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Background: heterotic strings and torsion Moduli stabilization overview

Calabi-Yau compactification

o Superstring theory is self-consistent
only in 10 spacetime dimensions.

o Assume the extra 6 spatial
dimensions are compactified.

o Lots of supersymmetry ind =10
— want to break most of it.

@ Amount of broken SUSY =- holonomy
group of compactification manifold.

@ Maximum holonomy is SO(6) = SU(4) = no SUSY preserved.
o Calabi—Yau manifold: SU(3) holonomy =- 1/4 SUSY preserved
- e.g. heterotic Calabi-Yau: 4 of 16 supercharges unbroken.

[m] = = =
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Background: heterotic strings and torsion Moduli stabilization overview

Problems with heterotic moduli stabilization

@ In heterotic string theory, only have NS-NS flux Hs.

o Can stabilize complex structure moduli... then what?

o Dilaton can be stabilized by gaugino condensation.

o Limited options for remaining moduli (worldsheet instantons...)
@ In fact, problem is even worse:

Strominger, 1986

If a heterotic compactification on a manifold Y has a maximally
symmetric (e.g. Poincaré) vacuum and non-vanishing Hs, Y is
non-Calabi-Yau.

@ Hence for a Calabi—Yau compactification, H; = 0!
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Background: heterotic strings and torsion SU(3) structure and half-flat manifolds

What is an SU(3) structure manifold?

©

Mirror dual of Hs: manifold with SU(3) structure
hep-th/0008142 (Vafa), hep-th/0211102 (Gurrieri et al).

SU(3) structure: there is a globally-defined spinor ¢ that leaves 1/4
of the SUSY unbroken.

Calabi-Yau case: ( is covariantly constant with respect to the
Levi-Civita connection V.

o Non-CY case: V( ~ T (note: I matrices/indices suppressed).
o TYis the intrinsic torsion of the manifold.
@ SU(3) decomposition: torsion splits into 5 torsion classes,

©

©

T0€W1€BW2€BW3€BW4€BW5.
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Background: heterotic strings and torsion SU(3) structure and half-flat manifolds

Half-flat manifolds
Two (not mutually exclusive) ways to satisfy Strominger’s theorem:

Option 1:
Study compactifications on SU(3) structure manifolds with torsion. J

@ Has been studied in eg. hep-th/0408121 (Gurrieri, Lukas, Micu),
hep-th/0507173 (de Carlos, Gurrieri, Lukas, Micu).

o Torsion quantization understood for half-flat manifolds.

o Expanding the SU(3) invariant forms on appropriate bases, the
only non-closed basis forms in the half-flat case satisfy

dw; = e;8°, dag=e .
o For half-flat manifolds, torsion falls into the SU(3) classes
e W oW ews,
where + denotes the real part of W.
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Background: heterotic strings and torsion Domain wall vacuum

Domain wall vacuum

Option 2:
Break maximal symmetry of d = 4 spacetime. J

©

Compactification with H-flux on a half-flat or Calabi-Yau manifold.

There exist 1/2-BPS domain wall solutions
1305.0594 (Klaput, Lukas, Svanes).

1/2-BPS: 2 of the 4 SUSY generators in d = 4, V' = 1 unbroken.

d = (2+ 1) Poincaré symmetry preserved; DW breaks symmetry
in transverse y direction.

Moduli satisfy flow equations in the y coordinate.

10d perspective: SU(3) fibred over y — G structure
arXiv:1005.5302 (Lukas, Matti).

©

© ©

© ©
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Spin(7) structures Spin(7) and generalized half-flat manifolds

Spin(7): two transverse coordinates
o The domain wall solution is a special case of the metric
ds} = e7280%) (1,5d%"d%” + gapx?ax®) .

o We can consider more general codimension-2 topological defects.
@ 10d perspective: looks like an 8-dimensional Spin(7) structure.

