Identifying a new particle with jet substructures

Lim, Sung Hak

Focus Workshop on Particle Physics and Cosmology, IBS-CTPU

Dec. 6. 2016

C. Han, D. Kim, M. Kim, K. Kong, **S. H. Lim** and M. Park, accepted by JHEP, [arXiv:1609.06205 [hep-ph]].

1 / 16

Mass sn	ectrum of Higgs sector in M	SSM		
00000	000	0	0000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion

- Many theories beyond the Standard model (SUSY, composite Higgs...) could have extended Higgs sector with particles having masses more than $\mathcal{O}(1)~{\rm TeV}$ to make model compatible with the current observation about the Higgs boson.
 - Example: heavy Higgs boson in MSSM
- mass eigenstates ($\tan\beta = v_u/v_d$)

$$m_{A^0}^2 = \frac{2b}{\sin 2\beta} \tag{1}$$

$$m_{H^{\pm}}^2 = m_{A^0}^2 + m_W^2 \tag{2}$$

$$m_{h^0,H^0}^2 = \frac{1}{2} \left(m_{A^0}^2 + m_Z^2 \mp \sqrt{(m_{A^0}^2 - m_Z^2)^2 + 4m_Z^2 m_{A^0}^2 \sin^2 2\beta} \right)$$
(3)

• In a limit $m_{A^0} \gg m_Z$ (decoupling limit),

$$m_Z \sim m_{h^0} \ll m_{H^0} \sim m_{H^\pm} \sim m_{A^0} \tag{4}$$

- h^0 behaves like the Higgs boson in the Standard model, while other heavy scaler lives in higher energy scale.
- One interesting channel for identifying heavy Higgs bosons is ZZ channel.

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result 0000

Characteristics of $X \rightarrow ZZ$ channel

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet O	Result 0000	Conclusion O
Character	istics of $X o ZZ$ channel			

• Good: this channel is fully capable of determining spin and CP nature of X.

Character	istics of V , 77 shannel			
00000	000	0	0000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion

Characteristics of $X \rightarrow ZZ$ channel

- Good: this channel is fully capable of determining spin and CP nature of X.
 - $\gamma\gamma$: polarization-blind, we cannot fully determine spin and CP of X.
 - ZZ: we can get additional polarization information of Z boson from differential distribution of Fermions.

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet O	Result 0000	Conclusion O
Character	istics of $X o ZZ$ channel			

- Good: this channel is fully capable of determining spin and CP nature of X.
- Problem: (For heavy X, $m_X \gg m_Z$) Z boson is boosted, and two Fermions (especially quarks) are often too close and identified as a single large cluster.

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
00000	000	0	0000	0
Character	istics of $X \rightarrow ZZ$ channel			

- Good: this channel is fully capable of determining spin and CP nature of X.
- Problem: (For heavy X, $m_X \gg m_Z$) Z boson is boosted, and two Fermions (especially quarks) are often too close and identified as a single large cluster.
 - In order to use full potential of ZZ channel, We should resolve the cluster.
 - We will see that the jet substructure technique can resolve the cluster and effectively select statistically sensitive kinematic region for discriminating spin and CP of X.

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
00000	000	0	0000	0
Character	istics of $X o ZZ$ channel			

- Good: this channel is fully capable of determining spin and CP nature of X.
- Problem: (For heavy X, $m_X \gg m_Z$) Z boson is boosted, and two Fermions (especially quarks) are often too close and identified as a single large cluster.
 - In order to use full potential of ZZ channel, We should resolve the cluster.
 - We will see that the jet substructure technique can resolve the cluster and effectively select statistically sensitive kinematic region for discriminating spin and CP of X.
- Example: mass-drop tagger
 - (J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam, arXiv:0802.2470)

	∞	o rad iat	0000	0
Identifying	boosted $Z \rightarrow q\bar{q}$ with merg	red iet		

• We can identify momenta of two prong subjets by the mass-drop tagger.

