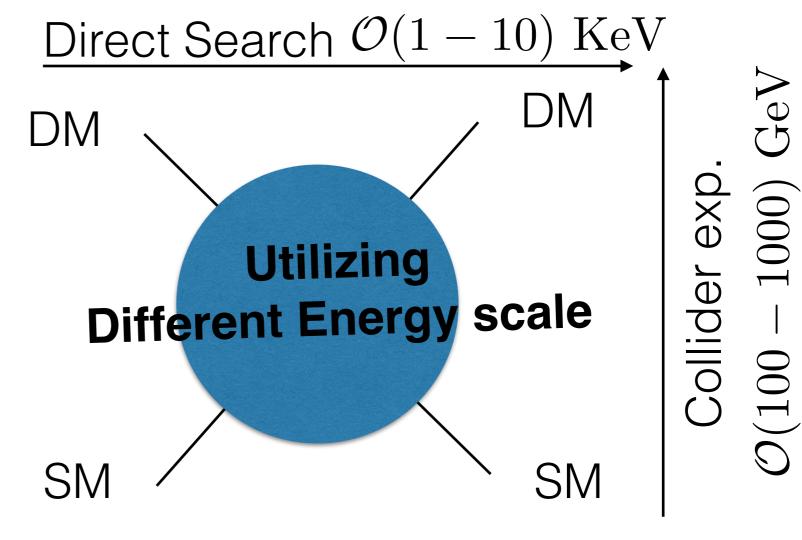
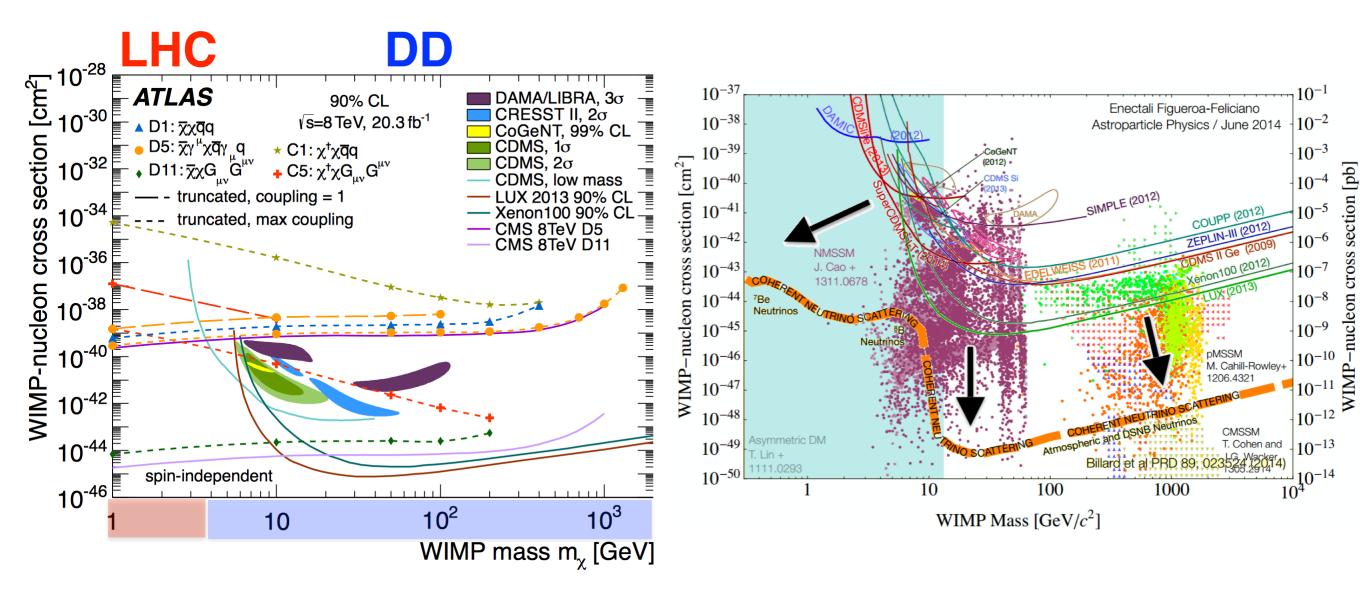
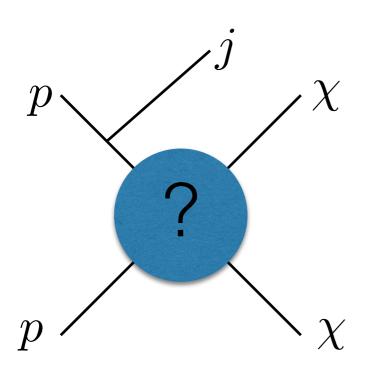

Light Dark matter @ LHC


Myeonghun Park (IBS-CTPU, PTC)


