Identifying a new particle with jet substructures

Lim, Sung Hak

Focus Workshop on Particle Physics and Cosmology, IBS-CTPU

Dec. 6. 2016
C. Han, D. Kim, M. Kim, K. Kong, S. H. Lim and M. Park, accepted by JHEP, [arXiv:1609.06205 [hep-ph]].

Mass spectrum of Higgs sector in MSSM

- Many theories beyond the Standard model (SUSY, composite Higgs...) could have extended Higgs sector with particles having masses more than $\mathcal{O}(1) \mathrm{TeV}$ to make model compatible with the current observation about the Higgs boson.
- Example: heavy Higgs boson in MSSM
- mass eigenstates $\left(\tan \beta=v_{u} / v_{d}\right)$

$$
\begin{align*}
m_{A^{0}}^{2} & =\frac{2 b}{\sin 2 \beta} \tag{1}\\
m_{H^{ \pm}}^{2} & =m_{A^{0}}^{2}+m_{W}^{2} \tag{2}\\
m_{h^{0}, H^{0}}^{2} & =\frac{1}{2}\left(m_{A^{0}}^{2}+m_{Z}^{2} \mp \sqrt{\left(m_{A^{0}}^{2}-m_{Z}^{2}\right)^{2}+4 m_{Z}^{2} m_{A^{0}}^{2} \sin ^{2} 2 \beta}\right) \tag{3}
\end{align*}
$$

- In a limit $m_{A^{0}} \gg m_{Z}$ (decoupling limit),

$$
\begin{equation*}
m_{Z} \sim m_{h^{0}} \ll m_{H^{0}} \sim m_{H^{ \pm}} \sim m_{A^{0}} \tag{4}
\end{equation*}
$$

- h^{0} behaves like the Higgs boson in the Standard model, while other heavy scaler lives in higher energy scale.
- One interesting channel for identifying heavy Higgs bosons is $Z Z$ channel.

Characteristics of $X \rightarrow Z Z$ channel

Characteristics of $X \rightarrow Z Z$ channel

- Good: this channel is fully capable of determining spin and CP nature of X.

Characteristics of $X \rightarrow Z Z$ channel

- Good: this channel is fully capable of determining spin and CP nature of X.
- $\gamma \gamma$: polarization-blind, we cannot fully determine spin and $C P$ of X.
- ZZ: we can get additional polarization information of Z boson from differential distribution of Fermions.

Characteristics of $X \rightarrow Z Z$ channel

- Good: this channel is fully capable of determining spin and CP nature of X.
- Problem: (For heavy $\left.X, m_{X} \gg m_{Z}\right) Z$ boson is boosted, and two Fermions (especially quarks) are often too close and identified as a single large cluster.

Characteristics of $X \rightarrow Z Z$ channel

- Good: this channel is fully capable of determining spin and CP nature of X.
- Problem: (For heavy $\left.X, m_{X} \gg m_{Z}\right) Z$ boson is boosted, and two Fermions (especially quarks) are often too close and identified as a single large cluster.
- In order to use full potential of $Z Z$ channel, We should resolve the cluster.
- We will see that the jet substructure technique can resolve the cluster and effectively select statistically sensitive kinematic region for discriminating spin and CP of X.

Characteristics of $X \rightarrow Z Z$ channel

- Good: this channel is fully capable of determining spin and CP nature of X.
- Problem: (For heavy $\left.X, m_{X} \gg m_{Z}\right) Z$ boson is boosted, and two Fermions (especially quarks) are often too close and identified as a single large cluster.
- In order to use full potential of $Z Z$ channel, We should resolve the cluster.
- We will see that the jet substructure technique can resolve the cluster and effectively select statistically sensitive kinematic region for discriminating spin and CP of X.
- Example: mass-drop tagger (J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam, arXiv:0802.2470)
- We can identify momenta of two prong subjets by the mass-drop tagger.

- Merged jet identification: Cambridge-Aachen algorithm with large radius
- Jet substructure for identifying $q \bar{q}$
- mass-drop and filtering: look for subclusters with lighter masses

$$
\begin{equation*}
m_{j_{1}}<\mu m_{j} \tag{5}
\end{equation*}
$$

and symmetric p_{T}

$$
\begin{equation*}
\frac{\min \left(p_{T, j_{1}}^{2}, p_{T, j_{2}}^{2}\right)}{m_{j}^{2}}\left(\Delta R_{j_{1} j_{2}}\right)^{2}>y_{\mathrm{cut}} \tag{6}
\end{equation*}
$$

- This subjet momenta can be used for identifying CP state of S !
boosted Z boson to leptons vs quarks

VS

- advantages
- disadvantages

boosted Z boson to leptons vs quarks

- advantages
- disadvantages
- more events!