- Merged jet identification: Cambridge-Aachen algorithm with large radius
- Jet substructure for identifying $q\bar{q}$
 - mass-drop and filtering: look for subclusters with lighter masses

$$m_{j_1} < \mu m_j \tag{5}$$

and symmetric p_T

$$\frac{\min(p_{T,j_1}^2, p_{T,j_2}^2)}{m_j^2} (\Delta R_{j_1 j_2})^2 > y_{\rm cut}$$
(6)

• This subjet momenta can be used for identifying CP state of S!

boosted Z	boson to leptons vs quarks			
000000				
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion

advantages

disadvantages

boosted 2	7 hoson to leptons vs quark	rs.		
000000	000	0	0000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion

advantages

disadvantages

• more events!

$$BR(Z \to e^+e^-) = 3.363\%$$

$$BR(Z \to \mu^+\mu^-) = 3.366\%$$

$$BR(Z \to \text{invisible}) = 20.00\%$$

$$BR(Z \to \text{hadrons}) = 69.91\%$$

boosted 7	7 hoson to leptons vs quark	c		
000000	000	0	0000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion

boosted Z boson to leptons vs quarks

- advantages
 - more events!

$$BR(Z \to e^+e^-) = 3.363\%$$

 $BR(Z \to \mu^+\mu^-) = 3.366\%$
 $BR(Z \to \text{invisible}) = 20.00\%$
 $BR(Z \to \text{hadrons}) = 69.91\%$

- disadvantages
 - hard to resolve two close quarks.

boosted Z	boson to leptons vs quarks			
000000	000	0	0000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion

- advantages
 - more events!

$$BR(Z \rightarrow e^+e^-) = 3.363\%$$

$$BR(Z \rightarrow \mu^+\mu^-) = 3.366\%$$

$$BR(Z \rightarrow \text{invisible}) = 20.00\%$$

$$BR(Z \rightarrow \text{hadrons}) = 69.91\%$$

- disadvantages
 - hard to resolve two close quarks.

- contamination from nearby QCD activity
 - underlying events
 - final state radiations
 - pile-ups

boostod Z	boson to lontons vs quarks			
000000	000	0	0000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion

boosted Z boson to leptons vs quarks

- advantages
 - more events!

$$BR(Z \to e^+e^-) = 3.363\%$$

 $BR(Z \to \mu^+\mu^-) = 3.366\%$
 $BR(Z \to \text{invisible}) = 20.00\%$
 $BR(Z \to \text{hadrons}) = 69.91\%$

- disadvantages
 - hard to resolve two close quarks.

- contamination from nearby QCD activity
 - underlying events
 - final state radiations
 - pile-ups
 - Many background events..

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
000000	000	0	0000	0

- $ZZ \rightarrow 2\ell 2q$ having same sensitivity level to the $ZZ \rightarrow 4\ell$ in high mass resonance searches.
- Q: is obtained subjet information really reliable for identifying quantum state of *H*? YES!

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
000000	000		0000	
Benchma	rk point			

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
000000	000		0000	
Benchma	ark point			

$$\mathcal{L}_{0^{++}} = \frac{c_{gg}}{\Lambda} SG_{\mu\nu}G^{\mu\nu} + \frac{c_{ZZ}}{\Lambda} SZ_{\mu\nu}Z^{\mu\nu}$$

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
000000	000		0000	
Benchma	ark point			

$$\mathcal{L}_{0^{++}} = \frac{c_{gg}}{\Lambda} SG_{\mu\nu} G^{\mu\nu} + \frac{c_{ZZ}}{\Lambda} SZ_{\mu\nu} Z^{\mu\nu}$$
$$\mathcal{L}_{0^{-+}} = \frac{c_{gg}}{\Lambda} SG_{\mu\nu} \tilde{G}^{\mu\nu} + \frac{c_{ZZ}}{\Lambda} SZ_{\mu\nu} \tilde{Z}^{\mu\nu}$$

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
000000	000		0000	
Benchma	rk point			

$$\mathcal{L}_{0^{++}} = \frac{c_{gg}}{\Lambda} SG_{\mu\nu} G^{\mu\nu} + \frac{c_{ZZ}}{\Lambda} SZ_{\mu\nu} Z^{\mu\nu}$$
$$\mathcal{L}_{0^{-+}} = \frac{c_{gg}}{\Lambda} SG_{\mu\nu} \tilde{G}^{\mu\nu} + \frac{c_{ZZ}}{\Lambda} SZ_{\mu\nu} \tilde{Z}^{\mu\nu}$$

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
000000	000		0000	
Benchma	ark point			

benchmark points	r _M	$\Delta R \gtrsim$
$m_S=750{ m GeV}$	4.1	0.5

M. Gouzevitch, et al., arXiv:1303.6636

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
000000	000	0	0000	0
Benchma	rk point			

benchmark points	r _M	$\Delta R \gtrsim$
$m_S=750{ m GeV}$	4.1	0.5
$m_S=1500{\rm GeV}$	8.2	0.25

