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Background: heterotic strings and torsion Moduli stabilization overview

Calabi–Yau compactification

Superstring theory is self-consistent
only in 10 spacetime dimensions.
Assume the extra 6 spatial
dimensions are compactified.
Lots of supersymmetry in d = 10
→ want to break most of it.
Amount of broken SUSY⇒ holonomy
group of compactification manifold.

Maximum holonomy is SO(6) ∼= SU(4)⇒ no SUSY preserved.
Calabi–Yau manifold: SU(3) holonomy⇒ 1/4 SUSY preserved

- e.g. heterotic Calabi-Yau: 4 of 16 supercharges unbroken.
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Background: heterotic strings and torsion Moduli stabilization overview

Problems with heterotic moduli stabilization

In heterotic string theory, only have NS-NS flux H3.
Can stabilize complex structure moduli... then what?
Dilaton can be stabilized by gaugino condensation.
Limited options for remaining moduli (worldsheet instantons...)
In fact, problem is even worse:

Strominger, 1986
If a heterotic compactification on a manifold Y has a maximally
symmetric (e.g. Poincaré) vacuum and non-vanishing H3, Y is
non-Calabi–Yau.

Hence for a Calabi–Yau compactification, H3 = 0!
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Background: heterotic strings and torsion SU(3) structure and half-flat manifolds

What is an SU(3) structure manifold?

Mirror dual of H3: manifold with SU(3) structure
hep-th/0008142 (Vafa), hep-th/0211102 (Gurrieri et al).
SU(3) structure: there is a globally-defined spinor ζ that leaves 1/4
of the SUSY unbroken.
Calabi–Yau case: ζ is covariantly constant with respect to the
Levi-Civita connection ∇.
Non-CY case: ∇ζ ∼ T 0ζ (note: Γ matrices/indices suppressed).
T 0 is the intrinsic torsion of the manifold.
SU(3) decomposition: torsion splits into 5 torsion classes,

T 0 ∈ W1 ⊕W2 ⊕W3 ⊕W4 ⊕W5 .
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Background: heterotic strings and torsion SU(3) structure and half-flat manifolds

Half-flat manifolds

Two (not mutually exclusive) ways to satisfy Strominger’s theorem:

Option 1:
Study compactifications on SU(3) structure manifolds with torsion.

Has been studied in eg. hep-th/0408121 (Gurrieri, Lukas, Micu),
hep-th/0507173 (de Carlos, Gurrieri, Lukas, Micu).
Torsion quantization understood for half-flat manifolds.
Expanding the SU(3) invariant forms on appropriate bases, the
only non-closed basis forms in the half-flat case satisfy

dωi = eiβ
0 , dα0 = ei ω̃

i .

For half-flat manifolds, torsion falls into the SU(3) classes

T 0 ∈ W+
1 ⊕W

+
2 ⊕W3 ,

where + denotes the real part ofW.
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Background: heterotic strings and torsion Domain wall vacuum

Domain wall vacuum

Option 2:
Break maximal symmetry of d = 4 spacetime.

Compactification with H-flux on a half-flat or Calabi-Yau manifold.
There exist 1/2-BPS domain wall solutions
1305.0594 (Klaput, Lukas, Svanes).
1/2-BPS: 2 of the 4 SUSY generators in d = 4,N = 1 unbroken.
d = (2 + 1) Poincaré symmetry preserved; DW breaks symmetry
in transverse y direction.
Moduli satisfy flow equations in the y coordinate.
10d perspective: SU(3) fibred over y → G2 structure
arXiv:1005.5302 (Lukas, Matti).
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Spin(7) structures Spin(7) and generalized half-flat manifolds

Spin(7): two transverse coordinates

The domain wall solution is a special case of the metric

ds2
4 = e−2B(xa)

(
ηαβdx̃αdx̃β + gabdxadxb

)
.

We can consider more general codimension-2 topological defects.
10d perspective: looks like an 8-dimensional Spin(7) structure.
For the corresponding 6d compact SU(3) structure manifold,
consider a generalized half-flat manifold, which satisfies

dωi = pAiβ
A − qA

i αA , dαA = pAi ω̃
i , dβA = qA

i ω̃
i , d ω̃i = 0 ,

where ωi and (αA, β
B) are basis 2- and 3-forms, respectively.

Relevant SU(3) torsion classes are now

T 0 ∈ W1 ⊕W2 ⊕W3 .