$$
\begin{aligned}
B R\left(Z \rightarrow e^{+} e^{-}\right) & =3.363 \% \\
B R\left(Z \rightarrow \mu^{+} \mu^{-}\right) & =3.366 \% \\
B R(Z \rightarrow \text { invisible }) & =20.00 \% \\
B R(Z \rightarrow \text { hadrons }) & =69.91 \%
\end{aligned}
$$

boosted Z boson to leptons vs quarks

- advantages
- more events!

$$
\begin{aligned}
B R\left(Z \rightarrow e^{+} e^{-}\right) & =3.363 \% \\
B R\left(Z \rightarrow \mu^{+} \mu^{-}\right) & =3.366 \% \\
B R(Z \rightarrow \text { invisible }) & =20.00 \% \\
B R(Z \rightarrow \text { hadrons }) & =69.91 \%
\end{aligned}
$$

- disadvantages
- hard to resolve two close quarks.

boosted Z boson to leptons vs quarks

- advantages
- more events!

$$
\begin{aligned}
B R\left(Z \rightarrow e^{+} e^{-}\right) & =3.363 \% \\
B R\left(Z \rightarrow \mu^{+} \mu^{-}\right) & =3.366 \% \\
B R(Z \rightarrow \text { invisible }) & =20.00 \% \\
B R(Z \rightarrow \text { hadrons }) & =69.91 \%
\end{aligned}
$$

- disadvantages
- hard to resolve two close quarks.

- contamination from nearby QCD activity
- underlying events
- final state radiations
- pile-ups
boosted Z boson to leptons vs quarks

- advantages
- more events!

$$
\begin{aligned}
B R\left(Z \rightarrow e^{+} e^{-}\right) & =3.363 \% \\
B R\left(Z \rightarrow \mu^{+} \mu^{-}\right) & =3.366 \% \\
B R(Z \rightarrow \text { invisible }) & =20.00 \% \\
B R(Z \rightarrow \text { hadrons }) & =69.91 \%
\end{aligned}
$$

- disadvantages
- hard to resolve two close quarks.

- contamination from nearby QCD activity
- underlying events
- final state radiations
- pile-ups
- Many background events..

- $Z Z \rightarrow 2 \ell 2 q$ having same sensitivity level to the $Z Z \rightarrow 4 \ell$ in high mass resonance searches.
- Q: is obtained subjet information really reliable for identifying quantum state of H ? - YES!

We particularly considered scalar resonances in CP eigenstate.

We particularly considered scalar resonances in CP eigenstate.

$$
\mathcal{L}_{0^{++}}=\frac{c_{g g}}{\Lambda} S G_{\mu \nu} G^{\mu \nu}+\frac{c_{Z Z}}{\Lambda} S Z_{\mu \nu} Z^{\mu \nu}
$$

We particularly considered scalar resonances in CP eigenstate.

$$
\begin{aligned}
\mathcal{L}_{0^{++}} & =\frac{c_{g g}}{\Lambda} S G_{\mu \nu} G^{\mu \nu}+\frac{c_{Z Z}}{\Lambda} S Z_{\mu \nu} Z^{\mu \nu} \\
\mathcal{L}_{0^{-+}} & =\frac{c_{g g}}{\Lambda} S G_{\mu \nu} \tilde{G}^{\mu \nu}+\frac{c_{Z Z}}{\Lambda} S Z_{\mu \nu} \tilde{Z}^{\mu \nu}
\end{aligned}
$$

We particularly considered scalar resonances in CP eigenstate.

$$
\begin{aligned}
\mathcal{L}_{0^{++}} & =\frac{c_{g g}}{\Lambda} S G_{\mu \nu} G^{\mu \nu}+\frac{c_{Z Z}}{\Lambda} S Z_{\mu \nu} Z^{\mu \nu} \\
\mathcal{L}_{0^{-+}} & =\frac{c_{g g}}{\Lambda} S G_{\mu \nu} \tilde{G}^{\mu \nu}+\frac{c_{Z Z}}{\Lambda} S Z_{\mu \nu} \tilde{Z}^{\mu \nu}
\end{aligned}
$$

Benchmark point

M. Gouzevitch, et al., arXiv:1303.6636

Benchmark point

Benchmark point

We particularly considered scalar resonances in CP eigenstate.

$$
\begin{aligned}
\mathcal{L}_{0^{++}} & =\frac{c_{g g}}{\Lambda} S G_{\mu \nu} G^{\mu \nu}+\frac{c_{Z Z}}{\Lambda} S Z_{\mu \nu} Z^{\mu \nu} \\
\mathcal{L}_{0^{-+}} & =\frac{c_{g g}}{\Lambda} S G_{\mu \nu} \tilde{G}^{\mu \nu}+\frac{c_{Z Z}}{\Lambda} S Z_{\mu \nu} \tilde{Z}^{\mu \nu}
\end{aligned}
$$

We performed statistical analysis with Monte Carlo simulated event together with detector simulations.

