Refining Gravitational Wave and Collider Physics Dialogue via Singlet Scalar Extension

Van Que Tran

NCTS, National Taiwan University

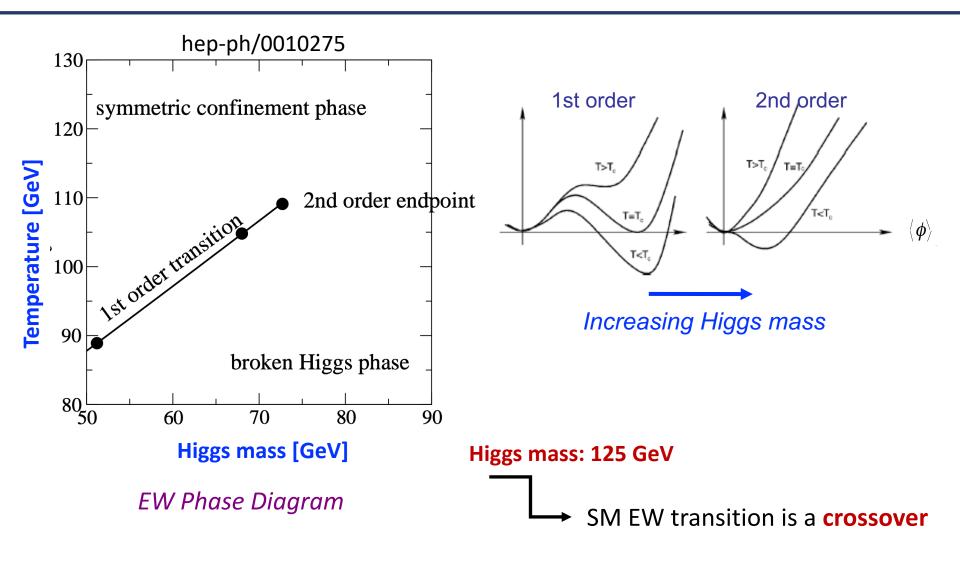
In collaboration: Michael J. Ramsey-Musolf, Tuomas V. I. Tenkanen

Based on: arXiv:2409.17554

Summer Institute 2025 @Yeosu, Korea, Aug. 17-22, 2025

- I. Introduction
- II. Theoretical Robustness on GW prediction
 - Dimensional reduction (3dEFT)
 - Higher loop corrections
 - Bubble wall velocity
- III. GW-Collider interplays via xSM
- **IV. Summary**

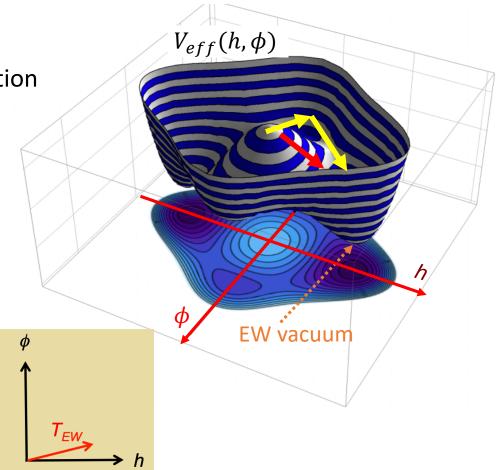
EW transition in SM

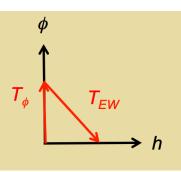


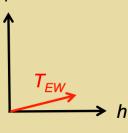
EW transition in BSMs

Effective potential a function of multiple order parameters.

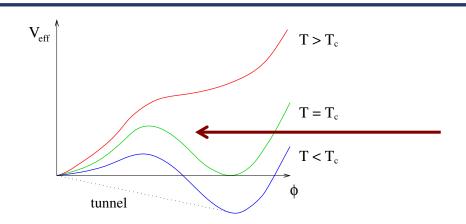
Possible of multi-step phase transition



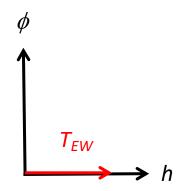




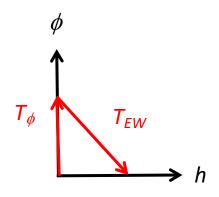
EW transition in BSMs: 1st order



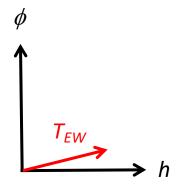
Generate finite-T barrier



 $a_2 H^2 \phi^2 : T > 0$ loop effect



 $a_2 H^2 \phi^2 : T = 0$ tree-level effect



 $a_1 H^2 \phi : T = 0$ tree-level effect

1st order EW phase transition is interesting?

- 1. It can be indirectly probed by collider
- 2. It can generate a stochastic background of GW which can be detectable by the next generation of GW detectors such as LISA.
- 3. It is one of necessary preconditions (Sakharov conditions) for the generation of the observed baryon asymmetry via electroweak baryogenesis

How reliable are the computations for GW predictions?

Key parameters for GW production

Temperature T_* :

$$ightharpoonup T_* \sim 100 \ GeV \rightarrow mHz \ \text{today}$$

Latten heat or phase transition strength, α

$$\alpha = \frac{\rho_{\text{vac}}}{\rho_{\text{rad}}^*} = \frac{1}{\rho_{\text{rad}}^*} \left[\frac{1}{4} T \frac{\partial}{\partial T} \Delta V(T) - \Delta V(T) \right] \Big|_{T_*}$$

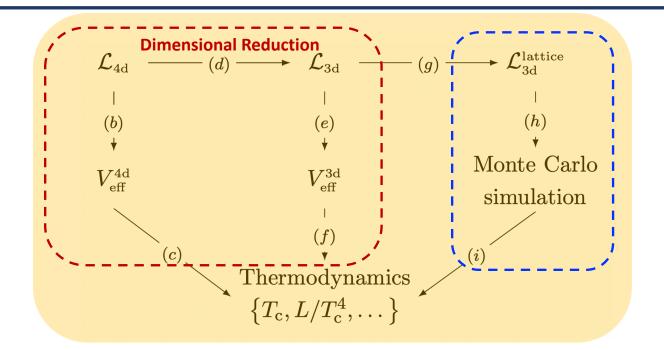
"Duration":

$$\left|\frac{\beta}{H_*} = -T\frac{d}{dT}\ln\Gamma\right|_{T=T_*} \qquad \beta \text{: inverse phase transition d} \\ H_*\text{: Hubble rate at transition}$$