M. Gouzevitch, et al., arXiv:1303.6636

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
000000	000		0000	
Benchma	ark point			

$$\mathcal{L}_{0^{++}} = \frac{c_{gg}}{\Lambda} SG_{\mu\nu} G^{\mu\nu} + \frac{c_{ZZ}}{\Lambda} SZ_{\mu\nu} Z^{\mu\nu}$$

$$\mathcal{L}_{0^{-+}} = \frac{c_{gg}}{\Lambda} SG_{\mu\nu} \tilde{G}^{\mu\nu} + \frac{c_{ZZ}}{\Lambda} SZ_{\mu\nu} \tilde{Z}^{\mu\nu}$$

We performed statistical analysis with Monte Carlo simulated event together with detector simulations.

	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
000000	000		0000	
Quantum	n interference and angular co	orrelations		

• In order to identify spin and CP of *S*, angular correlation between resonances are the key signatures.

- In order to identify spin and CP of *S*, angular correlation between resonances are the key signatures.
- In particular, angular correlation between two Z boson system is especially useful for identifying CP of S, because L_{0±+} produce two Z boson in entangled helicity eigenstate (ε_±).

$$S = \sum_{Z_{1}} \sum_{Z_{2}} \left\{ \begin{array}{c} \epsilon_{+}^{*\mu}(Z_{1})\epsilon_{+}^{*\nu}(Z_{2}) + \epsilon_{-}^{*\mu}(Z_{1})\epsilon_{-}^{*\nu}(Z_{2}) & S \text{ in } \mathcal{L}_{0^{++}} \\ \epsilon_{+}^{*\mu}(Z_{1})\epsilon_{+}^{*\nu}(Z_{2}) - \epsilon_{-}^{*\mu}(Z_{1})\epsilon_{-}^{*\nu}(Z_{2}) & S \text{ in } \mathcal{L}_{0^{-+}} \end{array} \right\}$$

 $(m_X \gg m_Z \text{ is assumed})$

- In order to identify spin and CP of *S*, angular correlation between resonances are the key signatures.
- In particular, angular correlation between two Z boson system is especially useful for identifying CP of S, because L_{0±+} produce two Z boson in entangled helicity eigenstate (ε_±).

$$S = \sum_{Z_1} \int_{Z_2} \left\{ \epsilon_+^{*\mu}(Z_1) \epsilon_+^{*\nu}(Z_2) + \epsilon_-^{*\mu}(Z_1) \epsilon_-^{*\nu}(Z_2) \\ \epsilon_+^{*\mu}(Z_1) \epsilon_+^{*\nu}(Z_2) - \epsilon_-^{*\mu}(Z_1) \epsilon_-^{*\nu}(Z_2) \\ Z_2 \int_{Z_2} \int$$

• Angular correlation arise from interference between helicity eigenstates.

 Interference term leaves an azimuthal phase factor so it can be captured by angular correlations.

Interference term is maximized when *f f̄* are emitted to transverse direction. This is consequence of the Stern-Gerlach experiment, [*S_z*, *S_x*] ≠ 0.

Quantum interference and angular correlations

• As a result $\phi = \phi_1 - \phi_2$, which is the angle between two Z boson decay plane, can discriminate CP of S.

Quantum interference and angular correlations

• As a result $\phi = \phi_1 - \phi_2$, which is the angle between two Z boson decay plane, can discriminate CP of S.

$$(1 + \cos^2 \theta_1)(1 + \cos^2 \theta_2)$$

$$\pm \sin^2 \theta_1 \sin^2 \theta_2 \cos 2\phi$$

for S in L₀₊₊, m_S > m_Z

Quantum interference and angular correlations

• As a result $\phi = \phi_1 - \phi_2$, which is the angle between two Z boson decay plane, can discriminate CP of S.

 $\,$ $\,$ Becase of sin factors, the sensitivity will depends how we choose Fermions. 10 / 16

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
000000	000	•	0000	
Relativist	ic Aberration and angular s	eparation of <i>f f</i>		

When we try to capture two $q\bar{q}$ by a single merged jet, Fermions emitted transverse direction from the boost direction of Z boson will be captured more than the longitudinal direction.