Two orthogonal EXPs

Snowmass summary 1310.8327 P. Cushman et.al

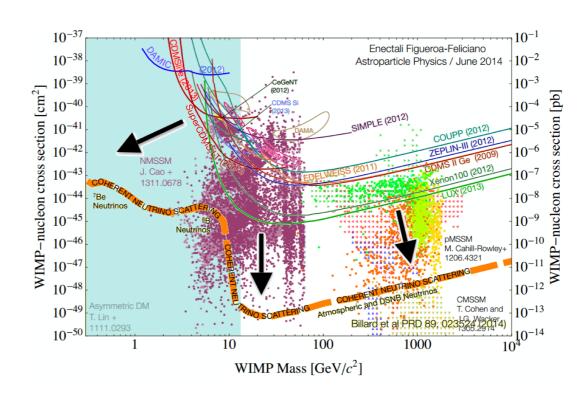

Interplay between DD and LHC

Different experiments can cover different DM mass scale!

A strategy when we know NOTHING

- Very minimal set-up (search channel) for DM @LHC
 - Jet from Initial State Radiation (ISR) to **tag** Missing Transverse Energy events

Name	Operator	Coefficient
D1	$ar{\chi}\chiar{q}q$	m_q/M_st^3
D2	$ar{\chi}\gamma^5\chiar{q}q$	im_q/M_st^3
D3	$ar{\chi}\chiar{q}\gamma^5q$	im_q/M_st^3
D4	$ar{\chi}\gamma^5\chiar{q}\gamma^5q$	m_q/M_st^3
D5	$ar{\chi}\gamma^{\mu}\chiar{q}\gamma_{\mu}q$	$1/M_*^2$
D6	$ar{\chi}\gamma^{\mu}\gamma^5\chiar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D7	$ar{\chi}\gamma^{\mu}\chiar{q}\gamma_{\mu}\gamma^5 q$	$1/M_{*}^{2}$
D8	$ar{\chi}\gamma^{\mu}\gamma^5\chiar{q}\gamma_{\mu}\gamma^5q$	$1/M_{*}^{2}$
D9	$\bar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$
D10	$ar{\chi}\sigma_{\mu u}\gamma^5\chiar{q}\sigma_{lphaeta}q$	i/M_st^2
D11	$ar{\chi}\chi G_{\mu u}G^{\mu u}$	$lpha_s/4M_*^3$
D12	$ar{\chi}\gamma^5\chi G_{\mu u}G^{\mu u}$	$ilpha_s/4M_*^3$
D13	$ar{\chi}\chi G_{\mu u} ilde{G}^{\mu u}$	$ilpha_s/4M_*^3$
D14	$ar{\chi}\gamma^5\chi G_{\mu u} ilde{G}^{\mu u}$	$lpha_s/4M_*^3$


Name	Operator	Coefficient
C1	$\chi^\dagger \chi ar q q$	m_q/M_st^2
C2	$\chi^\dagger \chi ar q \gamma^5 q$	im_q/M_st^2
С3	$\chi^\dagger \partial_\mu \chi ar q \gamma^\mu q$	$1/M_*^2$
C4	$\chi^\dagger \partial_\mu \chi ar q \gamma^\mu \gamma^5 q$	$1/M_*^2$
C5	$\chi^\dagger \chi G_{\mu u} G^{\mu u}$	$lpha_s/4M_*^2$
C6	$\chi^\dagger \chi G_{\mu u} ilde{G}^{\mu u}$	$ilpha_s/4M_*^2$
R1	$\chi^2 \bar q q$	$m_q/2M_st^2$
R2	$\chi^2 ar q \gamma^5 q$	$im_q/2M_st^2$
R3	$\chi^2 G_{\mu u} G^{\mu u}$	$\alpha_s/8M_*^2$
R4	$\chi^2 G_{\mu u} ilde{G}^{\mu u}$	$ilpha_s/8M_*^2$

Tim Tait. et.al. Phys.Rev. D82 (2010) 116010

Additional object for a Light DM

- A very light DM with a mediator around 2 M(dark) can enhance the DM annihilation process via a resonance-enhancement
- We can capture the light mediator @ LHC

