VBF for Higgs to BSM at the future Muon collider

Yongik Jang, Kyungpook National University

> 19, August 2025 Summer Institute 2025

In collaboration with

- Kyu Jung Bae, Kyungpook National University
- Kyoungchul Kong, University of Kansas
- Myeonghun Park, Seoultech

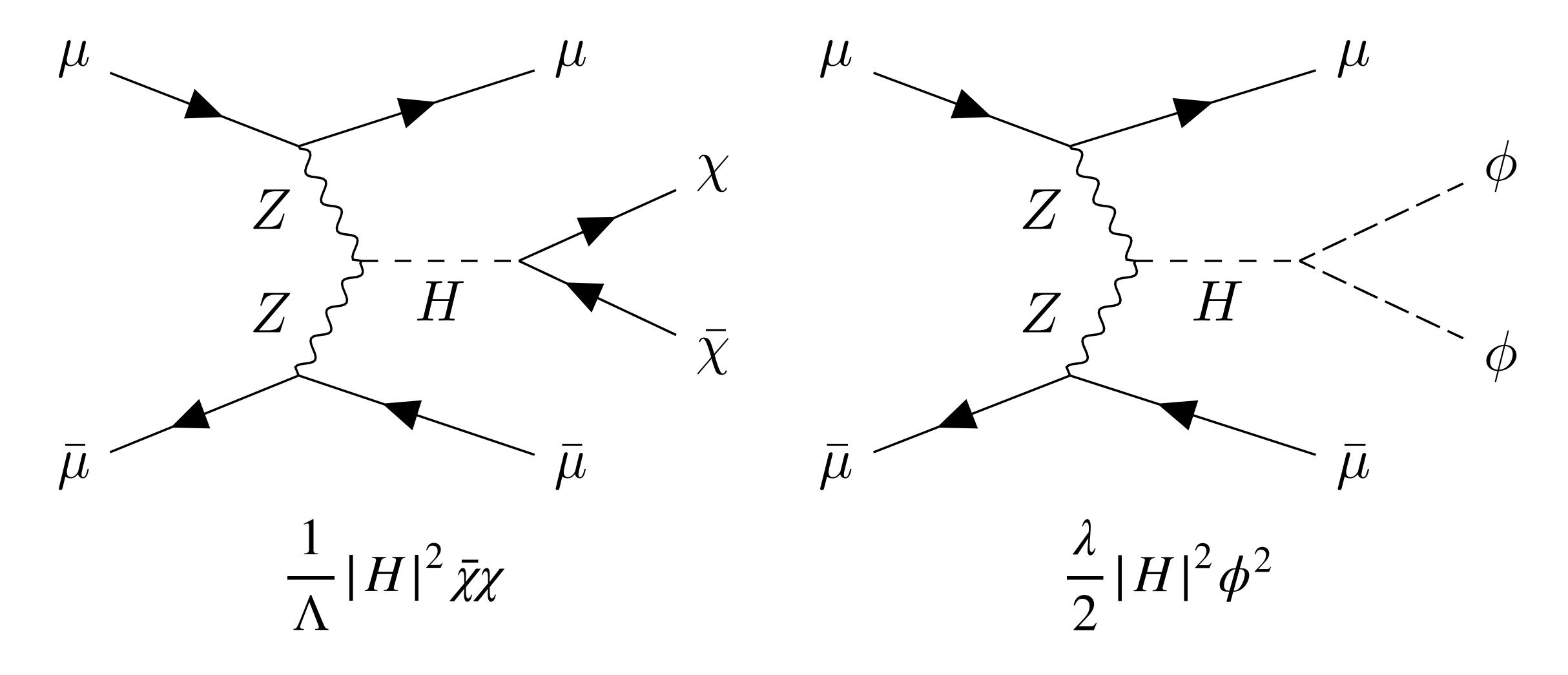
Motivation / Introduction

Testing the direct coupling of Higgs to heavy SM neutral particle:

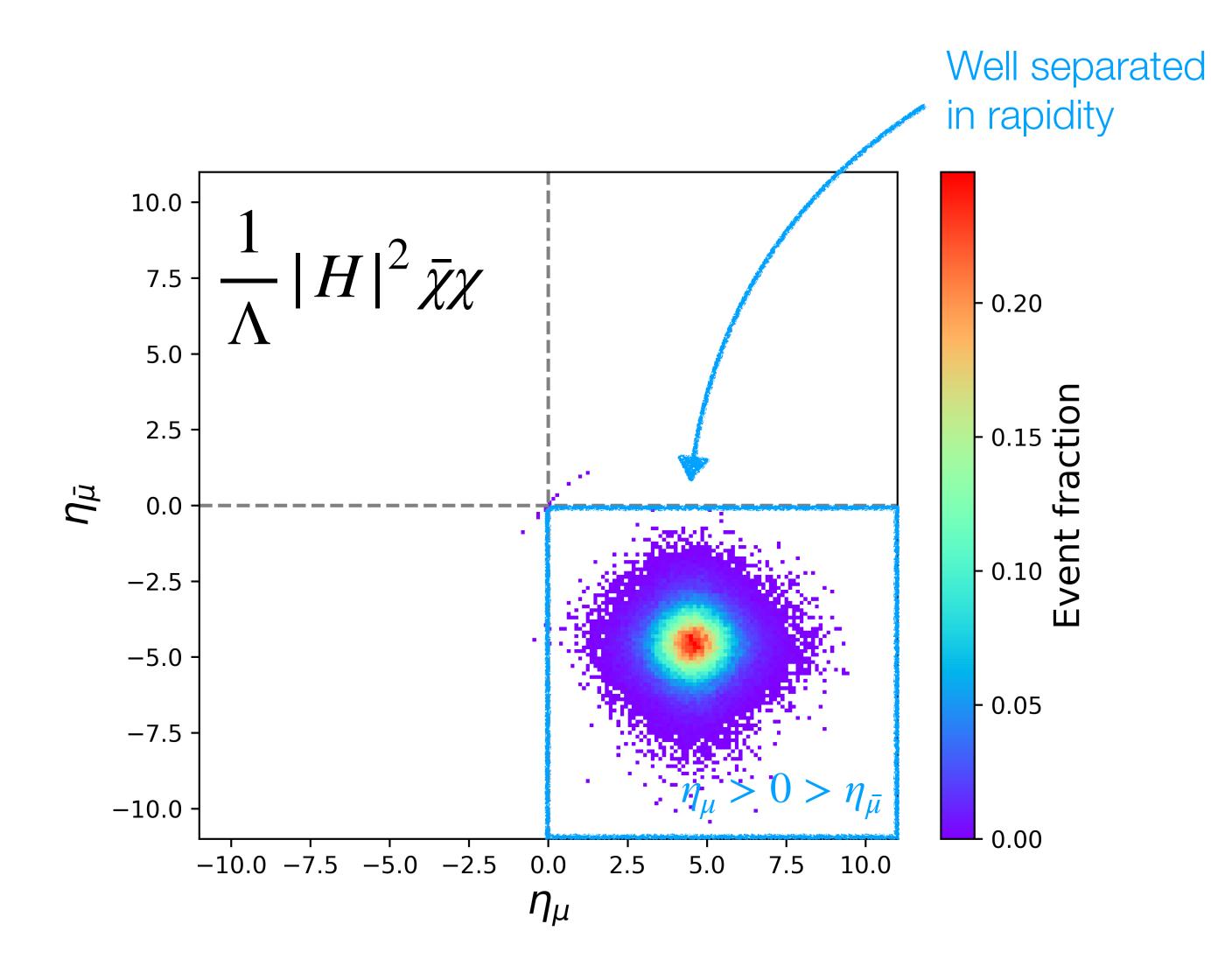
$$\mathcal{L}_{\text{int.}} \supset \frac{1}{\Lambda} |H|^2 \bar{\chi} \chi, \frac{\lambda}{2} |H|^2 \phi^2, \dots$$

