if $g = \frac{\partial t_{NR}}{\partial t_{BL}}$ and it satisfies

$$\left(-\tilde{D}^2 - 2\tilde{\omega}^a \tilde{D}_a - (\tilde{D}_a \tilde{\omega}^a - \tilde{\omega}_a \tilde{\omega}^a + \frac{1}{2}\tilde{R})\right)g = -\kappa_{\circ}\theta_{(\bar{n})}$$

- If $g \approx g_{Kerr} + h$, the solution determined by this PDE is locally equivalent to t_{BL} of g_{Kerr} .
- t_{BL} is determined up to $t_{BL} \rightarrow t_{BL}$ +const by fixing supertranslation on the horizon.

Comparison of QNM fits with different time

Mismatch between QNM model and I_{20}



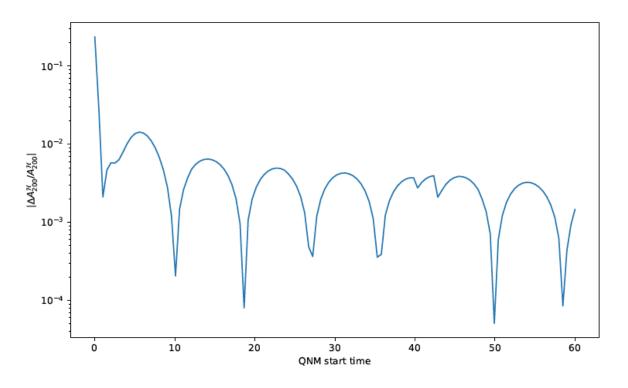
Head-on collisions

Tomography

- To build the tomography, we first need a mapping between the time on the horizon and v at null infinity.
- For QNMs, the ratio $A_{lmn}^H/A_{lmn}^{I^+}$ is independent of initial data and a prediction of perturbation theory.
- $A_{lmn}^{I^+}$ can be converted to amplitude of strain at future null infinity and A_{lmn}^{H} can be converted to amplitude of multiple moment.
- By matching the amplitude of the dominant mode, $t_{BL} \rightarrow t_{BL}$ +const freedom can be fixed.

Checking the (2,0,0) mode

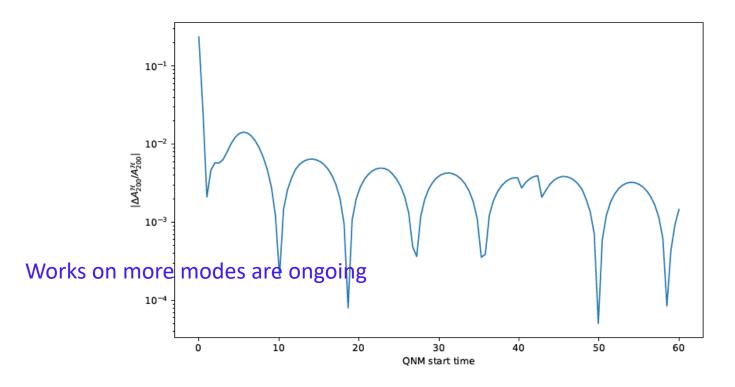
Using $\mathcal{A}_{200}^{\mathscr{I}^+}$, we obtain predicted amplitudes of $\mathcal{A}_{200}^{\mathcal{H},\mathrm{pred}}$ $t_{\mathrm{BL}} \to t_{\mathrm{BL}} + \mathrm{const}$ is fixed by $|\mathcal{A}_{200}^{\mathcal{H}}| = |\mathcal{A}_{200}^{\mathcal{H},\mathrm{pred}}|$ Error $\Delta \mathcal{A}_{200}^{\mathcal{H}} = \mathcal{A}_{200}^{\mathcal{H}} - \mathcal{A}_{200}^{\mathcal{H},\mathrm{pred}}$ is only from phase.



Error is of order $\sim 0.5\%$

Checking the (2,0,0) mode

Using $\mathcal{A}_{200}^{\mathscr{F}^+}$, we obtain predicted amplitudes of $\mathcal{A}_{200}^{\mathcal{H},\mathrm{pred}}$ $t_{\mathrm{BL}} \to t_{\mathrm{BL}} + \mathrm{const}$ is fixed by $|\mathcal{A}_{200}^{\mathcal{H}}| = |\mathcal{A}_{200}^{\mathcal{H},\mathrm{pred}}|$ Error $\Delta \mathcal{A}_{200}^{\mathcal{H}} = \mathcal{A}_{200}^{\mathcal{H}} - \mathcal{A}_{200}^{\mathcal{H},\mathrm{pred}}$ is only from phase.



Error is of order $\sim 0.5\%$

Conclusion

- Past works are mainly focusing on QNM spectroscopy.
- The QQNMs of Kerr can be classified and computed with 2nd order Teukolsky equation; good matching with numerical simulations.
- As a community we are starting to understand no-modal part of the GW signal and various non-linear signals, as a way to build better ringdown models.
- QNMs (linear and nonlinear) are useful for black hole tomography.