Next-to-Minimal SUSY

Light Dark Matter, charged under dark gauge

A light DM in NMSSM

Resolving mu-problem through the "Yukawa" interaction with S

$$W_{\text{NMSSM}} = \text{MSSM Yukawa terms} + \lambda \widehat{S} \widehat{H}_u \widehat{H}_d + \frac{\kappa}{3} \widehat{S}^3$$

can lead interesting phenomena for DM

$$\mu_{\text{eff}} \equiv \lambda s \ll \min[M_1, M_2]$$

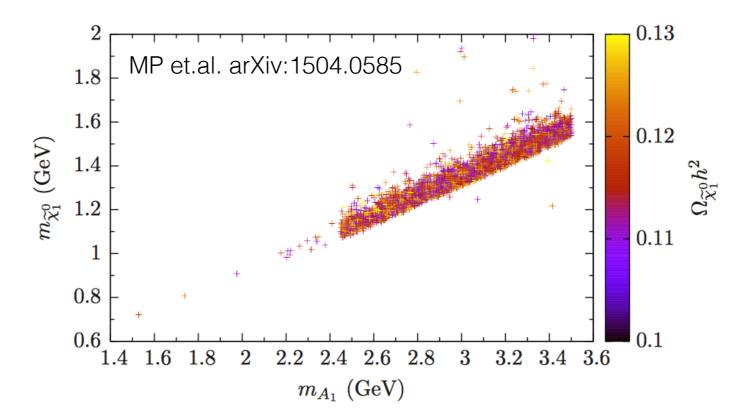
$$\mathcal{M}_{\widetilde{\chi}^0} = \begin{pmatrix} M_1 & 0 & -m_W \tan \theta_W \cos \beta & m_W \tan \theta_W \sin \beta & 0 \\ 0 & M_2 & m_W \cos \beta & -m_W \sin \beta & 0 \\ -m_W \tan \theta_W \cos \beta & m_W \cos \beta & 0 & -\mu_{\text{eff}} & -\lambda v_u \\ m_W \tan \theta_W \sin \beta & -m_W \sin \beta & -\mu_{\text{eff}} & 0 & -\lambda v_d \\ 0 & 0 & -\lambda v_u & -\lambda v_d & 2\kappa s \end{pmatrix}$$

 $[\mathcal{M}_{ ilde{\chi}_0}]_{55}=2\kappa s=rac{2\,\kappa\,\mu_{\mathrm{eff}}}{\lambda}$:a DM is singlino-dominated for $\,2\kappa/\lambda<1\,$

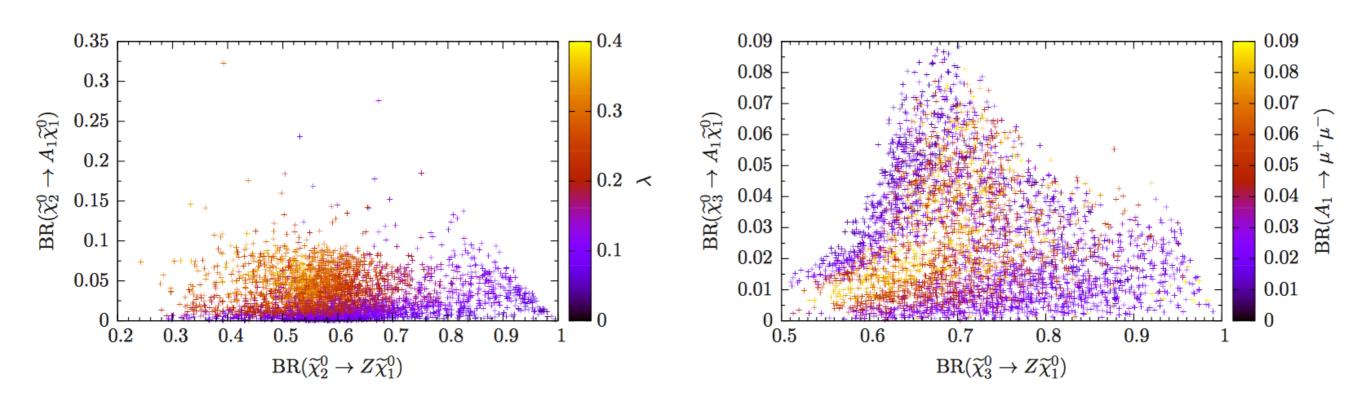
A light DM in NMSSM with a light scalar

From the soft-SUSY breaking term

$$V_{\text{soft}} = m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2 + \left(\lambda A_\lambda S H_u H_d + \frac{1}{3} \kappa A_\kappa S^3 + \text{h.c.}\right)$$

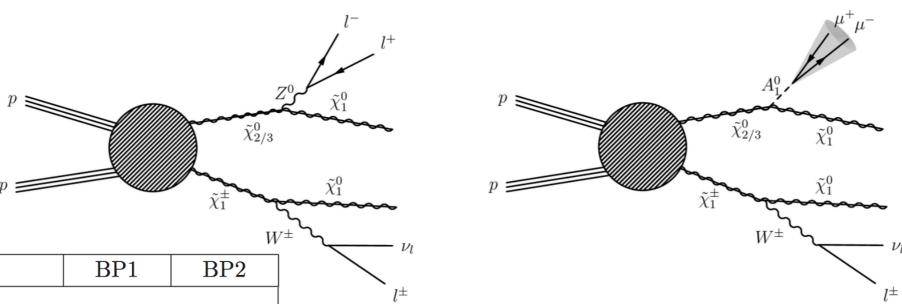

the mass of singlet-like pseudo scalar

$$m_{A_1}^2 \simeq \lambda (A_\lambda + 4\kappa s) \frac{v^2 \sin 2\beta}{2s} - 3\kappa s A_\kappa$$