- The muon collider is an ideal place to test such couplings using the forward muon detector, owing to the characteristics of vector boson fusion.
- Neural networks allow effective evaluation of the sensitivity.
- A neural network-based hypothesis test can be used to verify if newly discovered physics is truly a result of Higgs production.

Signal processes



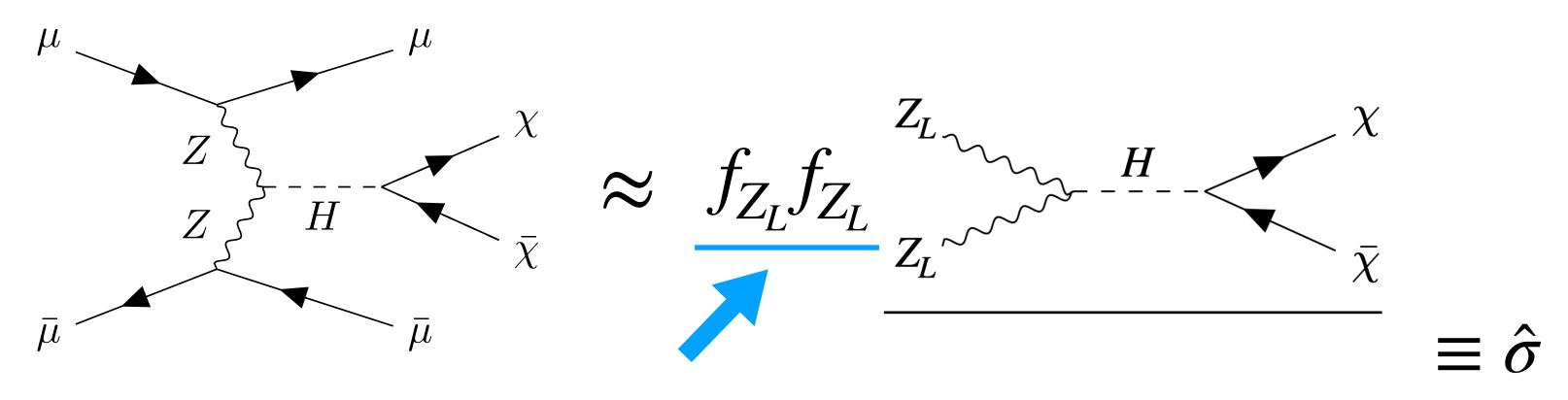
Signal processes: Vector boson fusion



- Approximately, 98% of muon pairs are located in $|\eta| > 2.4$.
- The forward muon detector can effectively capture the signal.

Normalized parton level distribution of $M_{\gamma}=200$ GeV for full phase space.

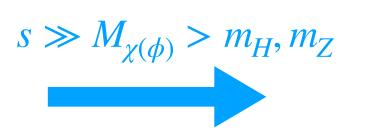
Signal processes: Effective vector boson approximation



Leading order μ PDF



$$\hat{\sigma}(Z_L Z_L \to \phi \phi) = \frac{\lambda^2}{8\pi} \frac{1}{\hat{s}} \frac{1}{(1 - m_H^2/\hat{s})^2} (1 - \frac{2m_Z^2}{\hat{s}})^2 \sqrt{\frac{1 - 4M_\phi^2/\hat{s}}{1 - 4m_Z^2/\hat{s}}}$$



$$\sigma_{\chi}(VBF) \propto \frac{1}{\Lambda^2} \ln^2 \left(\frac{s}{4M_{\chi}^2}\right)$$

$$\sigma_{\chi}(VBF) \propto \frac{1}{\Lambda^2} \ln^2 \left(\frac{s}{4M_{\chi}^2}\right)$$
 $\sigma_{\phi}(VBF) \propto \left(\frac{\lambda}{M_{\phi}}\right)^2 \ln^2 \left(\frac{s}{4M_{\phi}^2}\right)$

SM Background

1.
$$\mu \bar{\mu} \rightarrow \mu \bar{\mu} \nu \bar{\nu}$$

2.
$$\mu \bar{\mu} \rightarrow \mu \bar{\mu} \gamma$$

3.
$$\mu \bar{\mu} \rightarrow \mu \bar{\mu} f \bar{f}$$
, $f \in \{l, q\}$

4.
$$\mu \bar{\mu} \rightarrow \mu \bar{\mu} W^- W^+$$
, $W \rightarrow l \nu$ or $q \bar{q}$

5.
$$\mu \bar{\mu} \rightarrow W^- W^+ \nu \bar{\nu}$$
, $W \rightarrow \mu \nu$

6.
$$\mu \bar{\mu} \rightarrow \tau \bar{\tau}$$
, $\tau \rightarrow \mu \nu \nu$

- Muon colliders use tungsten nozzle shields around the beam pipe to suppress beaminduced background.
- Particles outside the main detector → considered as background

Brief overview of the simulation settings

Detector setting:

$$\sqrt{s} = 10$$
 TeV, $|\eta_{\rm main}| < 2.44 (\theta_{\rm min} \approx 10^\circ)$, $|\eta_{\rm max}| = 6.0$, $\mathcal{L} = 10$ ab $^{-1}$, $\delta E_{\rm res} = 10\,\%$

• To implement energy resolution, Gaussian smearing is applied on forward

muons,
$$\frac{\Delta E}{E} = 10\%$$
.