 β : inverse phase transition duration

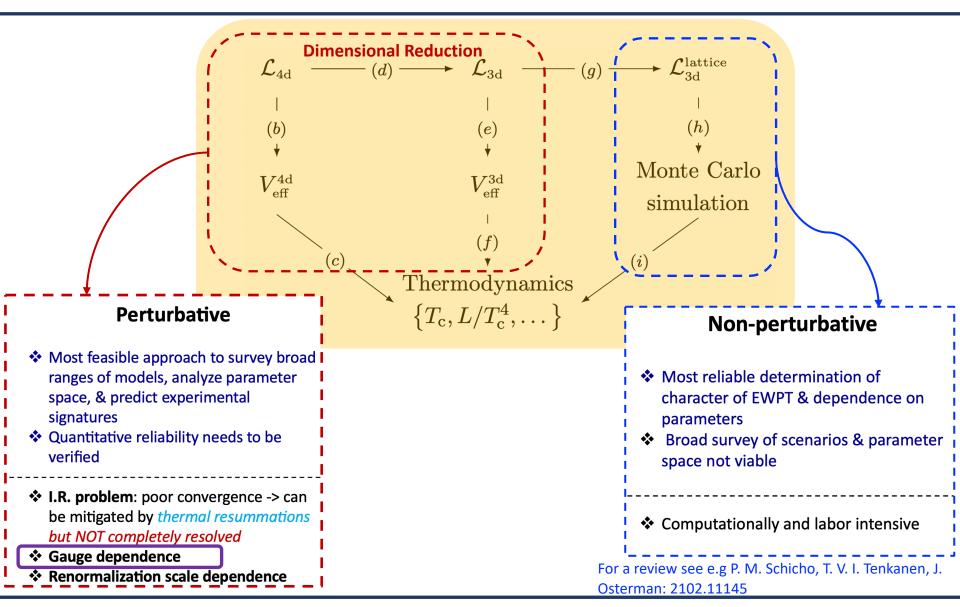
 v_w : bubble wall velocity

Approaches to thermodynamics



For a review see e.g P. M. Schicho, T. V. I. Tenkanen, J. Osterman: 2102.11145

Approaches to thermodynamics



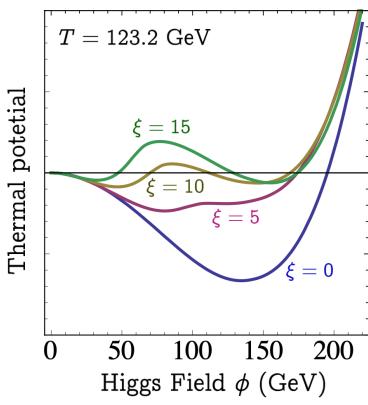
Gauge dependent issue

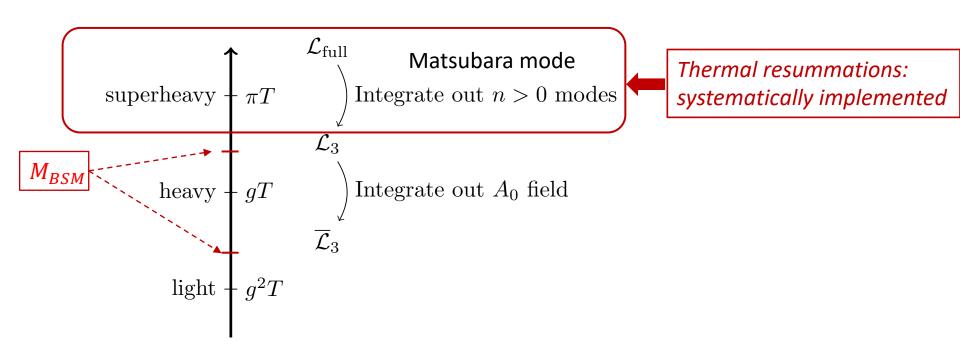
The full effective potential depends on the gauge parameter

- Need to use approximations to obtain a gauge independent effective potential:
- 1. Using high-T expansion
- 2. Using hbar expansion (PRM method)

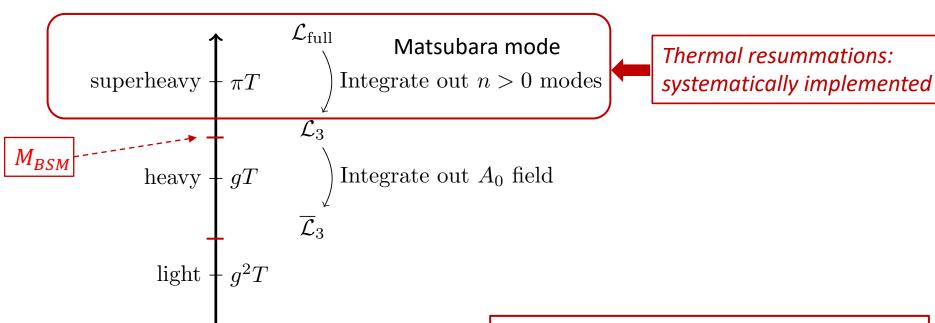
H.H.Patel and M.J.Ramsey-Musolf JHEP 07 (2011), 029, arXiv:1101.4665

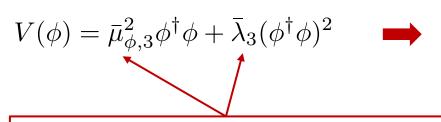
Standard Model





Heavy BSM mass

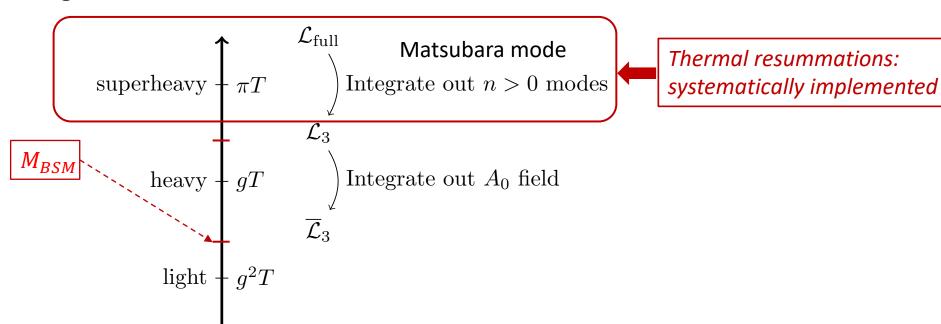


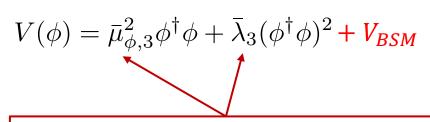


Effective "SM-like" theory parameters are functions of BSM parameters

"Reuse" the existing lattice results for SMlike effective theory & matching onto full theory to determine FOEWPT-viable parameter space regions