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion	
000000	000	•	0000	0	
Polativistic Aborration and angular constration of $f\bar{f}$					

Relativistic Aberration and angular separation of *ff*

When we try to capture two $q\bar{q}$ by a single merged jet, Fermions emitted transverse direction from the boost direction of Z boson will be captured more than the longitudinal direction.

• For boosted object, phase space is beamed forward in a lab frame.

			1 6 6 7		
000000	000		•	0000	0
	Quantum interference and	l angular correlations	Phase space reduction and merged jet	Result	Conclusion

Relativistic Aberration and angular separation of ff

When we try to capture two $q\bar{q}$ by a single merged jet, Fermions emitted transverse direction from the boost direction of Z boson will be captured more than the longitudinal direction.

- For boosted object, phase space is beamed forward in a lab frame.
- For $Z \to f\bar{f}$, transverse direction is more collimated than the longitudinal direction.

D I				
000000	000	•	0000	0
	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion

Relativistic Aberration and angular separation of ff

When we try to capture two $q\bar{q}$ by a single merged jet, Fermions emitted transverse direction from the boost direction of Z boson will be captured more than the longitudinal direction.

- For boosted object, phase space is beamed forward in a lab frame.
- For $Z \to f\bar{f}$, transverse direction is more collimated than the longitudinal direction.
- Because the interference term maximized in the transverse direction, using merged jet is still effective for analysing CP property of *S*.

11 / 16

	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
000000	000	0	0000	0
Distributi	on of ϕ			

• The key signature for identifying CP state of S is angle ϕ between decay plane of Z bosons.

• Even we can still observe significant difference between ϕ distribution using subjet information!

000000	000	0	0000	0
Distribut	ion of ϕ			

• Even we can still observe significant difference between ϕ distribution in highly boosted regime!

	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
000000	000	0	0000	0
Signal or	nly analysis			

In order to quantify the difference between CP even and CP odd scalar, we performed statistical analysis (matrix element method).

If we have \sim 20 events, we can distingush CP even and CP odd hypothesis!

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Result ○○○●	Conclusion
Analysis	with background			

• QCD : $Z(\rightarrow \ell^- \ell^+) + \text{jets}(\text{fake } Z)$ • EW : $Z(\rightarrow \ell^- \ell^+) + V (\rightarrow q\bar{q})$

15 / 16

	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
000000	000	0	0000	0
Analysis	with background			

- QCD : $Z(\rightarrow \ell^{-}\ell^{+}) + \text{jets}(\text{fake } Z)$ • EW : $Z(\rightarrow \ell^{-}\ell^{+}) + V (\rightarrow q\bar{q})$
- Z+jets is dominant background because of large cross section.

	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
000000	000		0000	
Analysis	with background			

• QCD : $Z(\rightarrow \ell^- \ell^+) + jets(fake Z)$

• EW :
$$\mathsf{Z}(
ightarrow \ell^- \ell^+) + V \; (
ightarrow q ar{q})$$

- Z+jets is dominant background because of large cross section.
- We just inject background to our statistical analysis.

	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
000000	000	0	0000	0
Analysis	with background			

15 / 16

	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
000000	000	0	0000	0
Analysis	with background			

Jet substructure analysis is still effective even with background events.

	Quantum interference and angular correlations	Phase space reduction and merged jet	Result	Conclusion
000000	000		0000	•
Conclusio	n			

- Boosted object analysis is necessary in order to understand spin and CP nature of heavy intermediate resonance S in $S \rightarrow ZZ$ channel.
- Merged jet analysis with jet substructure effectively select most sensitive region for identifying CP property of *S*.
- We can find out CP state of S in $S \rightarrow ZZ \rightarrow q\bar{q}\ell^-\ell^-$ from subjet momenta with matrix element method.