Quantum interference and angular correlations

- In order to identify spin and CP of S, angular correlation between resonances are the key signatures.

Quantum interference and angular correlations

- In order to identify spin and CP of S, angular correlation between resonances are the key signatures.
- In particular, angular correlation between two Z boson system is especially useful for identifying CP of S, because $\mathcal{L}_{0^{ \pm+}}$produce two Z boson in entangled helicity eigenstate ($\epsilon_{ \pm}$).

Quantum interference and angular correlations

- In order to identify spin and CP of S, angular correlation between resonances are the key signatures.
- In particular, angular correlation between two Z boson system is especially useful for identifying CP of S, because $\mathcal{L}_{0 \pm+}$ produce two Z boson in entangled helicity eigenstate ($\epsilon_{ \pm}$).

- Angular correlation arise from interference between helicity eigenstates.

Quantum interference and angular correlations

- Interference term leaves an azimuthal phase factor so it can be captured by angular correlations.

- Interference term is maximized when $f \bar{f}$ are emitted to transverse direction. This is consequence of the Stern-Gerlach experiment, $\left[S_{z}, S_{x}\right] \neq 0$.

Quantum interference and angular correlations

- As a result $\phi=\phi_{1}-\phi_{2}$, which is the angle between two Z boson decay plane, can discriminate $C P$ of S.

Quantum interference and angular correlations

- As a result $\phi=\phi_{1}-\phi_{2}$, which is the angle between two Z boson decay plane, can discriminate $C P$ of S.

$$
\begin{aligned}
& \left(1+\cos ^{2} \theta_{1}\right)\left(1+\cos ^{2} \theta_{2}\right) \\
& \quad \pm \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \cos 2 \phi
\end{aligned}
$$

$$
\text { for } S \text { in } \mathcal{L}_{0^{ \pm+}}, \quad m_{S} \gg m_{Z}
$$

Quantum interference and angular correlations

- As a result $\phi=\phi_{1}-\phi_{2}$, which is the angle between two Z boson decay plane, can discriminate $C P$ of S.

$$
\begin{aligned}
& \left(1+\cos ^{2} \theta_{1}\right)\left(1+\cos ^{2} \theta_{2}\right) \\
& \quad \pm \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \cos 2 \phi \\
& \text { for } S \text { in } \mathcal{L}_{0 \pm+}, \quad m_{S} \gg m_{Z} .
\end{aligned}
$$

- Becase of \sin factors, the sensitivity will depends how we choose Fermions.

When we try to capture two $q \bar{q}$ by a single merged jet, Fermions emitted transverse direction from the boost direction of Z boson will be captured more than the longitudinal direction.

Relativistic Aberration and angular separation of $f \bar{f}$

When we try to capture two $q \bar{q}$ by a single merged jet, Fermions emitted transverse direction from the boost direction of Z boson will be captured more than the longitudinal direction.

- For boosted object, phase space is beamed forward in a lab frame.

Relativistic Aberration and angular separation of $f \bar{f}$

When we try to capture two $q \bar{q}$ by a single merged jet, Fermions emitted transverse direction from the boost direction of Z boson will be captured more than the longitudinal direction.

- For boosted object, phase space is beamed forward in a lab frame.
- For $Z \rightarrow f \bar{f}$, transverse direction is more collimated than the longitudinal direction.

Relativistic Aberration and angular separation of $f \bar{f}$

When we try to capture two $q \bar{q}$ by a single merged jet, Fermions emitted transverse direction from the boost direction of Z boson will be captured more than the longitudinal direction.

- For boosted object, phase space is beamed forward in a lab frame.
- For $Z \rightarrow f \bar{f}$, transverse direction is more collimated than the longitudinal direction.
- Because the interference term maximized in the transverse direction, using merged jet is still effective for analysing CP property of S.

Distribution of ϕ

- The key signature for identifying CP state of S is angle ϕ between decay plane of Z bosons.

- Even we can still observe significant difference between ϕ distribution using subjet information!

Distribution of ϕ

- Even we can still observe significant difference between ϕ distribution in highly boosted regime!

Signal only analysis

In order to quantify the difference between CP even and CP odd scalar, we performed statistical analysis (matrix element method).

If we have ~ 20 events, we can distingush CP even and CP odd hypothesis!

Analysis with background

- QCD :

$$
\left.Z\left(\rightarrow \ell^{-} \ell^{+}\right)+\text {jets(fake } Z\right)
$$

- EW :

$$
Z\left(\rightarrow \ell^{-} \ell^{+}\right)+V(\rightarrow q \bar{q})
$$

Analysis with background

- QCD :

$$
\left.Z\left(\rightarrow \ell^{-} \ell^{+}\right)+\text {jets(fake } Z\right)
$$

- EW :

$$
Z\left(\rightarrow \ell^{-} \ell^{+}\right)+V(\rightarrow q \bar{q})
$$

- $Z+$ jets is dominant background because of large cross section.