Light BSM mass





Effective "SM-like" theory parameters are functions of BSM parameters

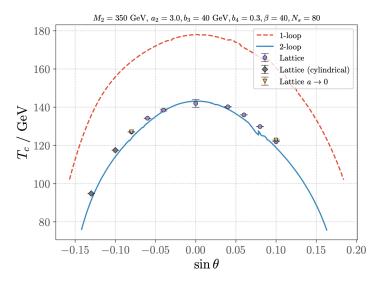
Perform new lattice simulations

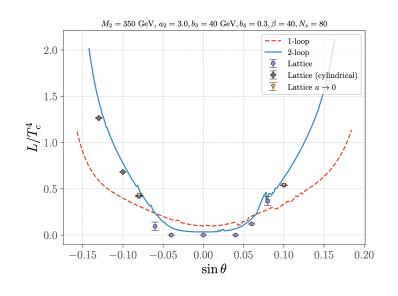
For recent lattice simulations, see

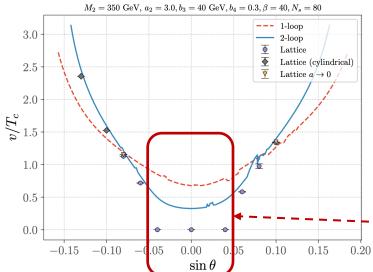
- Niemi, Ramsey-Musolf, Tenkanen, Weir 2005.11332
- L. Niemi, Michael J. Ramsey-Musolf, G. Xia: 2405.01191

DR 3EFT perturbative vs Lattice:

singlet scalar extension







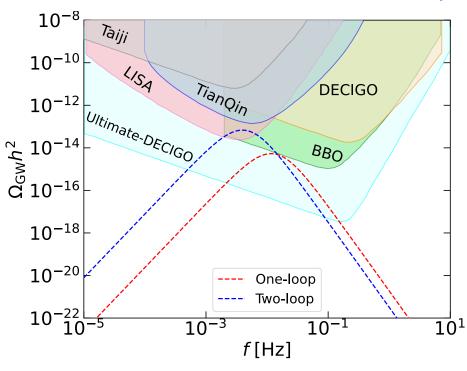
L. Niemi, M. J. Ramsey-Musolf, G. Xia: 2405.01191

---- Transition is crossover

DR 3EFT perturbative: GW spectrum

from 1-loop vs 2-loop corrections

Ramsey-Musolf, Tenkanen, VQT: 2409.17554



Spectrum is obtained using **PTPlot** package

BM: $m_{h_2} = 350$ GeV, $b_3 = 40$ GeV, $b_4 = 0.3$, $a_2 = 3.0$, and $\sin \theta = 0.1$. At one-loop order, we find

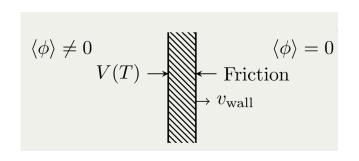
$$T_* = 82.12 \, \mathrm{GeV}, \quad \alpha = 0.065, \quad \frac{\beta}{H_*} = 1102.57, \quad v_w^{\mathrm{LTE}} = 0.70, \quad \mathrm{SNR}_{\mathrm{LISA}} = 0.18.$$

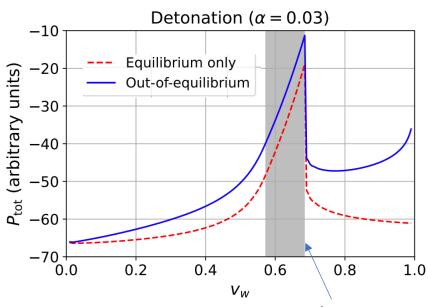
Including two-loop corrections results:

$$T_* = 64.75\,\mathrm{GeV}, \quad \alpha = 0.128, \quad \frac{\beta}{H_*} = 528.4, \quad v_w^{\mathrm{LTE}} = 0.78, \quad \mathrm{SNR}_{\mathrm{LISA}} = 9.3.$$

Bubble dynamic: wall velocity

- Computing bubble wall velocity is **challenging** especially including out-of-equilibrium effects <- how the **plasma's distribution functions** are represented and calculated?.
- ❖ However, the out-of-equilibrium effects are typically **subdominant** for some BSMs!
- → The wall velocity can be computed using **Local Thermal Equilibrium approximation***





Chapman-Jouguet velocity

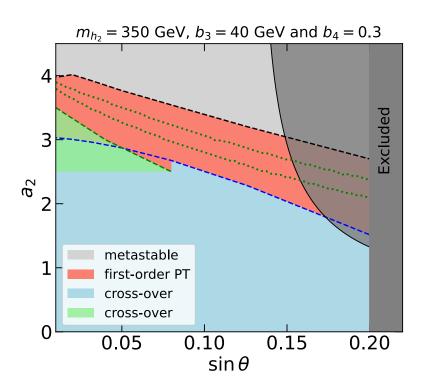
*all the species in the plasma are in local thermal equilibrium at the same temperature and fluid velocity

B. Laurent and J.M. Cline: 2204.13120 W-Y. Ai, B. Laurent and J. Vis: 2303.10171

xSM: phase structure diagram

Phase structure diagram

Ramsey-Musolf, Tenkanen, VQT: 2409.17554

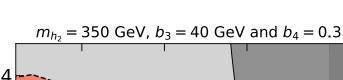


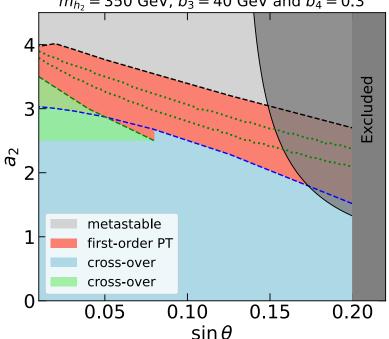
Crossover: assuming the singlet is **NOT** dynamical in the lattice simulation