Singlino-dominated LSP (DM) [Small κ]

can be naturally accompanied by a light pseudo scalar

DM relic via a resonance A₁ channel



• Small $\mu_{ ext{eff}}$ makes the 2nd and 3rd Neutralino -> higgino-like

The chance of the LHC

Conventional search (three leptons) v.s. Muon-jet

	BP1	BP2
Masses		
$m_{\widetilde{\chi}_1^0} \; ({ m GeV})$	1.0025	1.4081
$m_{\widetilde{\chi}^0_2} \; ({ m GeV})$	189.09	170.13
$m_{\widetilde{\chi}^0_3} \; ({ m GeV})$	-201.67	-182.27
$m_{\widetilde{\chi}_1^{\pm}} \; ({ m GeV})$	194.97	167.72
$m_{A_1} ext{ (GeV)}$	2.1776	2.9856
$m_{H_2} \; ({ m GeV})$	124.12	125.79
Branching Ratios		
$BR(\widetilde{\chi}_2^0 \to Z\widetilde{\chi}_1^0)$	0.634	0.603
$BR(\widetilde{\chi}_2^0 \to A_1 \widetilde{\chi}_1^0)$	0.004	0.089
$BR(\widetilde{\chi}^0_3 \to Z\widetilde{\chi}^0_1)$	0.736	0.704
$BR(\widetilde{\chi}_3^0 \to A_1 \widetilde{\chi}_1^0)$	0.004	0.081
$BR(A_1 \to \mu^+\mu^-)$	0.039	0.087

14TeV LHC for $\mathcal{L} = 300 \text{fb}^{-1}$

Point	S/B in analys	is	$\mathcal{Z}(\sigma)$ in analysis			
	3ℓ (SRZc region)	$\mu_{ m col}$	3ℓ (SRZc region)	$\mu_{ m col}$		
BP1	0.591	0.42	2.7	1.2		
BP2	0.436	15	2.0	27		

MP et.al. arXiv:1504.0585

DM with dark gauge boson(s)

- A light dark matter, accompanied by a dark gauge boson;
 - has a self-interaction under a hidden gauge
 - acquires milli-charge under the SM gauge bosons (e.g. by kinetic mixing $\epsilon\,F_{\mu\nu}^{({\rm SM})}F_{\rm Dark}^{\mu\nu}$)

$$\mathcal{L}
i \bar{\chi} \left(i \partial \!\!\!/ - m_{\chi} + i g' \!\!\!/ A' \right) \chi - rac{1}{4} F'_{\mu
u} F'^{\mu
u} + rac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} - rac{\epsilon}{2} F'_{\mu
u} F^{\mu
u}$$

 What's the mechanism behind the mass of DM and Dark Gauge field?

DM, dark gauge boson and a Dark Higgs

A'_{μ}	Φ	χ_L	χ_R	ψ_L	ψ_R
	Q'_{Φ}	Q'_{χ_L}	Q'_{χ_R}	Q_{ψ_L}'	Q'_{ψ_R}

$$Q'_{\Phi} = Q'_{\chi_R} - Q'_{\chi_L} = -(Q'_{\Psi_R} - Q'_{\Psi_L})$$

$$\mathcal{L}_{\text{vector+scalar}} = -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + \frac{\varepsilon}{2}F_{\mu\nu}F'^{\mu\nu} + |D_{\mu}\Phi|^2$$

$$\mathcal{L}_{\text{matter}} = \bar{\chi}_L i \gamma^{\mu} D_{\mu} \chi_L + \bar{\chi}_R i \gamma^{\mu} D_{\mu} \chi_R + \bar{\psi}_L i \gamma^{\mu} D_{\mu} \psi_L$$

$$+ \bar{\psi}_R i \gamma^{\mu} D_{\mu} \psi_R - y_{\chi} \bar{\chi}_L \Phi^* \chi_R - y_{\chi} \bar{\chi}_R \Phi \chi_L$$

$$- y_{\psi} \bar{\psi}_L \Phi \psi_R - y_{\psi} \bar{\psi}_R \Phi^* \psi_L$$

DM, dark gauge boson and a Dark Higgs

A'_{μ}	Φ	χ_L	χ_R	ψ_L	ψ_R
	Q'_{Φ}	Q'_{χ_L}	Q'_{χ_R}	Q_{ψ_L}'	$oxed{Q'_{\psi_R}}$

$$\mathcal{L} \ni -g_{\chi} Q'_{V} A'_{\mu} \bar{\chi} \gamma^{\mu} \chi - g_{\chi} Q'_{A} A'_{\mu} \bar{\chi} \gamma^{\mu} \chi$$

$$Q'_{A} = \frac{1}{2} (Q'_{\chi_{R}} - Q'_{\chi_{L}}) = \frac{Q'_{\Phi}}{2}$$

$$Q'_{V} = \frac{1}{2} (Q'_{\chi_{R}} + Q'_{\chi_{L}}) = \frac{Q'_{\Phi}}{2} + Q'_{\chi_{L}}$$