@ For the corresponding 6d compact SU(3) structure manifold,
consider a generalized half-flat manifold, which satisfies

dwi = paif? — qfan, daa=pa’, dpt=qo’, di'=0,

where w; and (a4, 58) are basis 2- and 3-forms, respectively.
o Relevant SU(3) torsion classes are now

Toe Wi @&Ws & Ws .
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Spin(7) structures 10d flow equations and matching to 4d 1/4-BPS equations

Flow equations: ten-dimensional perspective

o Ten-dimensional perspective:

6 compact dimensions + 2 non-compact directions x and y

— 8d Spin(7) structure.
@ Killing spinor can be written in terms of invariant Cayley 4-form W.
o Decompose ¥ under the 6d SU(3) structure as

1
\IJ:Re(dZ/\Q)—i-EJ/\J—i-dvolgAJ,

where dz = dx + idy, dvol, = dx A dy.
o Jis a 6d Kahler (1,1)-form, and © is a holomorphic (3,0)-form
(for a Calabi—-Yau they are harmonic, dJ = dQ2 = 0).
o 10d supersymmetry transformations give the 8d flow equations,
sgH = —€2%dg(e2%W) | 12dgd = W.dgW = — *g (V A %gdgV¥) ,

where & is the 10d dilaton and A is the 10d NS-NS flux.
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Spin(7) structures 10d flow equations and matching to 4d 1/4-BPS equations
Compactification

@ Expand J and Q2 in terms of the basis forms:
J=Viw, Q=Z%4s—Gab.
@ The NS-NS 2-form potential and 3-form flux can be expanded as
B=B+bwj, H=H+db Awj+ bdwj+ Huux

where we have introduced Hyux = plas — eaB2.
o Moduli superfields, including 4d dilaton ¢:

S=a+ie®, T =b+iv, 22=23/20=c?+jw?.

o Consider H-flux only on the internal space = a ~ b’ ~ constant.
o Under SU(3)-structure decomposition, flow equations reduce to:

dJ = 2Im (829 - 2325)9) —«H
dQ = 9z(J A J) — 20,0 A J ; QAH=4i%0,.
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Spin(7) structures 10d flow equations and matching to 4d 1/4-BPS equations

Four-dimensional perspective

o Let us also consider an ansatz for the 4d theory.
@ Unbroken supercharge in singlet of Spin(7) = 1/4-BPS in 4d.
o 1/4-BPS ansatz: ¢ = 02¢ = io3( gives Killing spinor equations
(0x + idy) Al = —ie=Bel2KW D) W |
(9x + idy) B = —ie~Bel2 W |
0 = Im(Kj89,A') ,
20a(¢ = —0aBC,
where a C {x,y} = {2,3},and A' = (S, T/, Z).
@ GVW superpotential (for generalized half-flat manifolds):
W= \/g/Q/\(I:H—idJ) = V8 (ji"Ga — €a2"h) ,

with modified flux parameters é4 = ea — T'paj, i = p — T'qA.
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Spin(7) structures 10d flow equations and matching to 4d 1/4-BPS equations

Matching the 10d and 4d equations

@ Consistency: need to match the 10d flow equations to the 4d
1/4-BPS Killing spinor equations 1512.02812 (SA, Matti, Svanes).

Summary of key points:
4d dilaton equation = warp factor B = ¢ (up to a constant).
dQ equation in 10d — KSE in 4d for the Kahler moduli T,
dJ equation in 10d — KSE for complex structure moduli Z24.
dJ A Q with Q A H — dilaton equation, 205¢ = —ie~¢eK/2W*,
BUT only if we also impose the additional 10d constraint

Actually, 9,Q = K;Q + X(Zz,n; we are free to choose K real.
Reducing this constraint to 4d — axion constraint, K;9,¢2 = 0.

© © 0 ©o

©

©
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Summary |

Summary |

@ String compactifications generate moduli, which must be
stabilized. This can be done using fluxes.

o For the heterotic string, only Hz present. One can compactify on
SU(3) structure manifolds which are not Calabi—Yau, and/or
sacrifice maximal symmetry in d = 4. Domain wall solutions have
been studied.

@ We considered the more general codimension-2 case: from a
Spin(7) ansatz compactified on generalized half-flat manifolds, the
flow equations correspond to 1/4-BPS solutions in 4d.

Outlook:

o Still need to find explicit solutions... possible connection to Spin(7)
compactifications of F-theory? 1307.5858 (Bonetti, Grimm, Pugh)
= Work in progress!
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Inflation kground: Al lous U(1) sy ies

Moduli stabilization with aligned D-terms: a review

o Consider a half-flat manifold with axio-dilaton S = s + io and two
Kahler moduli, T =t+irand U = u + iv.