Analysis with background

- QCD :

$$
\left.Z\left(\rightarrow \ell^{-} \ell^{+}\right)+\text {jets(fake } Z\right)
$$

- EW :

$$
\mathrm{Z}\left(\rightarrow \ell^{-} \ell^{+}\right)+V(\rightarrow q \bar{q})
$$

- Z+jets is dominant background because of large cross section.
- We just inject background to our statistical analysis.

Analysis with background

Analysis with background

Jet substructure analysis is still effective even with background events.

Conclusion

- Boosted object analysis is necessary in order to understand spin and CP nature of heavy intermediate resonance S in $S \rightarrow Z Z$ channel.
- Merged jet analysis with jet substructure effectively select most sensitive region for identifying CP property of S.
- We can find out CP state of S in $S \rightarrow Z Z \rightarrow q \bar{q} \ell^{-} \ell^{-}$from subjet momenta with matrix element method.

Backups

Event selection criterion

Cut flow	selection	750 GeV	1500 GeV
parton level		100.0%	100.0%
object tagging	one merged jet, two ℓ	61.0%	63.4%
lepton P_{T}	$P_{T}>25 \mathrm{GeV}$	52.0%	58.8%
$m_{\left(\ell^{+}, \ell^{-}\right)}$	$[83,99] \mathrm{GeV}$	47.4%	53.5%
m_{MJ}	$[75,105] \mathrm{GeV}$	20.6%	25.5%
$y_{Z z}$	$\left\|y_{z z}\right\|<0.15$	16.3%	21.3%
$P_{T(\mathrm{MJ})}$	$P_{T(\mathrm{MJ})}>0.4 m_{\left(\mathrm{MJ}, \ell^{+}, \ell^{-}\right)}$	11.5%	14.7%
$m_{\left(\mathrm{MJ}, \ell^{+}, \ell^{-}\right)}$	within $M_{S} \pm 50 \mathrm{GeV}$	10.4%	-
	within $M_{S} \pm 100 \mathrm{GeV}$	-	13.4%

Event selection criterion

	$\mathrm{BP} 1\left(M_{S}=750 \mathrm{GeV}\right)$			
cut flow	selection criterion	$\sigma_{Z+\text { jets }}$	$\sigma_{Z Z}$	$\sigma_{Z W}$
parton level	P_{T} of leading jet $\geq 150 \mathrm{GeV}$	8.65 pb	8.19 fb	8.96 fb
object tagging	One merged jet, two ℓ	44.11%	55.30%	55.83%
lepton P_{T}	$P_{T}>25 \mathrm{GeV}$	33.47%	44.88%	47.24%
$m_{\left(\ell^{+}, \ell^{-}\right)}$	$[83,99] \mathrm{GeV}$	30.54%	40.91%	42.92%
m_{MJ}	$[75,105] \mathrm{GeV}$	1.60%	12.10%	10.72%
$y_{Z Z}$	$\|y z Z\|<0.15$	0.72%	11.06%	9.83%
$P_{T(\mathrm{MJ})}$	$P_{T(\mathrm{MJ})}>0.4 m_{\left(\mathrm{MJ}, \ell^{+}, \ell^{-}\right)}$	0.48%	7.22%	5.29%
$m_{\left(\mathrm{MJ}, \ell^{+}, \ell^{-}\right)}$	within $M_{S} \pm 50 \mathrm{GeV}$	0.037%	0.82%	0.68%
Cross section (σ)	-	3.16 fb	0.0671 fb	0.0609 fb

Matrix element methods

- We deployed a matrix element method in order to maximize discrimination power.
- Neyman-Pearson lemma says: likelihood ratio test is the most powerful test.
- At the parton level, we can find out the analytic form of probability from the theory as well as the likelihood functions for the hypothesis test. At the leading order, the probability density function is

$$
f\left(\{p\} \mid 0^{ \pm}\right)=\frac{1}{N_{0 \pm}} \int d x_{1} \int d x_{2} f_{g}\left(x_{1}\right) f_{g}\left(x_{2}\right)\left|\mathcal{M}_{g g \rightarrow s \rightarrow q \bar{q} \ell-\ell^{+}}\left(\{p\} \mid 0^{ \pm+}\right)\right|^{2}
$$

- Since S is a scalar, we can factorize the matrix element in a narrow width limit.