 Thus we always have the axial coupling between DM and a Dark photon

The origin of the mass of a DM and a dark photon

 One may ask the phenomenology according to the mass mechanism behind them (dark matter and dark photon).

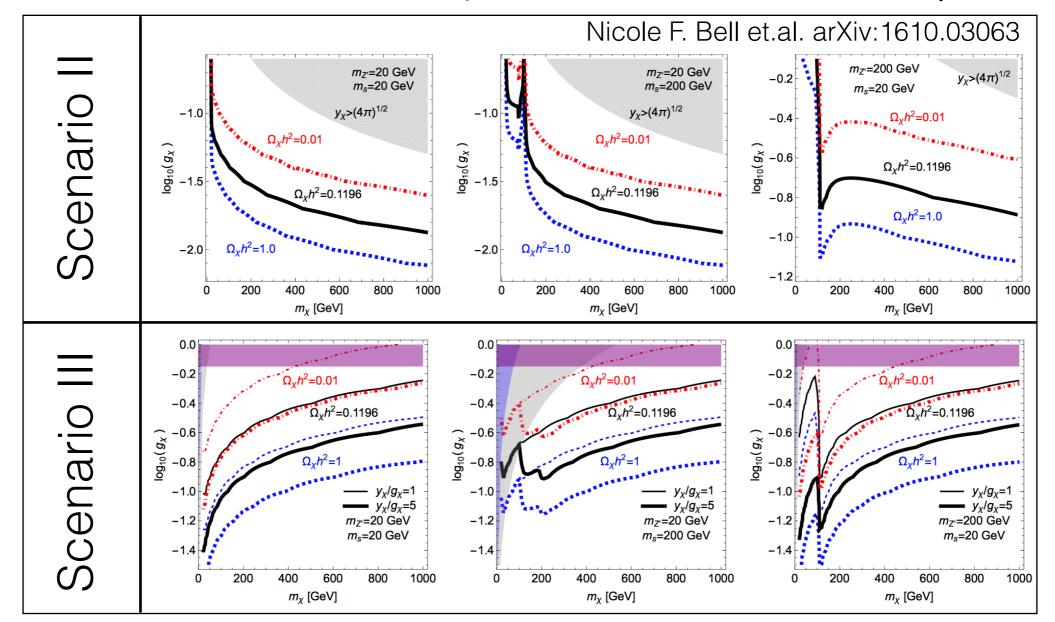
I	Bare mass term	Stueckelberg mechanism	Vector	$\overline{\chi}$ Z'	Z_T'	111	Y
			Vector & axial-vector	X Z'		III	Da
II	Yukawa coupling to Dark Higgs	Dark Higgs mechanism	or pure axial-vector. The $U(1)$ charge assignments of χ_L and χ_R determine the relative size of the V and A couplings. The axial-vector	\overline{X} X Z' X Z' X Z' X Z' X Z' X	$Z_T' \& Z_L'$	IV	Ва
			coupling must be non-zero.	$X \longrightarrow Z'$ $\overline{X} \longrightarrow S$		Nicole	F. I

$\overline{}$						
	III	Yukawa coupling to Dark Higgs	Stueckelberg mechanism	Vector	$X \longrightarrow Z'$ $\overline{X} \longrightarrow Z'$ $X \longrightarrow Z'$ $\overline{X} \longrightarrow Z'$	Z_T'
	IV	Bare mass term	Dark Higgs mechanism	Vector	X \overline{X} Z' X Z' \overline{X} Z' \overline{X} X Z' X	Z_T^\prime

Nicole F. Bell et.al. arXiv:1610.03063

The origin of the mass of a DM and a dark photon

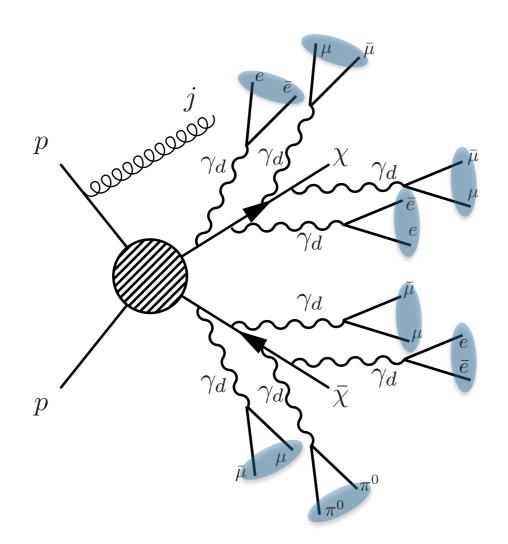
 One may ask the phenomenology according to the mass mechanism behind them (dark matter and dark photon).