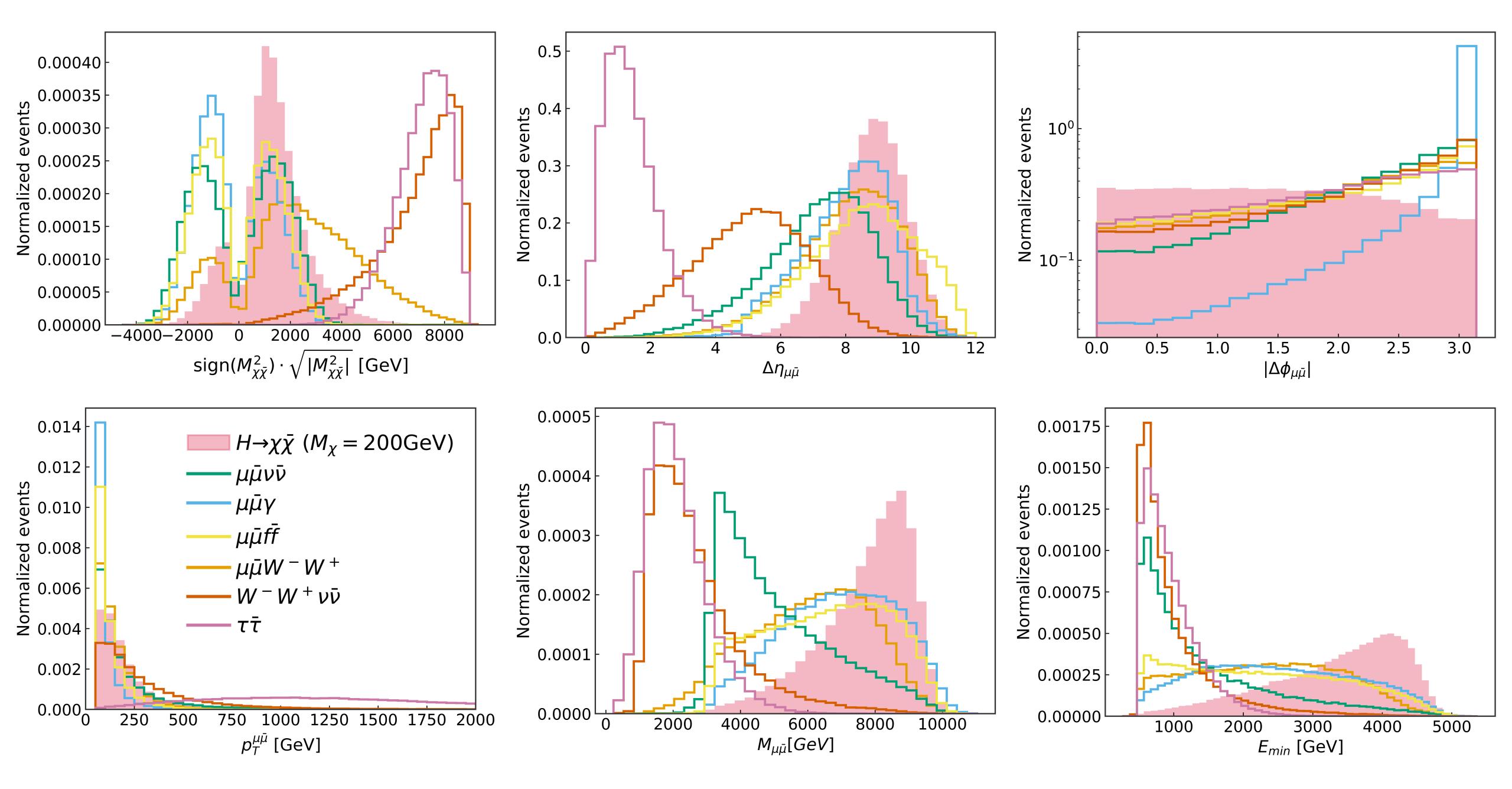
Signal selection

Well separated energetic muon pairs in high rapidity regions:

$$\eta_{\mu} > 0 > \eta_{\bar{\mu}}, \ \Delta R_{\mu\bar{\mu}} > 0.4, \ 6 > |\eta_{\mu(\bar{\mu})}|, \ E_{\min} > 500 \ {\rm GeV}$$

• Large contribution from elastic scattering ($\mu \bar{\mu} \to \mu \bar{\mu}$):

$$p_T^{\mu\bar{\mu}} > 50 \,\mathrm{GeV}$$



Normalized kinematic distribution of the signal and background.

S to BG discrimination

- Cut-flow analysis allows a 5σ discovery of $\frac{1}{\Lambda}|H|^2\bar{\chi}\chi$ up to $\Lambda=360$ GeV for $M_\chi=200$ GeV.
- The neural network gives better results, as we will see...

Input features:

$$\log\left(\frac{p_T^{\mu(\bar{\mu})}}{20\,\text{GeV}}\right),\,\log\left(\frac{p_T^{\mu\bar{\mu}}}{50\,\text{GeV}}\right),\,\frac{\eta_{\mu(\bar{\mu})}}{6},\,\frac{\Delta\eta_{\mu\bar{\mu}}}{12},\,\frac{|\Delta\phi_{\mu\bar{\mu}}|}{\pi},\\ \frac{E_{\min}}{\sqrt{s/2}},\,\frac{M_{\mu\bar{\mu}}}{\sqrt{s}},\,\frac{M_{\chi\bar{\chi}}^2}{s}$$

S to BG discrimination

- Construct separate networks for each mass point (100, 200, ..., 1000) to determine the optimal suppression scale Λ .
- ullet Calculate 2σ exclusion and 5σ discovery limit
- Use networks trained on different mass points to confirm the optimal results (e.g., calculate Λ for $M_\chi=300$ GeV using ${\rm NN}_{200}$).
- ullet NN_{M} denotes the optimally trained neural network for a given mass M.

S to BG discrimination: $\frac{1}{\Lambda} |H|^2 \bar{\chi} \chi$

$$\sigma_\chi(VBF) \propto \frac{1}{\Lambda^2} \ln^2 \left(\frac{s}{4M_\chi^2} \right)$$

$$- 2\sigma_{\rm exc.} - 4\pi\Lambda = 2M_\chi - 4\pi\Lambda = 2M_\chi - M_\chi = 200 {\rm GeV} - M_\chi = 600 {\rm GeV} - M_\chi = 1,000 {\rm GeV} - M_$$

Left figure show 2σ exclusion limit and the right figure show 5σ discovery limit. The gray shaded region indicates where effective field theory is not valid. Each dotted lines are calculated using NN_{200} (blue), NN_{600} (orange), NN_{1000} (green).