$$
\begin{aligned}
f\left(\{p\} \mid 0^{ \pm}\right)= & \frac{1}{N_{0^{ \pm}}^{\prime}} \int d x_{1} \int d x_{2} f_{g}\left(x_{1}\right) f_{g}\left(x_{2}\right) \\
& \left|\mathcal{M}_{g g \rightarrow s}\left(\{p\} \mid 0^{ \pm+}\right)\right|^{2} \cdot\left|\mathcal{M}_{S \rightarrow q \bar{q} \ell^{-} \ell^{+}}\left(\{p\} \mid 0^{ \pm+}\right)\right|^{2}
\end{aligned}
$$

Matrix element methods

- The likelihood ratio can be simplified if we assume

$$
\begin{equation*}
\frac{1}{N_{0^{ \pm+}}^{\prime}} \int d x_{1} \int d x_{2} f_{g}\left(x_{1}\right) f_{g}\left(x_{2}\right)\left|\mathcal{M}_{g g \rightarrow s}\left(\{p\} \mid 0^{ \pm+}\right)\right|^{2} \tag{7}
\end{equation*}
$$

are identical for 0^{++}and 0^{-+}. The likelihood ratio can be written in terms of matrix element of the decay only.

$$
\begin{equation*}
\frac{f\left(\{p\} \mid 0^{++}\right)}{f\left(\{p\} \mid 0^{-+}\right)}=\frac{\left|\mathcal{M}_{S \rightarrow q \bar{q} \ell^{-} \ell^{+}}\left(\{p\} \mid 0^{++}\right)\right|^{2}}{\left|\mathcal{M}_{S \rightarrow q \bar{q} \ell^{-} \ell^{+}}\left(\{p\} \mid 0^{-+}\right)\right|^{2}} \tag{8}
\end{equation*}
$$

- We further symmetrize momenta of quarks since q and \bar{q} are indistingushable at LHC. Then, we define a loglikelihood ratio

$$
\begin{equation*}
q_{\mathcal{M}}=\sum_{i}^{N} \ln \frac{\left|\mathcal{M}\left(\{p\}_{i} \mid 0^{++}\right)\right|_{\text {sym }}^{2}}{\left|\mathcal{M}\left(\{p\}_{i} \mid 0^{-+}\right)\right|_{\text {sym }}^{2}} \tag{9}
\end{equation*}
$$

Cambridge/Aachen Algorithm: a sequential clustering algorithm with a distance measure $(\Delta R)^{2}=(\Delta \eta)^{2}+(\Delta \phi)^{2}$

Cambridge/Aachen Algorithm: a sequential clustering algorithm with a distance measure $(\Delta R)^{2}=(\Delta \eta)^{2}+(\Delta \phi)^{2}$
(1) Check distances between objects.

ㅇ
-
∞

Cambridge/Aachen Algorithm: a sequential clustering algorithm with a distance measure $(\Delta R)^{2}=(\Delta \eta)^{2}+(\Delta \phi)^{2}$
(1) Check distances between objects.
(2) Choose a pair of object having smallest ΔR.

Cambridge/Aachen Algorithm

Cambridge/Aachen Algorithm: a sequential clustering algorithm with a distance measure $(\Delta R)^{2}=(\Delta \eta)^{2}+(\Delta \phi)^{2}$
(1) Check distances between objects.
(2) Choose a pair of object having smallest ΔR.
(3) If the two object are separated by ΔR smaller than the threshold distance R, then merge the two objects in a shortest distance by summing their momenta.

$\Delta R<R$

Cambridge/Aachen Algorithm

Cambridge/Aachen Algorithm: a sequential clustering algorithm with a distance measure $(\Delta R)^{2}=(\Delta \eta)^{2}+(\Delta \phi)^{2}$
(1) Check distances between objects.
(2) Choose a pair of object having smallest ΔR.
(3) If the two object are separated by ΔR smaller than the threshold distance R, then merge the two objects in a shortest distance by summing their momenta.
(9) Iterate above steps until every objects are separated by the threshold distance R.

Cambridge/Aachen Algorithm

Cambridge/Aachen Algorithm: a sequential clustering algorithm with a distance measure $(\Delta R)^{2}=(\Delta \eta)^{2}+(\Delta \phi)^{2}$
(1) Check distances between objects.
(2) Choose a pair of object having smallest ΔR.
(3) If the two object are separated by ΔR smaller than the threshold distance R, then merge the two objects in a shortest distance by summing their momenta.
(9) Iterate above steps until every objects are separated by the threshold distance R.
(5) Promote remaining isolated clusters as jets.

Cambridge/Aachen Algorithm

Cambridge/Aachen Algorithm: a sequential clustering algorithm with a distance measure $(\Delta R)^{2}=(\Delta \eta)^{2}+(\Delta \phi)^{2}$
(1) Check distances between objects.
(2) Choose a pair of object having smallest ΔR.
(3) If the two object are separated by ΔR smaller than the threshold distance R, then merge the two objects in a shortest distance by summing their momenta.
(9) Iterate above steps until every objects are separated by the threshold distance R.
(5) Promote remaining isolated clusters as jets.