Backups

Cut flow	selection	$750~{ m GeV}$	$1500~{ m GeV}$
parton level		100.0 %	100.0 %
object tagging	one merged jet, two ℓ	61.0 %	63.4 %
lepton P_T	$P_T > 25~{ m GeV}$	52.0 %	58.8 %
$m_{(\ell^+, \ell^-)}$	[83, 99] GeV	47.4 %	53.5 %
m _{MJ}	[75, 105] GeV	20.6 %	25.5 %
Уzz	$ y_{ZZ} < 0.15$	16.3 %	21.3 %
$P_{T(MJ)}$	$P_{T({ m MJ})} > 0.4 m_{({ m MJ},\ell^+,\ell^-)}$	11.5 %	14.7 %
m	within $M_{S} \pm 50 \; { m GeV}$	10.4 %	-
$m_{(MJ, \ell^+, \ell^-)}$	within $M_{\mathcal{S}}\pm 100~{ m GeV}$	-	13.4 %

	BP1 ($M_S = 750 \text{ GeV}$)			
cut flow	selection criterion	σ_{Z+jets}	σ_{ZZ}	σ_{ZW}
parton level	P_T of leading jet ≥ 150 GeV	8.65 pb	8.19 fb	8.96 fb
object tagging	One merged jet, two ℓ	44.11%	55.30%	55.83%
lepton P _T	$P_T > 25 \text{ GeV}$	33.47%	44.88%	47.24%
$m_{(\ell^+, \ell^-)}$	[83, 99] GeV	30.54%	40.91%	42.92%
m _{MJ}	[75, 105] GeV	1.60%	12.10%	10.72%
Уzz	$ y_{ZZ} < 0.15$	0.72%	11.06%	9.83%
$P_{T(MJ)}$	$P_{T(MJ)} > 0.4 m_{(MJ, \ell^+, \ell^-)}$	0.48%	7.22%	5.29%
$m_{(MJ, \ell^+, \ell^-)}$	within $M_S \pm 50$ GeV	0.037%	0.82%	0.68%
Cross section (σ)	-	3.16 fb	0.0671 fb	0.0609 fb

- We deployed a matrix element method in order to maximize discrimination power.
- Neyman-Pearson lemma says: likelihood ratio test is the most powerful test.
- At the parton level, we can find out the analytic form of probability from the theory as well as the likelihood functions for the hypothesis test. At the leading order, the probability density function is

$$f(\{p\}|0^{\pm}) = \frac{1}{N_{0^{\pm}}} \int dx_1 \int dx_2 f_g(x_1) f_g(x_2) |\mathcal{M}_{gg \to S \to q\bar{q}\ell^-\ell^+}(\{p\}|0^{\pm +})|^2$$

• Since S is a scalar, we can factorize the matrix element in a narrow width limit.

$$f(\{p\}|0^{\pm}) = \frac{1}{N'_{0^{\pm}}} \int dx_1 \int dx_2 f_g(x_1) f_g(x_2) \\ |\mathcal{M}_{gg \to S}(\{p\}|0^{\pm +})|^2 \cdot |\mathcal{M}_{S \to q\bar{q}\ell^-\ell^+}(\{p\}|0^{\pm +})|^2$$

• The likelihood ratio can be simplified if we assume

$$\frac{1}{N'_{0^{\pm +}}} \int dx_1 \int dx_2 f_g(x_1) f_g(x_2) |\mathcal{M}_{gg \to S}(\{p\}|0^{\pm +})|^2$$
(7)

are identical for 0^{++} and 0^{-+} . The likelihood ratio can be written in terms of matrix element of the decay only.

$$\frac{f(\{p\}|0^{++})}{f(\{p\}|0^{-+})} = \frac{|\mathcal{M}_{S \to q\bar{q}\ell^-\ell^+}(\{p\}|0^{++})|^2}{|\mathcal{M}_{S \to q\bar{q}\ell^-\ell^+}(\{p\}|0^{-+})|^2}$$
(8)

 We further symmetrize momenta of quarks since q and q
 indistingushable at LHC. Then, we define a loglikelihood ratio

$$q_{\mathcal{M}} = \sum_{i}^{N} \ln \frac{|\mathcal{M}(\{p\}_{i}|0^{++})|^{2}_{sym}}{|\mathcal{M}(\{p\}_{i}|0^{-+})|^{2}_{sym}}$$
(9)

Cambridge/Aachen Algorithm

Cambridge/Aachen Algorithm: a sequential clustering algorithm with a distance measure $(\Delta R)^2=(\Delta \eta)^2+(\Delta \phi)^2$

Ocheck distances between objects.

Cambridge/Aachen Algorithm

Cambridge/Aachen Algorithm: a sequential clustering algorithm with a distance measure $(\Delta R)^2=(\Delta \eta)^2+(\Delta \phi)^2$

Ocheck distances between objects.