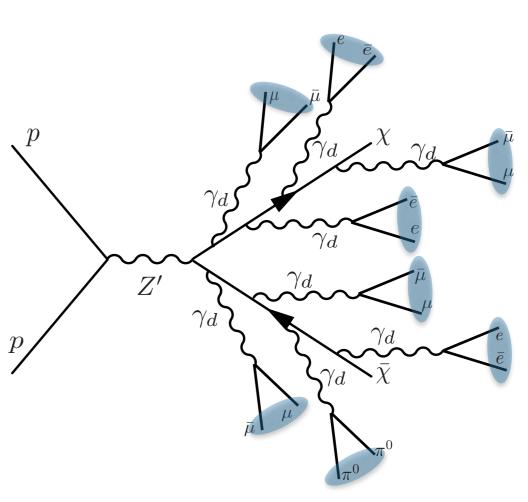

I	Bare mass term	Stueckelberg mechanism	Vector	$X \longrightarrow Z'$ $\overline{\chi} \longrightarrow Z'$	Z_T'		Yukawa	Stueckelberg
			Vector & axial-vector	X Z'		III	coupling to Dark Higgs	mechanism
II	Yukawa coupling to Dark Higgs	Dark Higgs mechanism	or pure axial-vector. The $U(1)$ charge assignments of χ_L and χ_R determine the relative size of the V and A couplings. The axial-vector	\overline{X} X Z' X Z' X Z' X Z' X Z' X	$Z_T' \& Z_L'$	IV	Bare mass term	Dark Higgs mechanism
			coupling must be non-zero.	$X \longrightarrow Z'$ $\overline{X} \longrightarrow S$		Nicole	F. Bell et	.al. arXiv

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
\overline{IV} Bare mass term Dark Higgs mechanism Vector \overline{x}	\overline{Z}' \overline{Z}' \overline{Z}' \overline{Z}' \overline{Z}' \overline{Z}' \overline{Z}'	,	III	coupling to	Vector	$\overline{\chi}$ Z'	Z_T'
		,	IV		Vector	$\overline{\chi}$ χ Z' Z' Z' χ Z' χ	Z_T'

v:1610.03063

Cosmological aspect

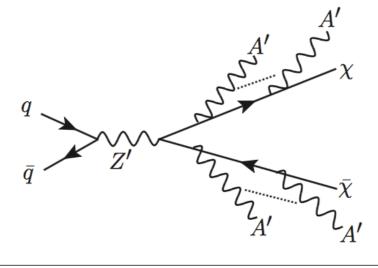

 One may ask the phenomenology according to the mass mechanism behind them (dark matter and dark photon).



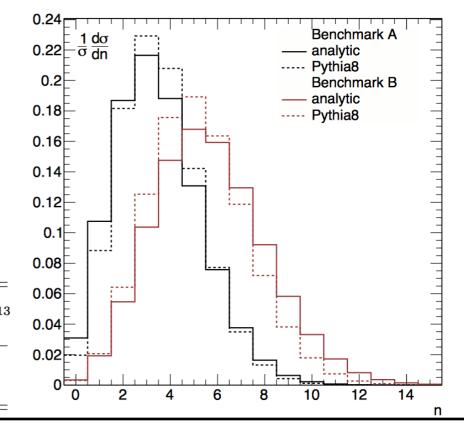
- "Charged" Dark Matter showers off the dark photons
 - -> Dark photons decay back to SM particles: Collider Obs

Mengchao Zhang,¹ Minho Kim,^{1,2} Hye-Sung Lee,¹ and Myeonghun Park¹

arXiv:THIS.WEEK


M. Buschmann et.al arXiv:1505.07459

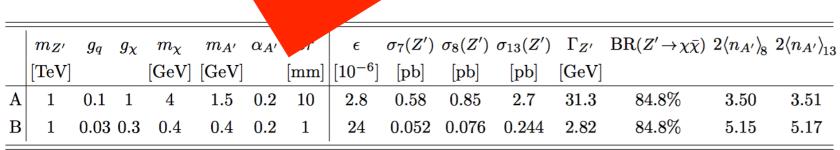
A light dark matter, accompanied by a dark gauge boson.