Crossover: assuming the singlet is dynamical in the lattice simulation

xSM: phase structure diagram

Phase structure diagram





Ramsey-Musolf, Tenkanen, VQT: 2409.17554

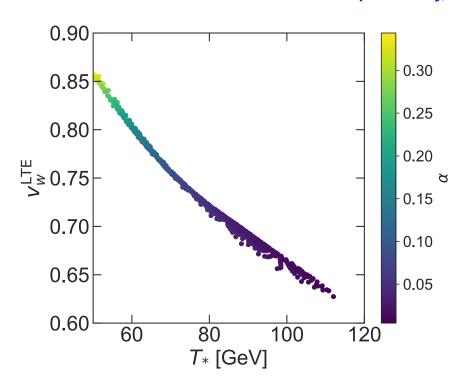


Crossover: assuming the singlet is **NOT** dynamical in the lattice simulation Crossover: assuming the singlet is dynamical in the lattice simulation

The phase transition strength and its duration is sensitive to the coupling a_2 .

xSM: bubble wall velocity

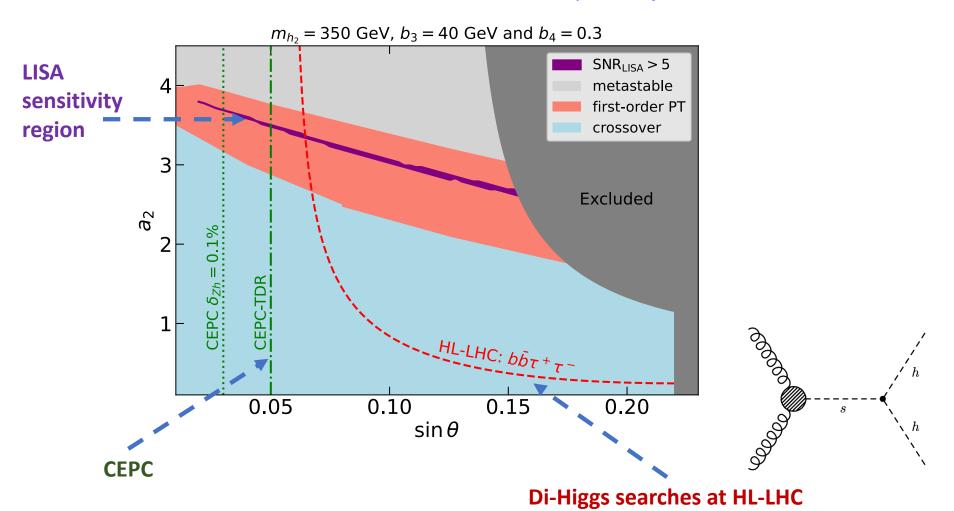
Ramsey-Musolf, Tenkanen, VQT: 2409.17554



- Strong correlation to nucleation temperature and the latten heat
- Lies in range of [0.63, 0.85] which corresponds to the **hybrids** profile solution for the wall where the wall has both a rarefaction and a shock wave!

xSM: **GW** and future collider sensitivities

Ramsey-Musolf, Tenkanen, VQT: 2409.17554



Summary

- The first order electroweak phase transition is interesting and can be probed at future collider and GW detectors.
- ❖ We performed a cutting-edge analysis of GW prediction from the first-order EWPT, combining higher order corrections in perturbative calculations and results from lattice simulation
- We show a complementary between collider and GW signals in probing parameter space in xSM

Back-up slide

State-of-the-art method

- 1. Ensuring the gauge invariance for the effective potential:
 - High temperature expansion (only LO)
 - hbar expansion (PRM) method [1] (possible to include higher order corrections)
- 2. Ensuring the scale independence <-- RG running for the couplings
- Using dimensional reduction to obtain 3d-EFT
 - a) Thermal resummations are systematically implemented
 - b) Lattice simulation results to determine the boundary for FOEWPT region
- 4. Building high-loop effective potential in 3d-EFT

[1]: H.H.Patel and M.J.Ramsey-Musolf JHEP 07 (2011), 029, arXiv:1101.4665

Indirectly probed by collider

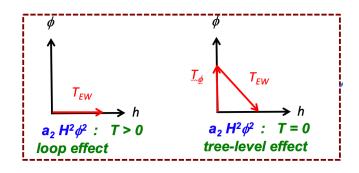
Set scale for collider

$$V(h, T)_{\text{SM}} = D(T^2 - T_0^2) h^2 + \lambda h^4$$

$$T_0^2 = (8\lambda + \text{loops}) \left(4\lambda + \frac{3}{2}g^2 + \frac{1}{2}g'^2 + 2y_t^2 + \cdots \right)^{-1} v^2$$

$$T_{\text{EW}} \equiv T_0 \approx 140 \text{ GeV}$$

New scalar mass should not be too heavy



 h_1

Mass new scalars < 700 GeV

Mass new scalars < 1.7 TeV

Michael J. Ramsey-Musolf: 1912.07189

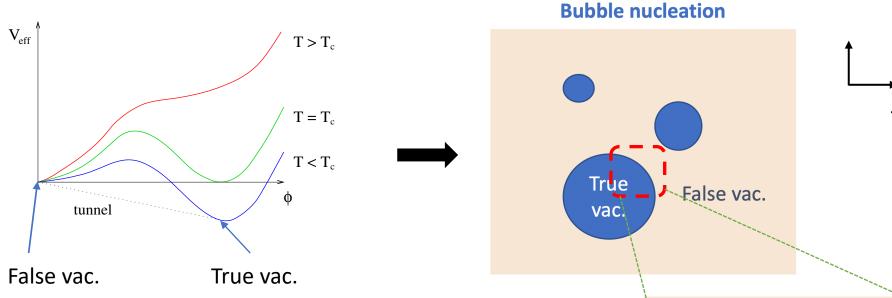
Michael J. Ramsey-Musolf, VQT and TC Yuan: 2408.05167

Indirectly probed by collider

❖ Modified the Higgs properties:

Strong FOEWPT implies generics lower bound on mixing angle, exotic Higgs decays BR, $\Gamma(h \to \gamma \gamma)$