S to BG discrimination:
$$\frac{1}{\Lambda}|H|^2 \bar{\chi} \chi$$

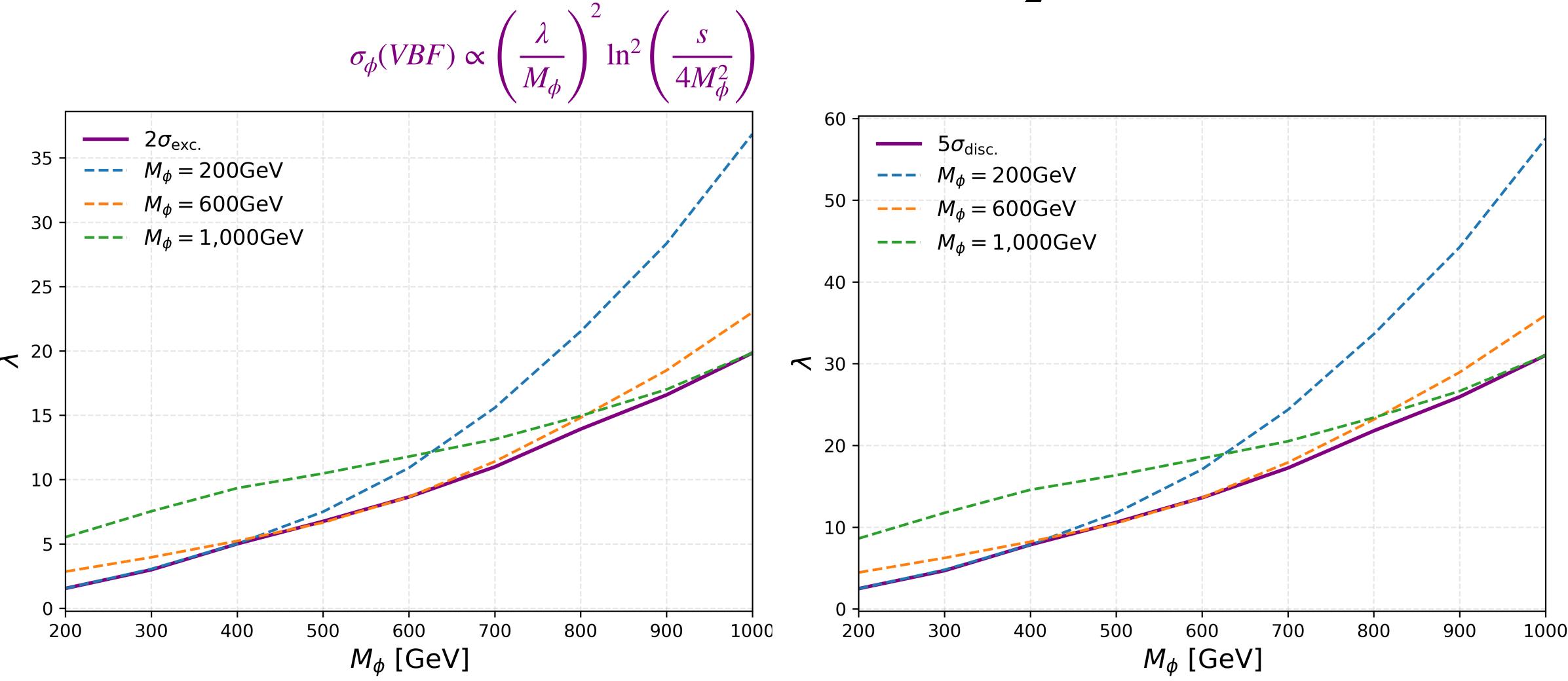
The NN_{200} selection for $M_{\gamma}=200$ GeV

	$\mu \bar{\mu} \chi \bar{\chi}$	$\mu \bar{\mu} \nu \bar{\nu}$	$\mu ar{\mu} \gamma$	$\mu ar{\mu} f ar{f}$	$\mu \bar{\mu} W^- W^+$	$W^-W^+ uar{ u}$	$ auar{ au}$
Baseline	$5.9 \times 10^2 \cdot (\mathrm{TeV/\Lambda})^2$	1.3×10^{6}	2.4×10^{7}	1.4×10^{6}	3.0×10^{5}	2.5×10^3	75
NN selection	$1.6 imes 10^2 \cdot ({ m TeV}/\Lambda)^2$	9.3×10^{3}	3.1×10^{3}	2.1×10^{3}	6.9×10^{3}	11	0

$$\sqrt{s} = 10 \, \text{TeV}, \, \mathcal{L} = 10 \, \text{ab}^{-1}, \, |\eta_{\mathrm{main}}| < 2.44, \, \delta E_{res.} = 10 \, \%$$

• 5σ discovery at $\Lambda = 460$ GeV

S to BG discrimination: $\frac{\lambda}{2}|H|^2\phi^2$



Left figure show 2σ exclusion limit and the right figure show 5σ discovery limit. Each dotted lines are calculated using NN_{200} (blue), NN_{600} (orange), NN_{1000} (green).

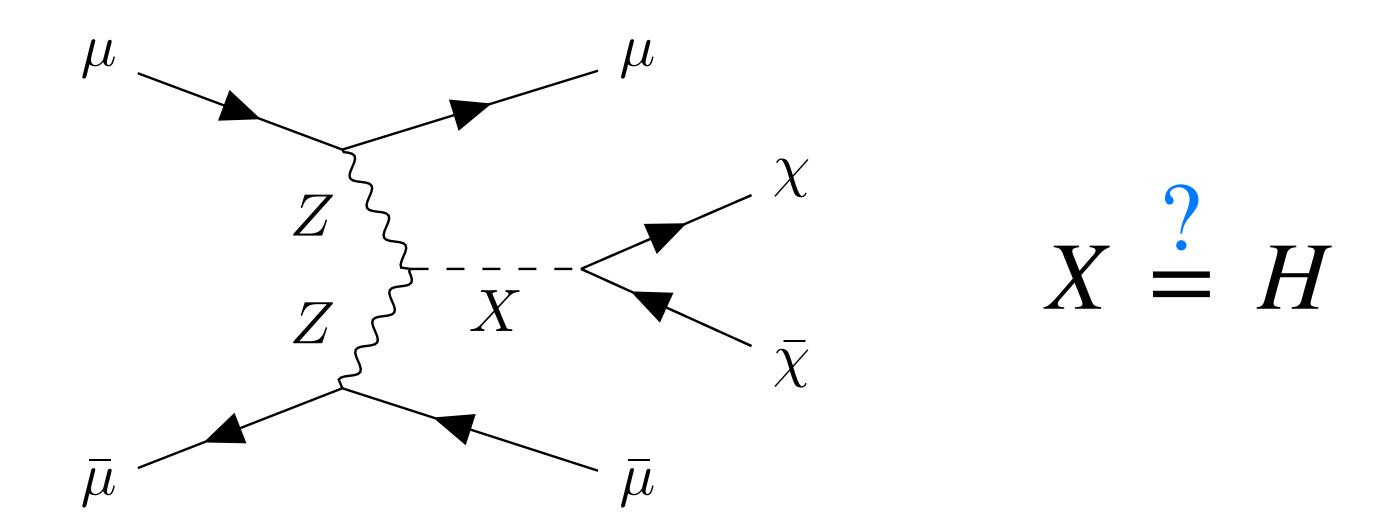
S to BG discrimination: $\frac{\lambda}{2}|H|^2\phi^2$

The NN_{200} selection for $M_\phi=200~\mathrm{GeV}$

	$\muar{\mu}\phi\phi$	$\muar{\mu} uar{ u}$	$\muar{\mu}\gamma$	$\mu ar{\mu} f ar{f}$	$\mu \bar{\mu} W^- W^+$	$W^-W^+ uar u$	$oxed{ auar{ au}}$
Baseline	$3.1 \times 10^2 \cdot \lambda^2$	1.3×10^{6}	2.4×10^{7}	1.4×10^{6}	3.0×10^5	2.5×10^3	75
NN selection	$1.1 \times 10^2 \cdot \lambda^2$	1.1×10^{4}	2.6×10^{3}	1.3×10^{3}	3.6×10^3	4	0

• 5σ discovery at $\lambda = 2.5$

Really Higgs?