CA algorithm clusters objects in an order of increasing angle ΔR. This clustering sequence can be understood as an imitation of parton branching, and hence it has an application to a jet substructure study.

Mass drop tagger and filtering

Mass drop tagger utilize clustering sequence of CA algorithm

Mass drop tagger and filtering

Mass drop tagger utilize clustering sequence of CA algorithm

Mass drop tagger and filtering

Mass drop tagger utilize clustering sequence of CA algorithm
(1) Rewind clustering of a jet j. Label two subjets as j_{1} and j_{2} with $m_{j_{1}}>m_{j_{2}}$.

Mass drop tagger and filtering

Mass drop tagger utilize clustering sequence of CA algorithm
(1) Rewind clustering of a jet j. Label two subjets as j_{1} and j_{2} with $m_{j_{1}}>m_{j_{2}}$.
(2) Mass drop can happen if rewinding clustering divides j into subjets originated from light quarks.

$$
\begin{equation*}
m_{j_{1}}<\mu m_{j} \tag{10}
\end{equation*}
$$

Mass drop tagger and filtering

Mass drop tagger utilize clustering sequence of CA algorithm
(1) Rewind clustering of a jet j. Label two subjets as j_{1} and j_{2} with $m_{j_{1}}>m_{j_{2}}$.
(2) Mass drop can happen if rewinding clustering divides j into subjets originated from light quarks.

$$
\begin{equation*}
m_{j_{1}}<\mu m_{j} \tag{10}
\end{equation*}
$$

(3) p_{T} of jets are not too asymmetric

$$
\begin{equation*}
\frac{\min \left(p_{T, j_{1}}^{2}, p_{T, j_{2}}^{2}\right)}{m_{j}^{2}}\left(\Delta R_{j_{1} j_{2}}\right)^{2}>y_{\mathrm{cut}} \tag{11}
\end{equation*}
$$

Mass drop tagger and filtering

Mass drop tagger utilize clustering sequence of CA algorithm
(1) Rewind clustering of a jet j. Label two subjets as j_{1} and j_{2} with $m_{j_{1}}>m_{j_{2}}$.
(2) Mass drop can happen if rewinding clustering divides j into subjets originated from light quarks.

$$
\begin{equation*}
m_{j_{1}}<\mu m_{j} \tag{10}
\end{equation*}
$$

(3) p_{T} of jets are not too asymmetric

$$
\begin{equation*}
\frac{\min \left(p_{T, j_{1}}^{2}, p_{T, j_{2}}^{2}\right)}{m_{j}^{2}}\left(\Delta R_{j_{1} j_{2}}\right)^{2}>y_{\mathrm{cut}} \tag{11}
\end{equation*}
$$

(9) If mass drop and p_{T} asymmetry is not satisfied, repeat above procedure again for j_{1}.

Mass drop tagger and filtering

Mass drop tagger utilize clustering sequence of CA algorithm
(1) Rewind clustering of a jet j. Label two subjets as j_{1} and j_{2} with $m_{j_{1}}>m_{j_{2}}$.
(2) Mass drop can happen if rewinding clustering divides j into subjets originated from light quarks.

$$
\begin{equation*}
m_{j_{1}}<\mu m_{j} \tag{10}
\end{equation*}
$$

(3) p_{T} of jets are not too asymmetric

$$
\begin{equation*}
\frac{\min \left(p_{T, j_{1}}^{2}, p_{T, j_{2}}^{2}\right)}{m_{j}^{2}}\left(\Delta R_{j_{1} j_{2}}\right)^{2}>y_{\mathrm{cut}} \tag{11}
\end{equation*}
$$

(9) If mass drop and p_{T} asymmetry is not satisfied, repeat above procedure again for j_{1}.

Mass drop tagger and filtering

Mass drop tagger utilize clustering sequence of CA algorithm
(1) Rewind clustering of a jet j. Label two subjets as j_{1} and j_{2} with $m_{j_{1}}>m_{j_{2}}$.
(2) Mass drop can happen if rewinding clustering divides j into subjets originated from light quarks.

$$
\begin{equation*}
m_{j_{1}}<\mu m_{j} \tag{10}
\end{equation*}
$$

(3) p_{T} of jets are not too asymmetric

$$
\begin{equation*}
\frac{\min \left(p_{T, j_{1}}^{2}, p_{T, j_{2}}^{2}\right)}{m_{j}^{2}}\left(\Delta R_{j_{1} j_{2}}\right)^{2}>y_{\mathrm{cut}} \tag{11}
\end{equation*}
$$

(9) If mass drop and p_{T} asymmetry is not satisfied, repeat above procedure again for j_{1}.

By finding mass-dropped clusters, we can find a relevant angular scale $R_{q \bar{q}}$ to resolve $Z \rightarrow q \bar{q}$.