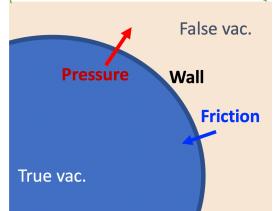
Generating Gravitational Waves



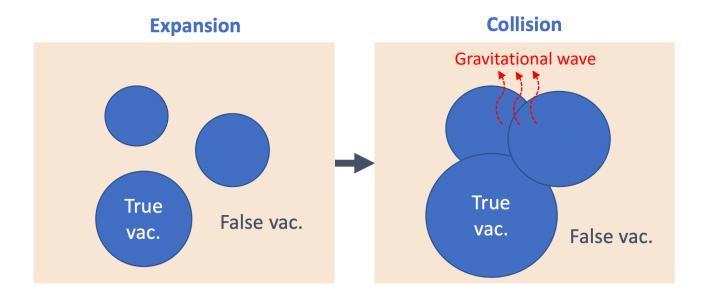
- A 1st order phase transition proceeds by nucleation of bubbles.
- The bubble nucleation rate per unit volume per unit time

$$\Gamma(T) \simeq T^4 e^{-\frac{S_3(T)}{T}}$$

 $S_3(T)$: the three dimensional Euclidean action



Generating Gravitational Waves

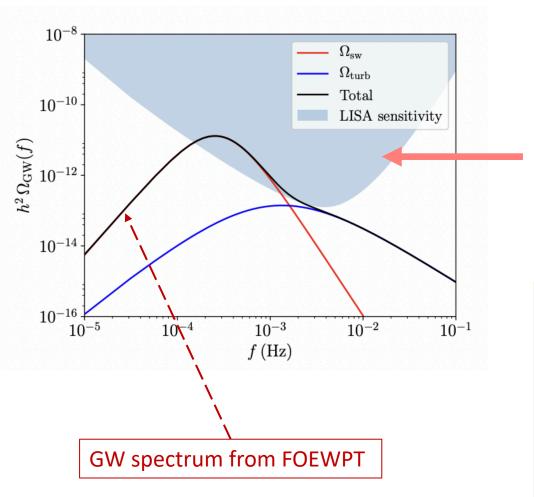


The kinetic energy of bubbles is transferred to GW either by:

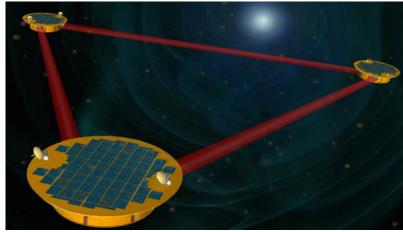
- **Bubble collisions**
- Injection of energy into the plasma fluid

Generating Gravitational Waves:

detectable by LISA



LISA: Laser Interferometer Space Antenna



- Three laser arms, 2.5 M km separation
- ESA-NASA mission, launch by 2034
- Mission adopted 2017 arXiv:1702.00786

Infrared problem

❖ Bosonic loop at T>0

Bose distribution function

$$I(T) = g^2 \int \frac{d^3p}{(2\pi)^3} f_B(E,T) \frac{1}{(p^2 + m^2)^n} \xrightarrow{\text{Small p}} \underbrace{\frac{g^2T}{m}}_{\text{I.R.}} \int_{\text{I.R.}} \frac{d^3p}{(2\pi)^3} \frac{1}{(p^2 + m^2)^n}$$

Effective expansion breaks down if $m < g^2 T$

Field-dependent thermal mass:

$$m(\phi) = C_1 g^2 \phi^2$$

Near the transition $\phi \rightarrow 0$, thus I.R. sensitive near phase trans

$$m(\phi, T) = C_1 g^2 \phi^2 + C_2 g^2 T^2$$

Matsubara decomposition:

$$\phi(\tau, \mathbf{x}) = T \sum_{n} \tilde{\phi}(\mathbf{p}) e^{i\omega_n \tau}, \ \omega_n = \begin{cases} 2\pi nT & \text{bosons} \\ (2n+1)\pi T & \text{fermions} \end{cases}$$

- Propagators: $\frac{1}{\mathbf{p}^2 + m^2 + \omega_n^2}$
- ▶ Modes with $n \neq 0$ are heavy and decouple at distances $\gg 1/T \rightarrow$ can be integrated out! (dimensional reduction)

Taken from Tuomas

DR: matching

Dimensional Reduction

All integrals are 3D with prefactor $T \rightarrow Rescale$ fields, couplings...

$$\int \frac{d^4k}{(2\pi)^4} \longrightarrow \frac{1}{\beta} \sum_{n} \int \frac{d^3k}{(2\pi)^3}$$

•
$$\varphi^{2}_{4d} = T \varphi^{2}_{3d}$$

•
$$T \lambda_{4d} = \lambda_{3d}$$

Thermal Loops

Equate Greens functions

$$\phi_{3d}^2 = \frac{1}{T} [1 + \hat{\Pi}'_{\phi}(0,0)] \phi^2$$

$$a_{2,3} = T[a_2 - a_2(\hat{\Pi}'_H(0) + \hat{\Pi}'_{\Sigma}(0)) + \hat{\Gamma}(0)]$$

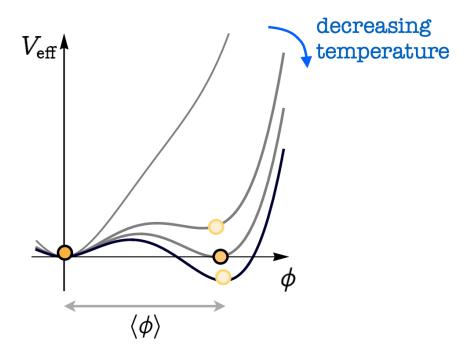
Quartic coupling

Gauge dependence issue

The standard method to compute ϕ_c/T_c is:

- 1. Track evolution of the minima in the V_{eff} as a function of temperature.
- 2. Solving the the minimization and degeneracy condition equations

$$egin{aligned} rac{\partial}{\partial \phi} V_{ ext{eff}}(\phi_{ ext{min}},\,T_c) &= 0 \ V_{ ext{eff}}(0,\,T_c) &= V_{ ext{eff}}(\phi_{ ext{min}},\,T_c) \end{aligned}$$