Stephen Angus Heterotic Compactifications with Torsion 07/12/2016 8 / 20



Spin(7) structures 10d flow equations and matching to 4d 1/4-BPS equations

Flow equations: ten-dimensional perspective

Ten-dimensional perspective:
6 compact dimensions + 2 non-compact directions x and y
→ 8d Spin(7) structure.
Killing spinor can be written in terms of invariant Cayley 4-form Ψ.
Decompose Ψ under the 6d SU(3) structure as

Ψ = Re(dz ∧ Ω) +
1
2

J ∧ J + dvol2 ∧ J ,

where dz = dx + idy , dvol2 = dx ∧ dy .
J is a 6d Kähler (1,1)-form, and Ω is a holomorphic (3,0)-form
(for a Calabi–Yau they are harmonic, dJ = dΩ = 0).
10d supersymmetry transformations give the 8d flow equations,

∗8Ĥ = −e2φ̂d8(e−2φ̂Ψ) , 12d8φ̂ = Ψyd8Ψ = − ∗8 (Ψ ∧ ∗8d8Ψ) ,

where φ̂ is the 10d dilaton and Ĥ is the 10d NS-NS flux.
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Spin(7) structures 10d flow equations and matching to 4d 1/4-BPS equations

Compactification

Expand J and Ω in terms of the basis forms:

J = v iωi , Ω = ZAαA − GAβ
A .

The NS-NS 2-form potential and 3-form flux can be expanded as

B̂ = B + biωi , Ĥ = H + dbi ∧ ωi + bidωi + Hflux ,

where we have introduced Hflux = µAαA − εAβA.
Moduli superfields, including 4d dilaton φ:

S = a + ie−2φ , T i = bi + iv i , Z a ≡ Za/Z0 = ca + iwa .

Consider H-flux only on the internal space⇒ a ∼ bi ∼ constant.
Under SU(3)-structure decomposition, flow equations reduce to:

dJ = 2Im
(
∂z̄Ω− 2∂z̄ φ̂Ω

)
− ∗Ĥ ;

dΩ = ∂z(J ∧ J)− 2∂z φ̂J ∧ J ; Ω ∧ Ĥ = 4i ∗ ∂z φ̂ .
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Spin(7) structures 10d flow equations and matching to 4d 1/4-BPS equations

Four-dimensional perspective

Let us also consider an ansatz for the 4d theory.
Unbroken supercharge in singlet of Spin(7)⇒ 1/4-BPS in 4d .
1/4-BPS ansatz: ζ = σ2ζ = iσ3ζ gives Killing spinor equations

(∂x + i∂y ) AI = −ie−BeK/2K IJ∗
DJ∗W ∗ ,

(∂x + i∂y ) B = −ie−BeK/2W ∗ ,

0 = Im(KI∂aAI) ,

2∂a ζ = −∂aBζ ,

where a ⊂ {x , y} ≡ {2,3}, and AI = (S,T i ,Z a).
GVW superpotential (for generalized half-flat manifolds):

W =
√

8
∫

Ω ∧ (Ĥ + idJ) =
√

8 (µ̃AGA − ε̃AZA) ,

with modified flux parameters ε̃A ≡ εA − T ipAi , µ̃A ≡ µA − T iqA
i .
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Spin(7) structures 10d flow equations and matching to 4d 1/4-BPS equations

Matching the 10d and 4d equations

Consistency: need to match the 10d flow equations to the 4d
1/4-BPS Killing spinor equations 1512.02812 (SA, Matti, Svanes).

Summary of key points:
4d dilaton equation⇒ warp factor B = φ (up to a constant).
dΩ equation in 10d → KSE in 4d for the Kahler moduli T i .
dJ equation in 10d → KSE for complex structure moduli Z a.
dJ ∧ Ω̄ with Ω ∧ Ĥ → dilaton equation, 2∂z̄φ = −ie−φeK/2W ∗,
BUT only if we also impose the additional 10d constraint∫

∂zΩ ∧ Ω̄ =

∫
Ω ∧ ∂zΩ̄ .

Actually, ∂zΩ = KzΩ + χ
(2,1)
z ; we are free to choose Kz real.

Reducing this constraint to 4d → axion constraint, Ka∂zca = 0.
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Summary I

Summary I

String compactifications generate moduli, which must be
stabilized. This can be done using fluxes.
For the heterotic string, only H3 present. One can compactify on
SU(3) structure manifolds which are not Calabi–Yau, and/or
sacrifice maximal symmetry in d = 4. Domain wall solutions have
been studied.
We considered the more general codimension-2 case: from a
Spin(7) ansatz compactified on generalized half-flat manifolds, the
flow equations correspond to 1/4-BPS solutions in 4d .

Outlook:
Still need to find explicit solutions... possible connection to Spin(7)
compactifications of F-theory? 1307.5858 (Bonetti, Grimm, Pugh)
⇒Work in progress!
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Inflation Background: Anomalous U(1) symmetries

Moduli stabilization with aligned D-terms: a review

Consider a half-flat manifold with axio-dilaton S = s + iσ and two
Kähler moduli, T = t + iτ and U = u + iν.
Assume complex structure moduli absent, or stabilized already.
Allow geometric flux on the 2-cycle t only, giving a perturbative
superpotential

WP = w + e1T ,

where T = t + iτ . (NOTE: phenomenology conventions!)
Here w is generated by either NS flux or α′ corrections.
Assume an anomalous U(1) symmetry under which only S and U
transform, giving D-terms of the form D = b/s + c/u (b, c real).
Resulting scalar potential stabilizes all moduli, minimum is
non-supersymmetric AdS. 1504.06978 (Lukas, Lalak, Svanes)
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Inflation Inflation: simple case

Inflation: simple case

A successful model of inflation must:
- allow a de Sitter phase, V > 0;
- satisfy the slow-roll conditions, ε,|η| � 1.