Mass drop tagger and filtering

Problem: Jets clustered with large angular scale is easily degraded by other QCD radiations.

$$
\begin{equation*}
m_{q}^{2}=E_{q}^{2}-\left|\vec{p}_{q}\right|^{2} \ll E_{q}^{2},\left|\vec{p}_{q}\right|^{2}: \text { fine-tuned } \tag{12}
\end{equation*}
$$

Mass drop tagger and filtering

Problem: Jets clustered with large angular scale is easily degraded by other QCD radiations.

$$
\begin{equation*}
m_{q}^{2}=E_{q}^{2}-\left|\vec{p}_{q}\right|^{2} \ll E_{q}^{2},\left|\vec{p}_{q}\right|^{2}: \text { fine-tuned } \tag{12}
\end{equation*}
$$

Filtering:

Mass drop tagger and filtering

Problem: Jets clustered with large angular scale is easily degraded by other QCD radiations.

$$
\begin{equation*}
m_{q}^{2}=E_{q}^{2}-\left|\vec{p}_{q}\right|^{2} \ll E_{q}^{2},\left|\vec{p}_{q}\right|^{2}: \text { fine-tuned } \tag{12}
\end{equation*}
$$

Filtering:
(1) Recluster jet constituent by more finer angular scale $R_{\text {filt }}$

$$
\begin{equation*}
R_{\mathrm{filt}}=\min \left(0.3, \frac{R_{q \bar{q}}}{2}\right) \tag{13}
\end{equation*}
$$

Mass drop tagger and filtering

Problem: Jets clustered with large angular scale is easily degraded by other QCD radiations.

$$
\begin{equation*}
m_{q}^{2}=E_{q}^{2}-\left|\vec{p}_{q}\right|^{2} \ll E_{q}^{2},\left|\vec{p}_{q}\right|^{2}: \text { fine-tuned } \tag{12}
\end{equation*}
$$

Filtering:
(1) Recluster jet constituent by more finer angular scale $R_{\text {filt }}$

$$
\begin{equation*}
R_{\mathrm{filt}}=\min \left(0.3, \frac{R_{q \bar{q}}}{2}\right) \tag{13}
\end{equation*}
$$

(2) Take $n_{\text {filt }}$ hardest subjets and discard others.

Mass drop tagger and filtering

Problem: Jets clustered with large angular scale is easily degraded by other QCD radiations.

$$
\begin{equation*}
m_{q}^{2}=E_{q}^{2}-\left|\vec{p}_{q}\right|^{2} \ll E_{q}^{2},\left|\vec{p}_{q}\right|^{2}: \text { fine-tuned } \tag{12}
\end{equation*}
$$

Filtering:
(1) Recluster jet constituent by more finer angular scale $R_{\text {filt }}$

$$
\begin{equation*}
R_{\mathrm{filt}}=\min \left(0.3, \frac{R_{q \bar{q}}}{2}\right) \tag{13}
\end{equation*}
$$

(2) Take $n_{\text {filt }}$ hardest subjets and discard others.
(3) $n_{\text {filt }}=3$ is often chosen to catch an $\mathcal{O}\left(\alpha_{S}\right)$ radiation.

$16 / 16$

Mass drop tagger and filtering

Problem: Jets clustered with large angular scale is easily degraded by other QCD radiations.

$$
\begin{equation*}
m_{q}^{2}=E_{q}^{2}-\left|\vec{p}_{q}\right|^{2} \ll E_{q}^{2},\left|\vec{p}_{q}\right|^{2}: \text { fine-tuned } \tag{12}
\end{equation*}
$$

Filtering:
(1) Recluster jet constituent by more finer angular scale $R_{\text {filt }}$

$$
\begin{equation*}
R_{\mathrm{filt}}=\min \left(0.3, \frac{R_{q \bar{q}}}{2}\right) \tag{13}
\end{equation*}
$$

(2) Take $n_{\text {filt }}$ hardest subjets and discard others.
(3) $n_{\text {filt }}=3$ is often chosen to catch an $\mathcal{O}\left(\alpha_{S}\right)$ radiation.
After then, we merged most soft filtered subjet into its nearest subjet in ΔR.

$16 / 16$

Collimated Fermions from boosted Z boson decay

Collimated Fermions from boosted Z boson decay

- As the mass gap between S and Z becomes larger, the angular separation of Fermions are getting smaller.