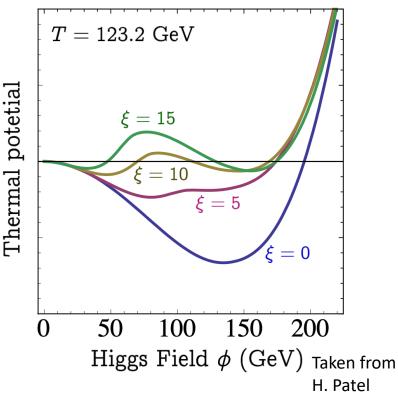
Gauge dependence issue

However, in a gauge theory the V_{eff} is gauge depend

For a general theory

$$\begin{split} & \mathsf{T} = \mathsf{0} \\ & V_{\mathrm{eff}}(\phi) = V_{\mathrm{tree}}(\phi) \\ & + \sum_{\mathrm{scalars},i} \frac{1}{4(4\pi)^2} \left[\underline{m}_i^2(\phi;\xi) \right]^2 \left[\ln \left(\frac{m_i^2(\phi;\xi)}{\mu^2} \right) - \frac{3}{2} \right] \\ & + \sum_{\mathrm{gauge},a} \frac{3}{4(4\pi)^2} \left[m_a^2(\phi) \right]^2 \left[\ln \left(\frac{m_a^2(\phi)}{\mu^2} \right) - \frac{5}{6} \right] \\ & - \sum_{\mathrm{gauge},a} \frac{1}{4(4\pi)^2} \left[\underline{\xi} m_a^2(\phi) \right]^2 \left[\ln \left(\frac{\xi m_a^2(\phi)}{\mu^2} \right) - \frac{3}{2} \right] \,, \end{split}$$

Standard Model

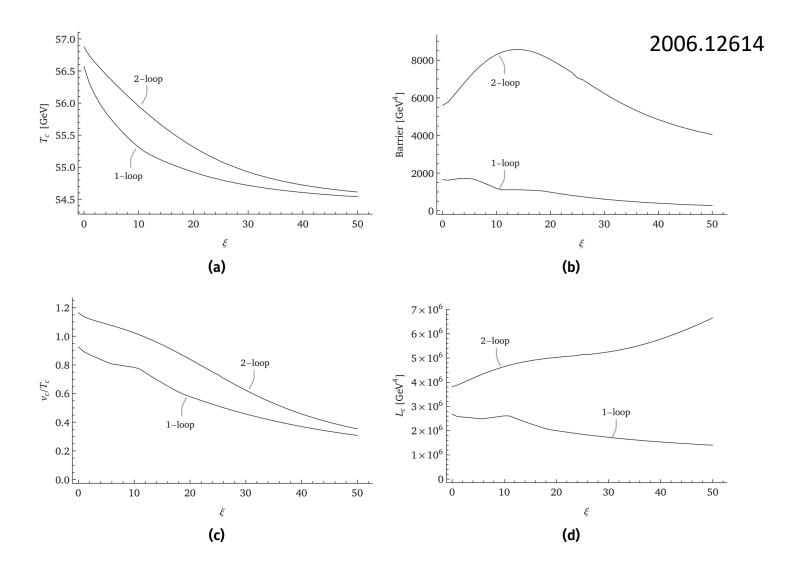


170

$$V_{\rm eff}(\phi,T) = V_{\rm eff}(\phi) + \frac{T^4}{2\pi^2} \left[\sum_{\rm scalar,} J_B\left(m_i^2(\phi;\xi)/T^2\right) + 3\sum_{\rm gauge,} J_B\left(m_a^2(\phi)/T^2\right) - \sum_{\rm gauge,} J_B\left(\xi m_a^2(\phi)/T^2\right) \right]$$

Computed T_c and v_c depends on gauge parameter!

Gauge dependence issue



Resolution 1: high-T expansion

$$V_{\rm eff}(\phi,T) = V_{\rm tree}(\phi) + V_{\rm CW}(\phi) + \frac{T^4}{2\pi^2} \Big[\sum_{\rm scalar,} J_B \left(m_i^2(\phi;\xi)/T^2 \right) + 3 \sum_{\rm gauge,} J_B \left(m_a^2(\phi)/T^2 \right) - \sum_{\rm gauge,} J_B \left(\xi m_a^2(\phi)/T^2 \right) \Big]$$

High T expansion

$$\prod_{ij} (M_{ij}^2(\phi) + \xi m_A^2(\phi)_{ij})$$

$$\begin{split} & \underbrace{\operatorname{Set} \, \mu = T}_{ij} \left(M_{ij}^2(\phi) + \xi m_A^2(\phi)_{ij} \right) \\ & V_{\text{eff}}(\phi, T) \approx V_{\text{tree}}(\phi) + V_{\text{ow}}(\phi) - \frac{\pi^2 T^4}{90} \left(n_{\text{s}} + 2n_{\text{g}} \right) + \frac{T^2}{24} \Big[\sum_{\text{scalars}, i} m_i^2(\phi; \xi) + (3 - \xi) \sum_{\text{gauge}, a} m_a^2(\phi) \Big] \\ & - \frac{T}{12\pi} \Big[\sum_{\text{scalars}, i} \left(m_i^2(\phi; \xi) \right)^{3/2} + (3 - \xi^{3/2}) \sum_{\text{gauge}, a} \left(m_a^2(\phi) \right)^{3/2} \Big] - \frac{1}{64\pi^2} \Big[\sum_{\text{scalars}, i} \left[m_i^2(\phi; \xi) \right]^2 \ln \left(m_i^2(\phi; \xi) / T^2 \right) \\ & + 3 \sum_{\text{gauge}, a} \left[m_a^2(\phi) \right]^2 \ln \left(m_a^2(\phi) / T^2 \right) - \sum_{\text{gauge}, a} \left[\xi m_a^2(\phi) \right]^2 \ln \left(\xi m_a^2(\phi) / T^2 \right) \Big] \end{split}$$

$$V_{\rm eff}(\phi,T) \approx V_{\rm tree}(\phi) + \frac{T^2}{24} \left[\text{Tr} \, M_{ij}^2(\phi) + 3 \, \text{Tr} \, m_A^2(\phi)^{ab} \right] - \frac{T}{12\pi} \left[\sum_{\rm scalars} \left(m_i^2(\phi;\xi) \right)^{3/2} + (3 - \xi^{3/2}) \sum_{\rm gauge} \left(m_a^2(\phi) \right)^{3/2} \right]$$

The effective potential is gauge independent if one takes the leading term T^2

The Nielsen-Fukuda-Kugo identity

$$\frac{\partial V_{\text{eff}}(\varphi)}{\partial \xi} = -C(\varphi, \xi) \frac{\partial V_{\text{eff}}(\varphi)}{\partial \varphi}$$

hbar expansion for the effective potential and C

$$V_{\text{eff}}(\varphi) = V_0(\varphi) + \hbar V_1(\varphi) + \hbar^2 V_2(\varphi) + \cdots,$$

$$C(\varphi, \xi) = c_0 + \hbar c_1(\varphi) + \hbar^2 c_2(\varphi) + \cdots.$$

• Up to O(hbar), we have:

$$\frac{\partial V_1}{\partial \xi} = -c_1 \frac{\partial V_0}{\partial \varphi}.$$