2 Choose a pair of object having smallest ΔR .

- Ocheck distances between objects.
- **2** Choose a pair of object having smallest ΔR .
- If the two object are separated by ΔR smaller than the threshold distance R, then merge the two objects in a shortest distance by summing their momenta.

$$\overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow} \overset{\circ}{\to} \overset{\circ$$

- Ocheck distances between objects.
- **2** Choose a pair of object having smallest ΔR .
- If the two object are separated by ΔR smaller than the threshold distance R, then merge the two objects in a shortest distance by summing their momenta.
- Iterate above steps until every objects are separated by the threshold distance *R*.

- Ocheck distances between objects.
- **2** Choose a pair of object having smallest ΔR .
- If the two object are separated by ΔR smaller than the threshold distance R, then merge the two objects in a shortest distance by summing their momenta.
- Iterate above steps until every objects are separated by the threshold distance R.
- Promote remaining isolated clusters as jets.

Cambridge/Aachen Algorithm: a sequential clustering algorithm with a distance measure $(\Delta R)^2=(\Delta \eta)^2+(\Delta \phi)^2$

- Ocheck distances between objects.
- **2** Choose a pair of object having smallest ΔR .
- If the two object are separated by ΔR smaller than the threshold distance R, then merge the two objects in a shortest distance by summing their momenta.
- Iterate above steps until every objects are separated by the threshold distance R.
- Promote remaining isolated clusters as jets.

$$\overset{\circ}{\Delta R} \overset{\circ}{\leftarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\Delta R} \overset{\circ}{\leftarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\Delta R} \overset{\circ}{\rightarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\leftarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\leftarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\leftarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\leftarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\leftarrow} \overset{\circ}{\rightarrow} \overset{\circ}{$$

CA algorithm clusters objects in an order of increasing angle ΔR . This clustering sequence can be understood as an imitation of parton branching, and hence it has an application to a jet substructure study.

16 / 16

Mass drop tagger utilize clustering sequence of CA algorithm

Mass drop tagger utilize clustering sequence of CA algorithm

Mass drop tagger utilize clustering sequence of CA algorithm

• Rewind clustering of a jet j. Label two subjets as j_1 and j_2 with $m_{j_1} > m_{j_2}$.

Mass drop tagger utilize clustering sequence of CA algorithm

- Rewind clustering of a jet j. Label two subjets as j_1 and j_2 with $m_{j_1} > m_{j_2}$.
- Mass drop can happen if rewinding clustering divides j into subjets originated from light quarks.

$$m_{j_1} < \mu m_j \tag{10}$$

Mass drop tagger utilize clustering sequence of CA algorithm

- Rewind clustering of a jet j. Label two subjets as j_1 and j_2 with $m_{j_1} > m_{j_2}$.
- Mass drop can happen if rewinding clustering divides j into subjets originated from light quarks.

$$m_{j_1} < \mu m_j \tag{10}$$

3
$$p_T$$
 of jets are not too asymmetric

$$\frac{\min(p_{T,j_1}^2, p_{T,j_2}^2)}{m_j^2} (\Delta R_{j_1 j_2})^2 > y_{\text{cut}}$$
(11)

Mass drop tagger utilize clustering sequence of CA algorithm

- Rewind clustering of a jet j. Label two subjets as j_1 and j_2 with $m_{j_1} > m_{j_2}$.
- Mass drop can happen if rewinding clustering divides j into subjets originated from light quarks.

$$m_{j_1} < \mu m_j \tag{10}$$

• p_T of jets are not too asymmetric

$$\frac{\min(p_{T,j_1}^2, p_{T,j_2}^2)}{m_j^2} (\Delta R_{j_1 j_2})^2 > y_{\text{cut}}$$
(11)

• If mass drop and p_T asymmetry is not satisfied, repeat above procedure again for j_1 .

Mass drop tagger utilize clustering sequence of CA algorithm

- Rewind clustering of a jet j. Label two subjets as j_1 and j_2 with $m_{j_1} > m_{j_2}$.
- Mass drop can happen if rewinding clustering divides j into subjets originated from light quarks.

$$m_{j_1} < \mu m_j \tag{10}$$

• p_T of jets are not too asymmetric

$$\frac{\min(p_{T,j_1}^2, p_{T,j_2}^2)}{m_j^2} (\Delta R_{j_1 j_2})^2 > y_{\text{cut}}$$
(11)

If mass drop and p_T asymmetry is not satisfied, repeat above procedure again for j₁.