@ Assume complex structure moduli absent, or stabilized already.
o Allow geometric flux on the 2-cycle t only, giving a perturbative
superpotential
Wp=w+eT,
where T =t + ir. (NOTE: phenomenology conventions!)
o Here w is generated by either NS flux or o’ corrections.

@ Assume an anomalous U(1) symmetry under which only S and U
transform, giving D-terms of the form D = b/s + c¢/u (b, c real).

o Resulting scalar potential stabilizes all moduli, minimum is
non-supersymmetric AdS. 1504.06978 (Lukas, Lalak, Svanes)
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Inflation Inflation: simple case

Inflation: simple case

o A successful model of inflation must:

- allow a de Sitter phase, V > 0;
- satisfy the slow-roll conditions, ¢,|n| < 1.

o Need to identify a flat direction for the inflaton field.
o Promising candidates: two axions (o and v) remain unstabilized.

o One linear combination is gauge-dependent; it will be absorbed by
the U(1) gauge boson via the Stueckelberg mechanism.

o Lift the remaining gauge-invariant axionic direction with a
non-perturbative term,

WNP = Ae_o‘(s_ﬁu) ,

which can arise from gaugino condensation in the hidden sector.
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Inflation Inflation: simple case
We expect such models to have a Kéhler potential of the form
K=-Ins—Ink, r=rpt'tt"

where djj are intersection numbers on the mirror manifold.
In the particular model above, we choose x = t?u in order to
stabilize all moduli perturbatively.

The final vacuum is non-supersymmetric AdS, so need to uplift:
assume this can be done such that V4 = 0.

Resulting potential has a natural inflation form

ourcon(2))

where @ is canonically normalized and the axion decay constant
1

av/2(1+ B2)
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Inflation Extension: two-axion model

Two-axion model

o Natural inflation with a single axion field requires a trans-Planckian
field excursion to match observations.

o Furthermore we did not explicitly achieve de Sitter uplifting.
How to address these issues?

o First consider adding an additional Kahler modulus, X = x + i¢.

o Stabilize ¢ with a worldsheet instanton superpotential,

—nU—noX
Wnp2 = Be™ =727

which is gauge-invariant by construction.
o Second, choose a Kahler potential of the form x = txu.

o With this choice, the geometric flux induces vanishing of the
tree-level potential (at the cost of stabilizing moduli perturbatively).
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Inflation Extension: two-axion model

o The leading contributions to the scalar potential are

V=_|Z24+2
S u X

S

1[b ¢ d]?
stux

1
+ {(W — et)? + 272
—2|Ale® {(W — eyt +25(w + egt))cosé — (1 + 28)ey7sin &}
—2|Ble”* {(w — et +2%(w + et))cosé — (1 + 2%)eqsin f} } ,

where § = o(S — 8U) and X = nyU + n,X are gauge-invariant.
o To leading order, the components of T are stabilized at
t~ w , 7~0.
&

@ Subleading corrections give even further subleading terms in the
scalar potential, which we can neglect for now.
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Inflation Extension: two-axion model

For the D-term potential to be minimized, we find that

S

1bcd2_8ﬂ
s u x|

U x SXu

A58+ 2)e*® N |BIX(X +2)e~*
3 3 '

Hence the remaining inflation potential takes the form

.~ _s(8+2 o s (X+2 S
v e |Alse™® St2_ cose) + |B|xe™* Xt cosé)| .
sxu 3 3

Supergravity approximation: §, X > 1 = de Sitter!

o For ny > n, and 3 > 1, the axions are almost aligned along the

v direction — variation of aligned natural inflation possible.
hep-ph/0409138 (Kim, Nilles, Peloso)

However, recall that this violates the Weak Gravity Conjecture
applied to axions/instantons.

Also, to completely stabilize s and x, need gs and o’ corrections
o Il = = =
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Summary Il

Summary Il

@ Using aligned D-terms all moduli can be stabilized, leaving only
massless axions. Resulting vacuum is non-supersymmetric AdS.

@ Including non-perturbative contributions from gaugino
condensation and worldsheet instantons, natural inflation can be
realized eg. 1409.8436 (Abe, Kobayashi, Otsuka).

@ With two light axions, aligned natural inflation is possible; de Sitter
uplifting can be achieved by geometric flux and D-terms.

@ However, some moduli become destabilized — saved by quantum
corrections?
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