 \rightarrow the gauge dependence of V_1 drops out at the points where the tree-level potential is extremized (which differs from the extremum of V_1)

Up to two-loop expansion

$$V_{\text{eff}}^{\bar{h}} = V_0 + \hbar V_1 + \hbar^2 V_2,$$
 $\bar{v}_{\min} = \bar{v}_0 + \hbar \bar{v}_1 + \hbar^2 \bar{v}_2,$
where $\frac{\partial V_0}{\partial \bar{v}}|_{\bar{v} = \bar{v}_0} = 0$ and $\frac{\partial V_0}{\partial \bar{s}}|_{\bar{s} = \bar{s}_0} = 0,$

 $ar{s}_{
m min}=ar{s}_0+\hbarar{s}_1+\hbar^2ar{s}_2$ Satisfying Nielsen-Fukuda-Kugo identity -> gauge invariance

$$V_{\text{eff}}^{\hbar}(\bar{v}_{\min}, \bar{s}_{\min}) = V_{0}(\bar{v}_{0}, \bar{s}_{0}) + \hbar V_{1}(\bar{v}_{0}, \bar{s}_{0}) + \hbar^{2} \left[V_{2}(\bar{v}_{0}, \bar{s}_{0}) - \frac{1}{2} \bar{v}_{1}^{2} \frac{\partial^{2} V_{0}}{\partial \bar{v}^{2}} - \frac{1}{2} \bar{s}_{1}^{2} \frac{\partial^{2} V_{0}}{\partial \bar{s}^{2}} - \bar{v}_{1} \bar{s}_{1} \frac{\partial^{2} V_{0}}{\partial \bar{v} \partial \bar{s}} \right] + \mathcal{O}(\hbar^{3}),$$
(3.13)

where $\mathcal{O}(\hbar)$ corrections for the minima are given as

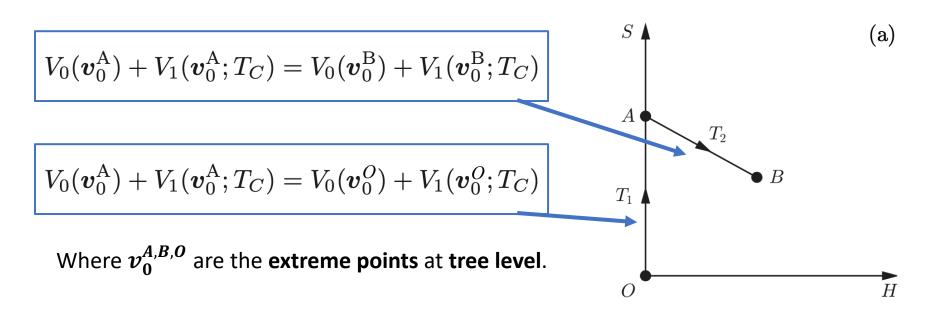
$$\bar{v}_1 = \left[\left(\frac{\partial^2 V_0}{\partial \bar{v} \partial \bar{s}} \right)^2 - \left(\frac{\partial^2 V_0}{\partial \bar{v}^2} \right) \left(\frac{\partial^2 V_0}{\partial \bar{s}^2} \right) \right]^{-1} \left[\left(\frac{\partial^2 V_0}{\partial \bar{s}^2} \right) \left(\frac{\partial V_1}{\partial \bar{v}} \right) - \left(\frac{\partial^2 V_0}{\partial \bar{v} \partial \bar{s}} \right) \left(\frac{\partial V_1}{\partial \bar{s}} \right) \right], \quad (3.14)$$

$$\bar{s}_1 = \left[\left(\frac{\partial^2 V_0}{\partial \bar{v} \partial \bar{s}} \right)^2 - \left(\frac{\partial^2 V_0}{\partial \bar{v}^2} \right) \left(\frac{\partial^2 V_0}{\partial \bar{s}^2} \right) \right]^{-1} \left[\left(\frac{\partial^2 V_0}{\partial \bar{v}^2} \right) \left(\frac{\partial V_1}{\partial \bar{s}} \right) - \left(\frac{\partial^2 V_0}{\partial \bar{v} \partial \bar{s}} \right) \left(\frac{\partial V_1}{\partial \bar{v}} \right) \right], \quad (3.15)$$

See 2103.07467 for expression of V_2

A. Determine T_c

A gauge independent way to compute T_c is by solving the degeneracy condition equation at tree level extreme points. For example for 2 step transition:

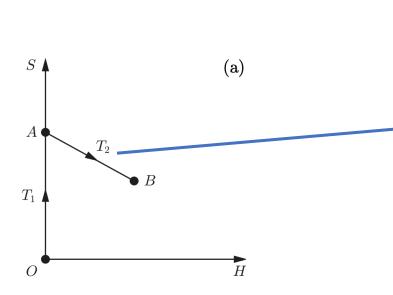


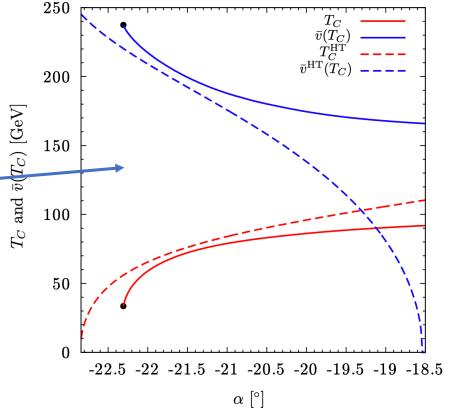
B. Determine v_c

 v_c is computed by minimization of the high T effective potential at T_c

For complex scalar extension model

C. W. Chiang, M. J. Ramsey-Musolf and E. Senaha, Phys. Rev. D 97, no. 1, 015005 (2018)





Bubble nucleation and PT duration

- The first-order PT proceeds by bubble nucleation with a microscopic critical radius
 R c.
- The nucleation rate per unit volume is

$$\mathcal{P} = A(t)e^{-S_{c}(t)}.$$

 S_c is the critical bubble action which is the action for the smallest possible bubble able to expand