Mass drop tagger utilize clustering sequence of CA algorithm

- Rewind clustering of a jet j. Label two subjets as j_1 and j_2 with $m_{j_1} > m_{j_2}$.
- Mass drop can happen if rewinding clustering divides j into subjets originated from light quarks.

$$m_{j_1} < \mu m_j \tag{10}$$

• p_T of jets are not too asymmetric

$$\frac{\min(p_{T,j_1}^2, p_{T,j_2}^2)}{m_j^2} (\Delta R_{j_1 j_2})^2 > y_{\text{cut}}$$
(11)

If mass drop and p_T asymmetry is not satisfied, repeat above procedure again for j₁.

By finding mass-dropped clusters, we can find a relevant angular scale $R_{q\bar{q}}$ to resolve $Z \rightarrow q\bar{q}$.

 $\mathsf{Problem:}\ \mathsf{Jets}\ \mathsf{clustered}\ \mathsf{with}\ \mathsf{large}\ \mathsf{angular}\ \mathsf{scale}\ \mathsf{is}\ \mathsf{easily}\ \mathsf{degraded}\ \mathsf{by}\ \mathsf{other}\ \mathsf{QCD}\ \mathsf{radiations}.$

$$m_q^2 = E_q^2 - |\vec{p}_q|^2 \ll E_q^2, |\vec{p}_q|^2$$
: fine-tuned (12)

Problem: Jets clustered with large angular scale is easily degraded by other QCD radiations.

$$m_q^2 = E_q^2 - |\vec{p}_q|^2 \ll E_q^2, |\vec{p}_q|^2$$
: fine-tuned (12)

Filtering:

Problem: Jets clustered with large angular scale is easily degraded by other QCD radiations.

$$m_q^2 = E_q^2 - |\vec{p}_q|^2 \ll E_q^2, |\vec{p}_q|^2$$
: fine-tuned (12)

Filtering:

 Recluster jet constituent by more finer angular scale R_{filt}

$$R_{\rm filt} = \min\left(0.3, \frac{R_{q\bar{q}}}{2}\right) \tag{13}$$

Problem: Jets clustered with large angular scale is easily degraded by other QCD radiations.

$$m_q^2 = E_q^2 - |\vec{p}_q|^2 \ll E_q^2, |\vec{p}_q|^2$$
: fine-tuned (12)

Filtering:

 Recluster jet constituent by more finer angular scale R_{filt}

$$R_{\rm filt} = \min\left(0.3, \frac{R_{q\bar{q}}}{2}\right)$$
 (13)

2 Take $n_{\rm filt}$ hardest subjets and discard others.

Problem: Jets clustered with large angular scale is easily degraded by other QCD radiations.

$$m_q^2 = E_q^2 - |\vec{p}_q|^2 \ll E_q^2, |\vec{p}_q|^2$$
: fine-tuned (12)

Filtering:

 Recluster jet constituent by more finer angular scale R_{filt}

$$R_{\rm filt} = \min\left(0.3, rac{R_{qar{q}}}{2}
ight)$$
 (13)

- **2** Take $n_{\rm filt}$ hardest subjets and discard others.
- n_{filt} = 3 is often chosen to catch an O(α_S) radiation.

Problem: Jets clustered with large angular scale is easily degraded by other QCD radiations.

$$m_q^2 = E_q^2 - |\vec{p}_q|^2 \ll E_q^2, |\vec{p}_q|^2$$
: fine-tuned (12)

Filtering:

 Recluster jet constituent by more finer angular scale R_{filt}

$$R_{\rm filt} = \min\left(0.3, \frac{R_{qar{q}}}{2}
ight)$$
 (13)

- **2** Take n_{filt} hardest subjets and discard others.
- n_{filt} = 3 is often chosen to catch an O(α_S) radiation.

After then, we merged most soft filtered subjet into its nearest subjet in ΔR .

16 / 16

• As the mass gap between S and Z becomes larger, the angular separation of Fermions are getting smaller.