Need to identify a flat direction for the inflaton field.
Promising candidates: two axions (σ and ν) remain unstabilized.
One linear combination is gauge-dependent; it will be absorbed by
the U(1) gauge boson via the Stueckelberg mechanism.
Lift the remaining gauge-invariant axionic direction with a
non-perturbative term,

WNP = Ae−α(S−βU) ,

which can arise from gaugino condensation in the hidden sector.
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Inflation Inflation: simple case

We expect such models to have a Kähler potential of the form

K = − ln s − lnκ , κ = κijk t i t j tk

where dijk are intersection numbers on the mirror manifold.
In the particular model above, we choose κ = t2u in order to
stabilize all moduli perturbatively.
The final vacuum is non-supersymmetric AdS, so need to uplift:
assume this can be done such that Vfinal = 0.
Resulting potential has a natural inflation form

V = V0

(
1− cos

(
θ̂

f

))
,

where θ̂ is canonically normalized and the axion decay constant

f =
1

α
√

2(1 + β2)
.
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Inflation Extension: two-axion model

Two-axion model

Natural inflation with a single axion field requires a trans-Planckian
field excursion to match observations.
Furthermore we did not explicitly achieve de Sitter uplifting.

How to address these issues?
First consider adding an additional Kähler modulus, X = x + iξ.
Stabilize ξ with a worldsheet instanton superpotential,

WNP2 = Be−n1U−n2X ,

which is gauge-invariant by construction.
Second, choose a Kähler potential of the form κ = txu.
With this choice, the geometric flux induces vanishing of the
tree-level potential (at the cost of stabilizing moduli perturbatively).
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Inflation Extension: two-axion model

The leading contributions to the scalar potential are

V =
1
s

[
b
s

+
c
u

+
d
x

]2

+
1

stux

{
(w − e1t)2 + e2

1τ
2

−2|A|e−ŝ
[

(w − e1t + 2ŝ(w + e1t)) cos σ̂ − (1 + 2ŝ)e1τ sin σ̂
]

−2|B|e−x̂
[

(w − e1t + 2x̂(w + e1t)) cos ξ̂ − (1 + 2x̂)e1τ sin ξ̂
]}

,

where Ŝ = α(S − βU) and X̂ = n1U + n2X are gauge-invariant.
To leading order, the components of T are stabilized at

t ' w
e1

, τ ' 0 .

Subleading corrections give even further subleading terms in the
scalar potential, which we can neglect for now.
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Inflation Extension: two-axion model

For the D-term potential to be minimized, we find that

1
s

[
b
s

+
c
u

+
d
x

]2

=
8e1

sxu

[
|A|ŝ(ŝ + 2)e−ŝ

3
+
|B|x̂(x̂ + 2)e−x̂

3

]
.

Hence the remaining inflation potential takes the form

V =
8e1

sxu

[
|A|ŝe−ŝ

(
ŝ + 2

3
− cos σ̂

)
+ |B|x̂e−x̂

(
x̂ + 2

3
− cos ξ̂

)]
.

Supergravity approximation: ŝ, x̂ & 1⇒ de Sitter!
For n1 � n2 and β � 1, the axions are almost aligned along the
ν direction→ variation of aligned natural inflation possible.
hep-ph/0409138 (Kim, Nilles, Peloso)
However, recall that this violates the Weak Gravity Conjecture
applied to axions/instantons.
Also, to completely stabilize s and x , need gs and α′ corrections.
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Summary II

Summary II

Using aligned D-terms all moduli can be stabilized, leaving only
massless axions. Resulting vacuum is non-supersymmetric AdS.
Including non-perturbative contributions from gaugino
condensation and worldsheet instantons, natural inflation can be
realized eg. 1409.8436 (Abe, Kobayashi, Otsuka).
With two light axions, aligned natural inflation is possible; de Sitter
uplifting can be achieved by geometric flux and D-terms.
However, some moduli become destabilized — saved by quantum
corrections?

Stephen Angus Heterotic Compactifications with Torsion 07/12/2016 20 / 20


	Background: heterotic strings and torsion
	Moduli stabilization overview
	SU(3) structure and half-flat manifolds
	Domain wall vacuum

	Spin(7) structures
	Spin(7) and generalized half-flat manifolds
	10d flow equations and matching to 4d 1/4-BPS equations

	Inflation
	Background: Anomalous U(1) symmetries
	Inflation: simple case
	Extension: two-axion model