- The collisions of the bubbles, and the subsequent fluid flows, produce the shear stresses which source GWs.
- Below T_c the bubble action decreases from infinity and the nucleation probability increases rapidly. The rate of increase is defined:

$$\beta(T) = \frac{d}{dt} \ln \mathcal{P}(T)$$

• If $S_c\gg 1$ and $\beta\gg H$, we approximately obtain

$$\beta(T) = -dS_{\rm c}/dt$$

Bubble nucleation and PT duration

- When the bubbles appear they grow due to a pressure difference between the interior and exterior.
- The onset of the PT is characterized by the nucleation of one bubble per horizon volume on average, which corresponds roughly to $S_c = 140$ for EWPT.
- As the bubbles grow and more appear, the fraction of the Universe in the metastable phase decreases extremely rapidly, leading to bubble percolation for the PT to successfully complete.
- For more precise value of S_c

$$S_c(\text{onset}) \simeq 141 + \log(A/T^4) - 4\log\left(\frac{T}{100\,\text{GeV}}\right) - \log\left(\frac{\beta/H}{100}\right),$$

 $S_c(\text{percolation}) \simeq 131 + \log(A/T^4) - 4\log\left(\frac{T}{100\,\text{GeV}}\right) - 4\log\left(\frac{\beta/H}{100}\right) + 3\log(v_w)$

For EWPT:
$$\log(A/T^4) \simeq -14$$

Validity of LTE

B. Laurent and J.M. Cline: 2204.13120 W-Y. Ai, B. Laurent and J. Vis: 2303.10171 Stefania De Curtis etal. 2303.05846

Validity of the LTE approximation:

- Studies in xSM found that the wall velocities found with the LTE treatments only deviate by approximately 20% from one taking into account the out-of-equilibrium effects
- However, these studies only explores the region of parameter space where the ratio of the **enthalpies** in the broken and symmetric phases, $\Psi > 0$. 9.
- The out-of-equilibrium effects create an additional source of friction slowing down the wall, making the actual wall velocity smaller than what is predicted by the LTE assumption
- LTE can offers an upper bound for the wall velocity!

Bubble wall velocity in LTE

$$v_w^{\text{LTE}} = \left(\left| \frac{3\alpha + \Psi - 1}{2(2 - 3\Psi + \Psi^3)} \right|^{c/2} + \left| v_{\text{CJ}} \left(1 - a \frac{(1 - \Psi)^b}{\alpha} \right) \right|^c \right)^{1/c}.$$
 (37)

Here a = 0.2233, b = 1.074, c = -3.433, $\Psi = \omega_t/\omega_f$ is the ratio of enthalpies and the Chapman–Jouguet velocity $v_{\rm CJ}$ is given by

$$v_{\rm CJ} = \frac{1}{\sqrt{3}} \frac{1 + \sqrt{3\alpha^2 + 2\alpha}}{1 + \alpha}.$$
 (38)

$$\alpha = \left. \frac{4 \left[\theta_f(T) - \theta_t(T) \right]}{3 \omega_f(T)} \right|_{T=T_*}$$
 . Phase transition strength

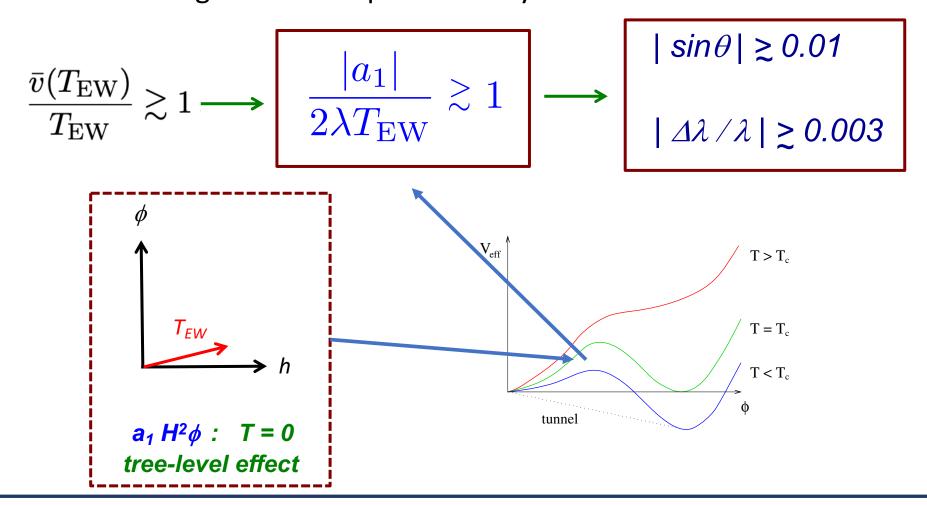
$$\omega(T) = T \frac{\partial p}{\partial T},$$
 Enthalpy

$$p=rac{\pi^2}{90}g_*T^4-TV_{ ext{eff}}^{\hbar},$$
 Pressure

EWPT: collider target

Michael J. Ramsey-Musolf: 1912.07189

• For a strong 1st OEWPT: prevent baryon number washout



Singlet scalar extension (xSM)

Lagrangian

$$V(\phi, S) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2 + b_1 S + \frac{1}{2} b_2 S^2 + \frac{1}{3} b_3 S^3 + \frac{1}{4} b_4 S^4 + \frac{1}{2} a_1 S \phi^{\dagger} \phi + \frac{1}{2} a_2 S^2 \phi^{\dagger} \phi,$$

• Considering a scenario that Z_2 symmetry explicitly breaking and $\langle S \rangle = 0$ at zero temperature.

Mixing between h and S

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h \\ S \end{pmatrix}$$

Parameter relations

$$\mu^2 = -\frac{1}{2} \left(m_{h_1}^2 \sin^2 \theta + m_{h_2}^2 \cos^2 \theta \right), \tag{4}$$

$$b_2 = m_{h_1}^2 \cos^2 \theta + m_{h_2}^2 \sin^2 \theta - a_2 v^2, \tag{5}$$

$$\lambda = -\frac{\mu^2}{v^2},\tag{6}$$

$$a_1 = \frac{(m_{h_2}^2 - m_{h_1}^2)\sin 2\theta}{v},\tag{7}$$

$$b_1 = -\frac{1}{4}v^2 a_1. (8)$$

Thus the free parameters in the xSM are m_{h_2} , θ , a_2 , b_3 and b_4 .