Collimated Fermions from boosted Z boson decay

- As the mass gap between S and Z becomes larger, the angular separation of Fermions are getting smaller.
- For $m_{S}=750 \mathrm{GeV}$, intermediate region between resolved and collimated

$$
\begin{gather*}
\Delta R_{f \bar{f}} \gtrsim 0.5 \tag{14}\\
\left(\Delta R_{f \bar{f}}\right)^{2}=(\Delta \eta)^{2}+(\Delta \phi)^{2} \gtrsim\left(\frac{2 m_{Z}}{p_{T, Z}}\right)^{2} \tag{15}
\end{gather*}
$$

- As the mass gap between S and Z becomes larger, the angular separation of Fermions are getting smaller.
- For $m_{S}=1500 \mathrm{GeV}$, collimated

$$
\begin{gather*}
\Delta R_{f \bar{f}} \gtrsim 0.3 \tag{14}\\
\left(\Delta R_{f \bar{f}}\right)^{2}=(\Delta \eta)^{2}+(\Delta \phi)^{2} \gtrsim\left(\frac{2 m_{Z}}{p_{T, Z}}\right)^{2} \tag{15}
\end{gather*}
$$

- As the mass gap between S and Z becomes larger, the angular separation of Fermions are getting smaller.
- Q: Is boosted object analysis effective for studying properties (such as spin and (P) of the resonance S ?

- As the mass gap between S and Z becomes larger, the angular separation of Fermions are getting smaller.
- Q: Is boosted object analysis effective for studying properties (such as spin and (P) of the resonance S ?
- We will see that boosted object analysis is necessary in order to maximize the discrimination power for determining spin and CP of S.

Angular separation of particles from Z boson decay

Lorentz invariant angular separtion under a boost along the beam direction

$$
\begin{equation*}
(\Delta R)^{2}=(\Delta \eta)^{2}+(\Delta \phi)^{2} \approx \frac{m_{Z}^{2}}{p_{T, f} p_{T, \bar{f}}} \tag{14}
\end{equation*}
$$

0000000000

Angular separation of particles from Z boson decay

Lorentz invariant angular separtion under a boost along the beam direction

$$
\begin{equation*}
(\Delta R)^{2}=(\Delta \eta)^{2}+(\Delta \phi)^{2} \approx \frac{m_{Z}^{2}}{p_{T, f} p_{T, \bar{f}}} \tag{14}
\end{equation*}
$$

ΔR is from inner product between p_{f}^{μ} and p_{f}^{ν}. For massless f,

$$
\begin{gather*}
\eta_{\mu \nu} p_{f}^{\mu} p_{\bar{f}}^{\nu}=p_{T, f} p_{T, \bar{f}}(\cosh \Delta \eta-\cos \Delta \phi) \tag{15}\\
\cosh \Delta \eta-\cos \Delta \phi=\frac{\eta_{\mu \nu} p_{f}^{\mu} p_{\bar{f}}^{\nu}}{p_{T, f} p_{T, \bar{f}}}=\frac{m_{Z}^{2}}{2 p_{T, f} p_{T, \bar{f}}} \tag{16}
\end{gather*}
$$

0000000000

Angular separation of particles from Z boson decay

Lorentz invariant angular separtion under a boost along the beam direction

$$
\begin{equation*}
(\Delta R)^{2}=(\Delta \eta)^{2}+(\Delta \phi)^{2} \approx \frac{m_{Z}^{2}}{p_{T, f} p_{T, \bar{f}}} \tag{14}
\end{equation*}
$$

ΔR is from inner product between p_{f}^{μ} and $p_{\bar{f}}^{\nu}$. For massless f,

$$
\begin{gather*}
\eta_{\mu \nu} p_{f}^{\mu} p_{\bar{f}}^{\nu}=p_{T, f} p_{T, \bar{f}}(\cosh \Delta \eta-\cos \Delta \phi) \tag{15}\\
\cosh \Delta \eta-\cos \Delta \phi=\frac{\eta_{\mu \nu} p_{f}^{\mu} p_{\bar{f}}^{\nu}}{p_{T, f} p_{T, \bar{f}}}=\frac{m_{Z}^{2}}{2 p_{T, f} p_{T, \bar{f}}} \tag{16}
\end{gather*}
$$

In terms of $p_{T, Z}$ we can rewrite ΔR by

$$
\begin{equation*}
(\Delta R)^{2}=(\Delta \eta)^{2}+(\Delta \phi)^{2} \approx \frac{1}{z(1-z)} \frac{m_{Z}^{2}}{p_{T, Z}^{2}}, \quad z(1-z)=\frac{p_{T, f} p_{T, \bar{f}}}{p_{T, z}^{2}} \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
(\Delta R)^{2} \approx \frac{1}{z(1-z)} \frac{m_{Z}^{2}}{p_{T, Z}^{2}} \geq\left(\frac{2 m_{Z}}{p_{T, Z}}\right)^{2} \tag{18}
\end{equation*}
$$

For $m_{S}=750 \mathrm{GeV}$ resonance, $\Delta R \gtrsim 0.5$. For electron (jet) isolation in reconstruction level, we often set an isolation angular scale 0.3 (0.4).