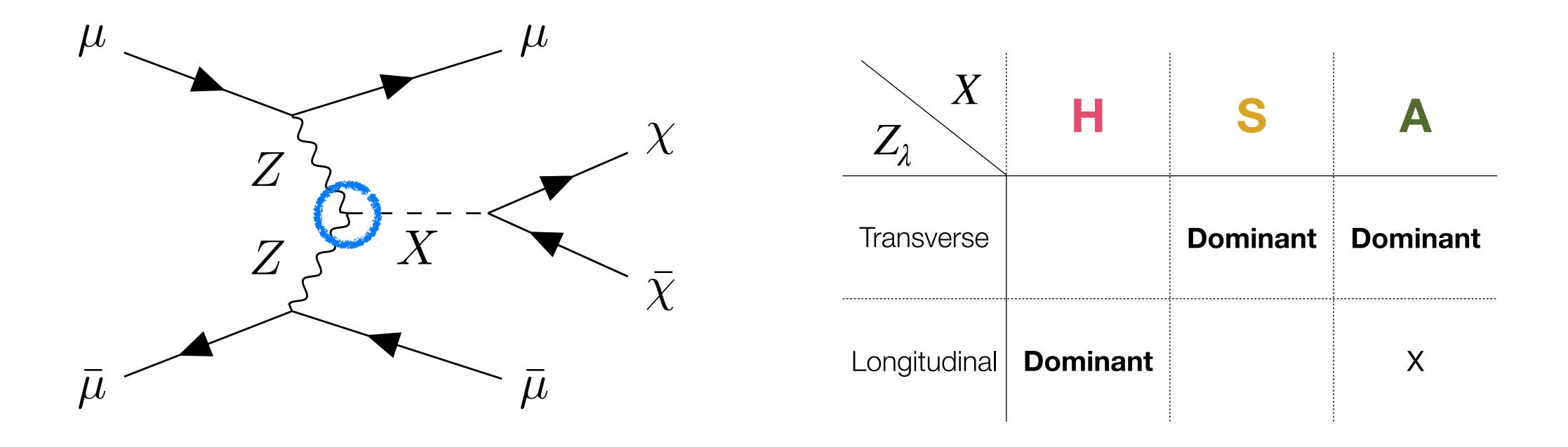


However, what if the process is not mediated through the Higgs boson?

$$\mathscr{L}_{S} \supset \frac{1}{\Lambda_{S}} SZ^{\mu\nu} Z_{\mu\nu} + g_{S\chi\chi} S\bar{\chi}\chi \quad \text{or} \quad \mathscr{L}_{A} \supset \frac{1}{\Lambda_{A}} A\tilde{Z}^{\mu\nu} Z_{\mu\nu} + g_{A\chi\chi} A\bar{\chi}(i\gamma^{5})\chi$$

• How can we discriminate?

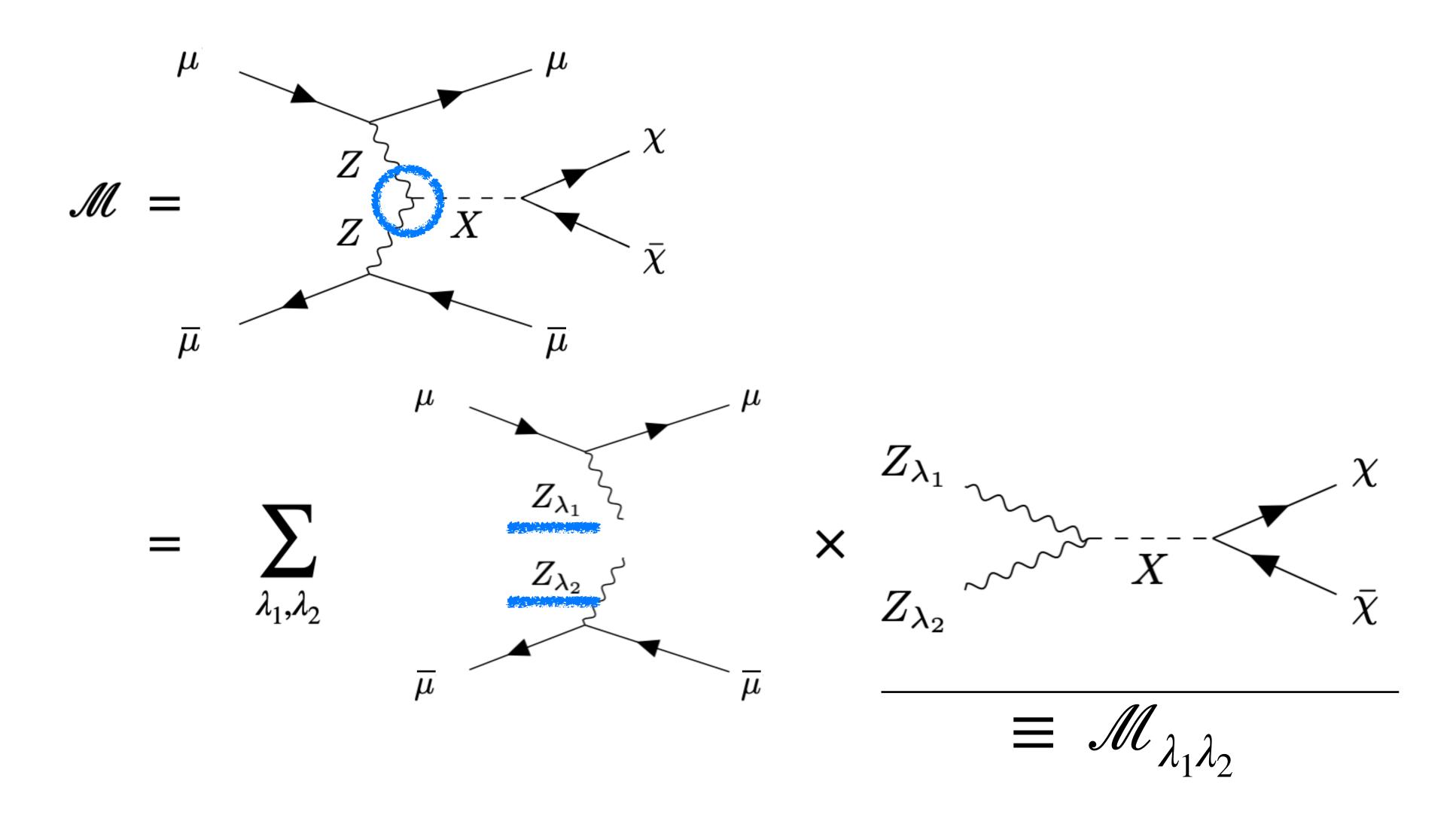
Really Higgs?: Angular Correlation



ullet Is there kinematic variable represents this? $o \Delta\phi_{\muar\mu} = \phi_\mu - \phi_{ar\mu}$