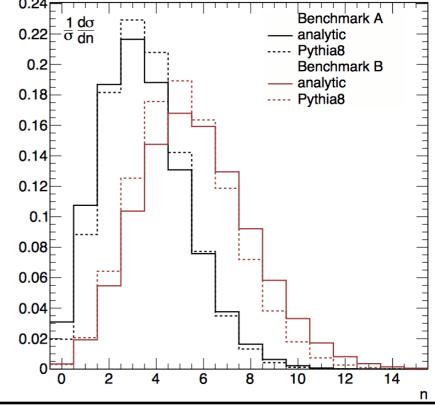

$$\mathcal{L}_{\text{dark}} \equiv \bar{\chi} (i \partial \!\!\!/ - m_{\chi} + i g_{A'} \!\!\!/ A') \chi - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\nu} - \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu}$$

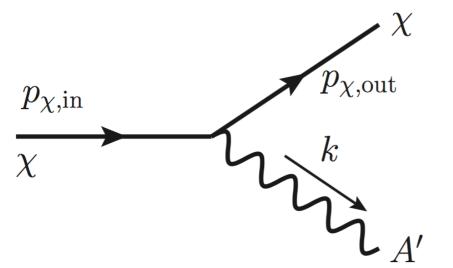
The highly boosted "dark charged" DM will shower dark

photons

													$\mathrm{BR}(Z'\!\to\!\chi\bar\chi)$	$2\langle n_{A'}\rangle_{\!8}$	$2\langle n_{A'} \rangle_1$
	[TeV]			$[\mathrm{GeV}]$	$[\mathrm{GeV}]$		[mm]	$[10^{-6}]$	[pb]	[pb]	[pb]	$[\mathrm{GeV}]$			
	l .							I					84.8%		
В	1	0.03	0.3	0.4	0.4	0.2	1	24	0.052	0.076	0.244	2.82	84.8%	5.15	5.17


M. Buschmann et.al arXiv:1505.07459


A light dark matter, accompanied by a dark gauge boson.


$$\mathcal{L}_{\text{dark}} \equiv \bar{\chi}(i\partial \!\!\!/ - m_{\chi} + ig_{A'}A')\chi - \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} - \frac{1}{4}A'_{\mu}A'^{\nu} - \frac{\epsilon}{2}F'_{\mu\nu}F^{\mu\nu}$$

will shower dark The highly boosted "dark cha ctor-like

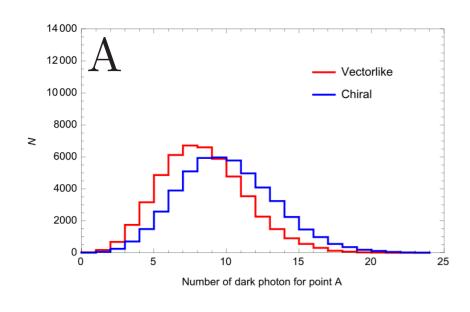
photons

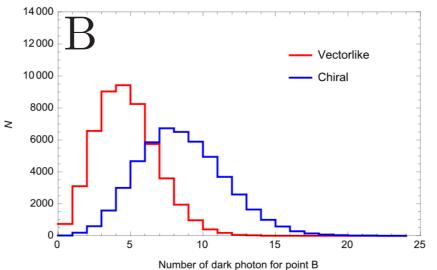
Splitting function

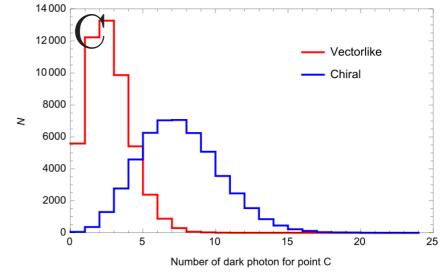
Splitting function
$$P_{\chi, \text{out}} \qquad \text{Splitting function}$$

$$P_{\chi \to \chi}(x,t) \simeq \frac{1}{2} \left(Q_{\chi_L}'^2 + Q_{\chi_L}'^2 \right) \frac{1+x^2}{1-x}$$

M. Buschmann et.al arXiv:1505.07459

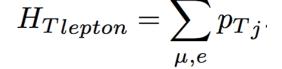

- In general case

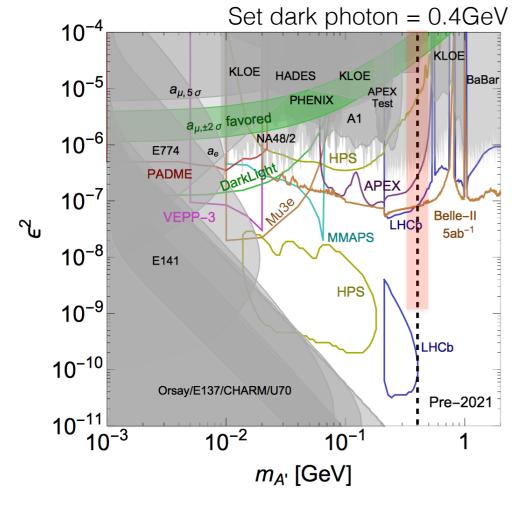

$$P_{\chi \to \chi}(x,t) \simeq \frac{1}{2} \left(Q_{\chi_L}^{\prime 2} + Q_{\chi_L}^{\prime 2} \right) \frac{1+x^2}{1-x} + \frac{1}{2} \left(Q_{\chi_L}^{\prime} - Q_{\chi_R}^{\prime} \right)^2 \frac{m_{\chi}^2}{m_{A^{\prime}}^2}$$