- As the mass gap between S and Z becomes larger, the angular separation of Fermions are getting smaller.
- For $m_S = 750 \text{ GeV}$, intermediate region between resolved and collimated

$$\Delta R_{f\bar{f}} \gtrsim 0.5$$
 (14)

$$(\Delta R_{f\bar{f}})^2 = (\Delta \eta)^2 + (\Delta \phi)^2 \gtrsim \left(\frac{2m_Z}{\rho_{\tau,Z}}\right)^2 \tag{15}$$

- As the mass gap between S and Z becomes larger, the angular separation of Fermions are getting smaller.
- For $m_S = 1500 \text{ GeV}$, collimated

$$\Delta R_{f\bar{f}} \gtrsim 0.3$$
 (14)

$$(\Delta R_{f\bar{f}})^2 = (\Delta \eta)^2 + (\Delta \phi)^2 \gtrsim \left(\frac{2m_Z}{\rho_{\tau,Z}}\right)^2 \tag{15}$$

16 / 16

- As the mass gap between S and Z becomes larger, the angular separation of Fermions are getting smaller.
- Q: Is boosted object analysis effective for studying properties (such as spin and CP) of the resonance *S*?

- As the mass gap between S and Z becomes larger, the angular separation of Fermions are getting smaller.
- Q: Is boosted object analysis effective for studying properties (such as spin and CP) of the resonance *S*?
- We will see that boosted object analysis is necessary in order to maximize the discrimination power for determining spin and CP of *S*.

Angular separation of particles from Z boson decay

Lorentz invariant angular separtion under a boost along the beam direction

$$\left(\Delta R\right)^2 = \left(\Delta \eta\right)^2 + \left(\Delta \phi\right)^2 \approx \frac{m_Z^2}{\rho_{T,f} \rho_{T,\bar{f}}} \tag{14}$$

Angular separation of particles from Z boson decay

Lorentz invariant angular separtion under a boost along the beam direction

$$\left(\Delta R\right)^2 = \left(\Delta \eta\right)^2 + \left(\Delta \phi\right)^2 \approx \frac{m_Z^2}{\rho_{T,f}\rho_{T,\bar{f}}} \tag{14}$$

 ΔR is from inner product between p_f^{μ} and $p_{\bar{f}}^{\nu}$. For massless f,

$$\eta_{\mu\nu} p_f^{\mu} p_{\bar{f}}^{\nu} = p_{T,f} p_{T,\bar{f}} (\cosh \Delta \eta - \cos \Delta \phi)$$
(15)

$$\cosh \Delta \eta - \cos \Delta \phi = \frac{\eta_{\mu\nu} p_f^{\mu} p_{\bar{t}}^{\nu}}{p_{T,f} p_{T,\bar{t}}} = \frac{m_Z^2}{2p_{T,f} p_{T,\bar{t}}}$$
(16)

Angular separation of particles from Z boson decay

Lorentz invariant angular separtion under a boost along the beam direction

$$\left(\Delta R\right)^2 = \left(\Delta \eta\right)^2 + \left(\Delta \phi\right)^2 \approx \frac{m_Z^2}{\rho_{T,f}\rho_{T,\bar{f}}} \tag{14}$$

 ΔR is from inner product between p_f^{μ} and $p_{\bar{f}}^{\nu}$. For massless f,

$$\eta_{\mu\nu} p_f^{\mu} p_{\bar{f}}^{\nu} = p_{T,f} p_{T,\bar{f}} (\cosh \Delta \eta - \cos \Delta \phi)$$
(15)

$$\cosh \Delta \eta - \cos \Delta \phi = \frac{\eta_{\mu\nu} p_f^{\mu} p_{\bar{f}}^{\nu}}{\rho_{T,f} \rho_{T,\bar{f}}} = \frac{m_Z^2}{2 \rho_{T,f} \rho_{T,\bar{f}}}$$
(16)

In terms of $p_{T,Z}$ we can rewrite ΔR by

$$(\Delta R)^2 = (\Delta \eta)^2 + (\Delta \phi)^2 \approx \frac{1}{z(1-z)} \frac{m_Z^2}{p_{T,Z}^2}, \quad z(1-z) = \frac{p_{T,f} p_{T,\bar{f}}}{p_{T,Z}^2}$$
(17)

16 / 16

$$\left(\Delta R\right)^2 \approx \frac{1}{z(1-z)} \frac{m_Z^2}{p_{T,Z}^2} \ge \left(\frac{2m_Z}{p_{T,Z}}\right)^2 \tag{18}$$

For $m_S = 750 \text{ GeV}$ resonance, $\Delta R \gtrsim 0.5$. For electron (jet) isolation in reconstruction level, we often set an isolation angular scale 0.3 (0.4).

16 / 16