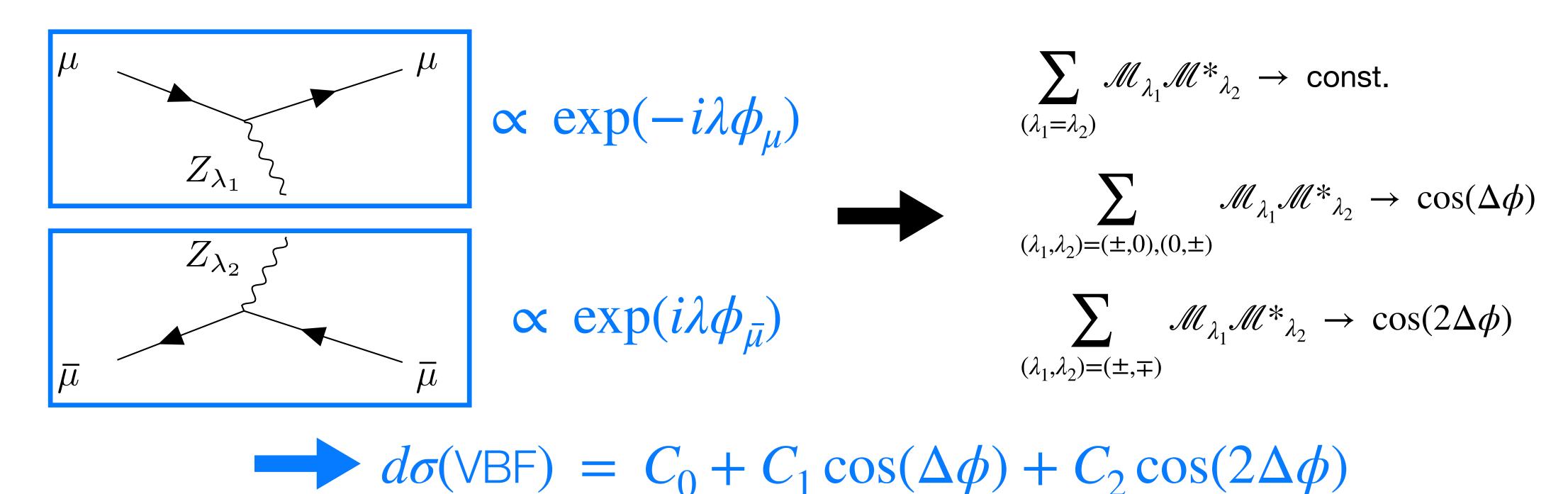
$$\Delta \phi \equiv \phi_{+} - \phi_{-} - 2\pi \Theta(|\phi_{+} - \phi_{-}| - \pi) \operatorname{sgn}(\phi_{+} - \phi_{-})$$

Angular Correlation: The helicity formalism



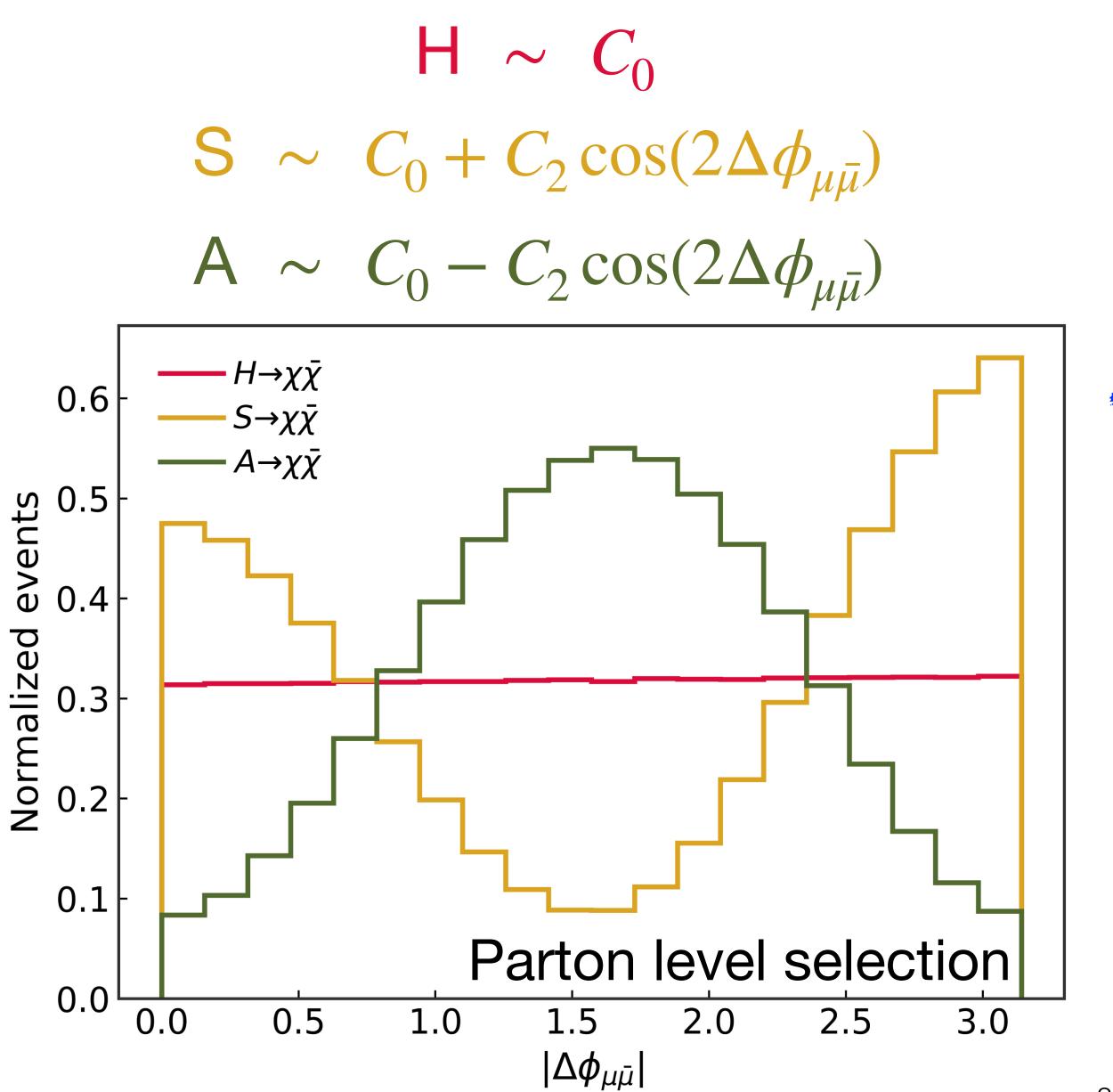
Angular Correlation: The helicity formalism