Different showering@LHC

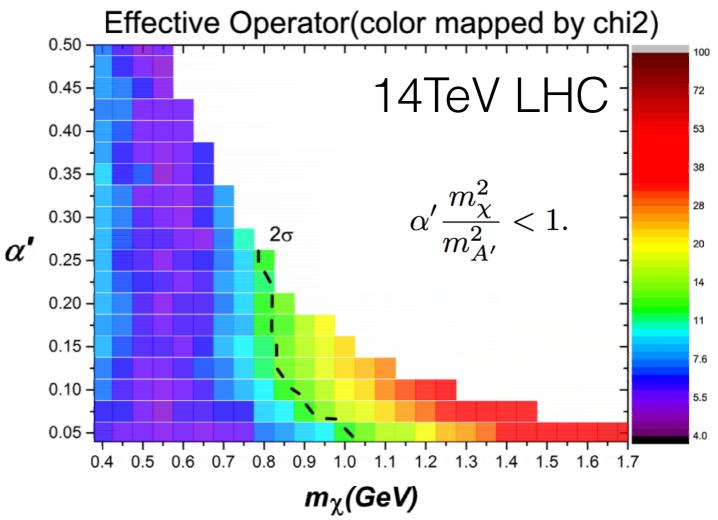
Vector: (Q'L, Q'R) = (1,1)

Chiral: (Q'L, Q'R) = (1,0)

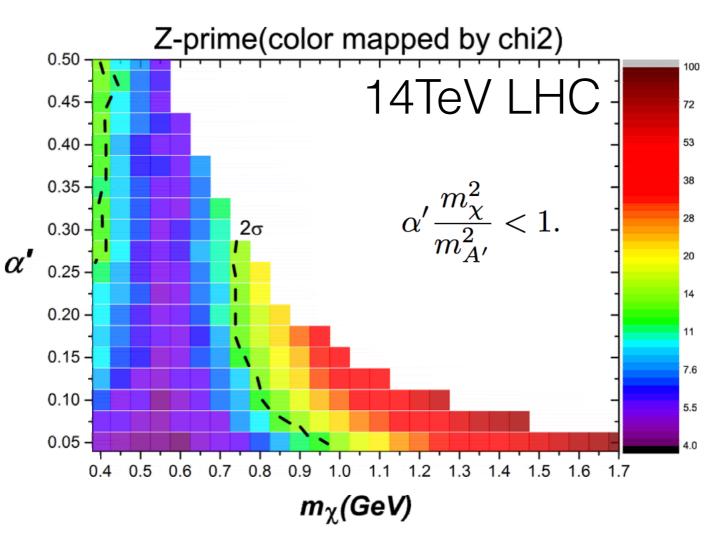


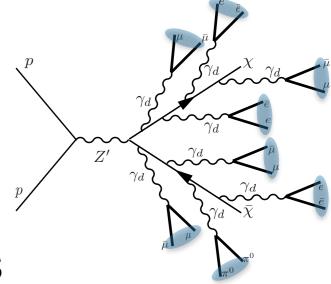

	A	В	C
lpha'	0.3	0.15	0.075
$m_\chi(GeV)$	0.7	1.0	1.4
$\overline{m_{A'}(GeV)}$	0.4	0.4	0.4

@LHC, we may see the difference among various mechanism behind the mass of dark matter & a dark-photon


Differentiate algorithm @ LHC

How one can distinguish two mechanism@LHC


Dark Sectors 2016 Workshop arXiv:1608.08632



Number of events = 200

Differentiate algorithm @ LHC

Case of DM production via a heavy Zprime

<n> / events

	Vectorlike	Chiral
$lpha'=0.16, m_\chi=1 GeV$	4.6	8.6
$lpha'=0.0016, m_\chi=10 GeV$	0.04	6.0
$\alpha' = 0.000016, m_{\chi} = 100 GeV$	0.0004	3.6

Conclusion

- HL-LHC can become the precision machine as we can control / understand QCD activities.
- LHC proves the LIGHT Dark matter!
- By looking into the different shower pattern from "energetic" dark matter@LHC, we can tell more than "just discovery".