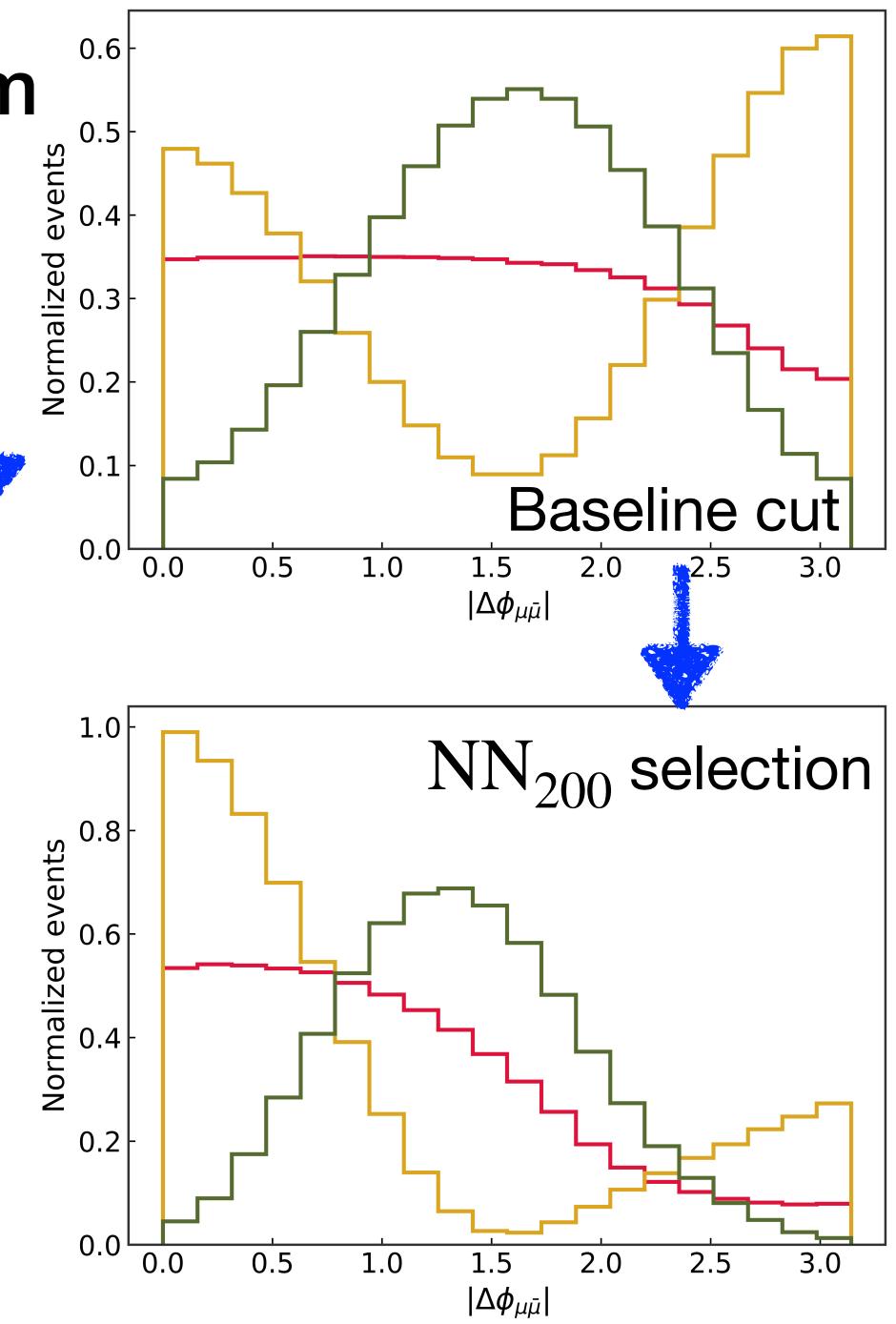
- In the scenario, by the helicity selection rule only $\lambda_1=\lambda_2$ contribute. $\mathcal{M}_{\lambda_1\lambda_2} o \mathcal{M}_{\lambda_1}$
- Under the EVA limit,

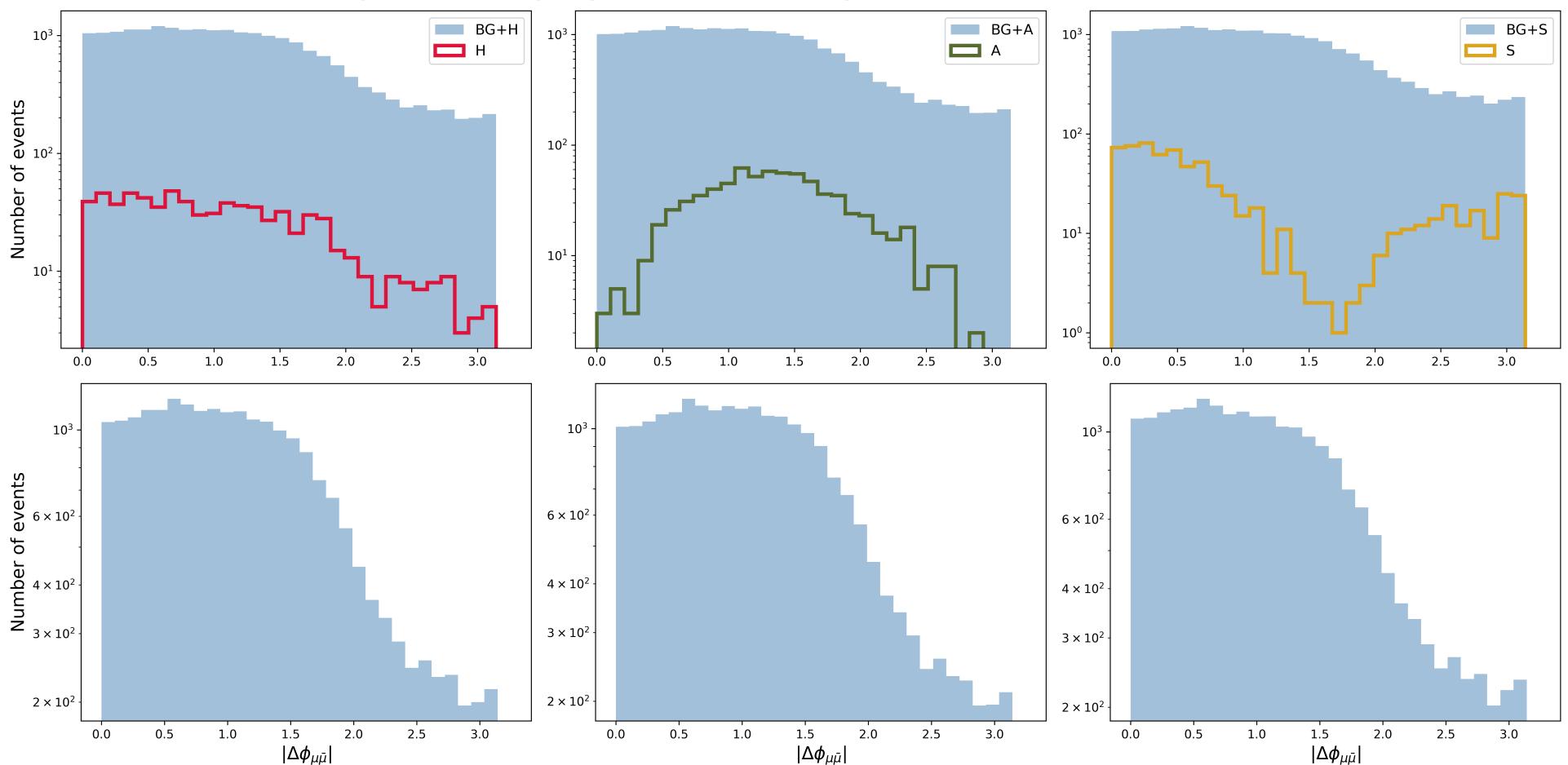


- The sign and relative magnitude of the coefficient function are determined by $\hat{\sigma}(\lambda_1\lambda_2)$.
- This does not depend on the final state particles.

Angular Correlation: The helicity formalism



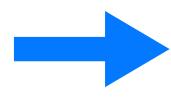




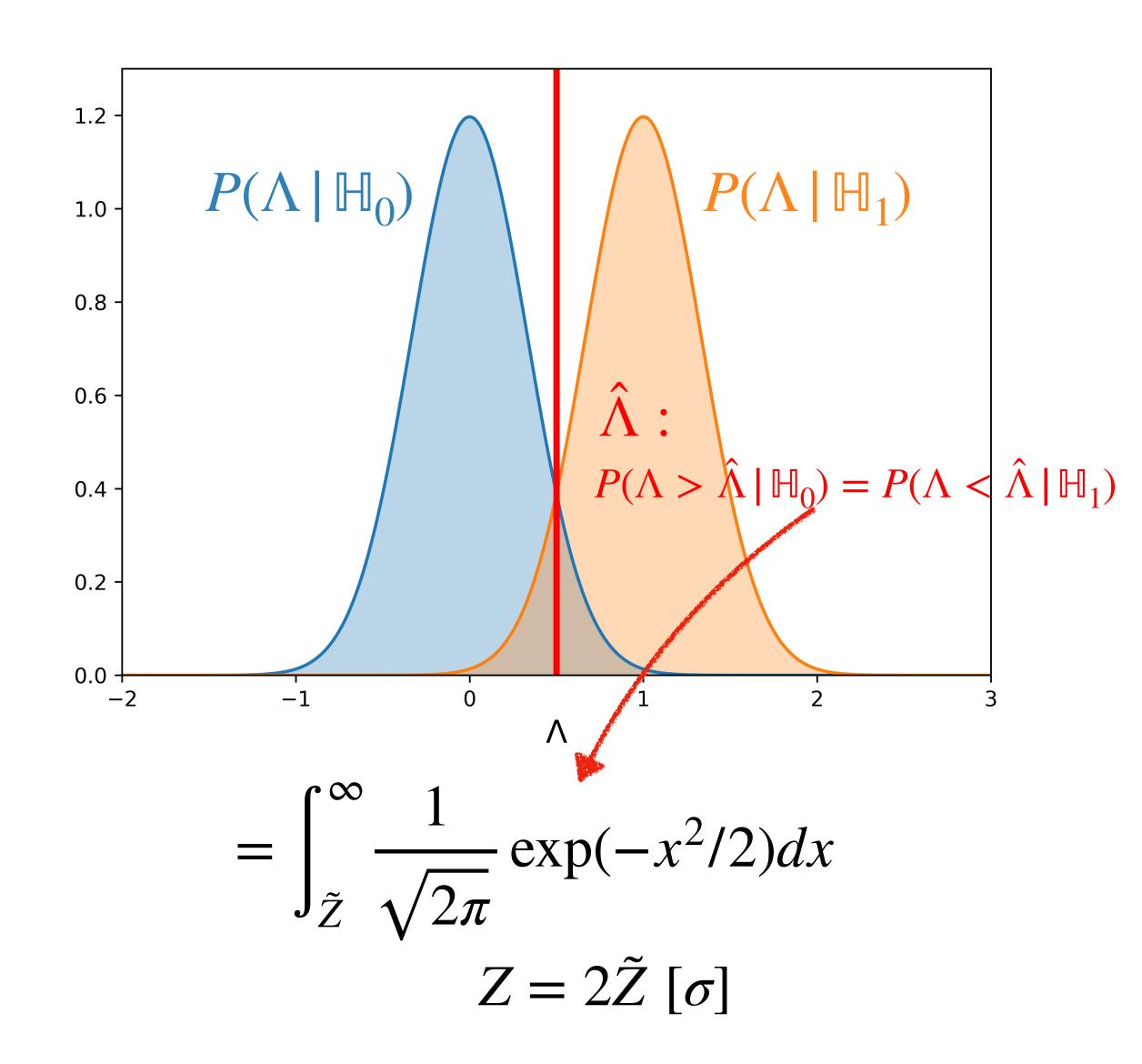
BG covers the signal ightarrow Hard to distinguish with only the $\Delta\phi_{\muar\mu}$ distribution

→ Need to perform hypothesis test → Neural network makes it easier

Test statistic: Log-likelihood ratio



$$\Lambda = \ln \frac{\mathcal{L}(H_1)}{\mathcal{L}(H_0)} = \ln \frac{\prod_i P_{H_1}(\overrightarrow{X}_i)}{\prod_i P_{H_0}(\overrightarrow{X}_i)} = \sum_{i=1}^N \ln \frac{P_{H_1}(\overrightarrow{X}_i)}{P_{H_0}(\overrightarrow{X}_i)}$$

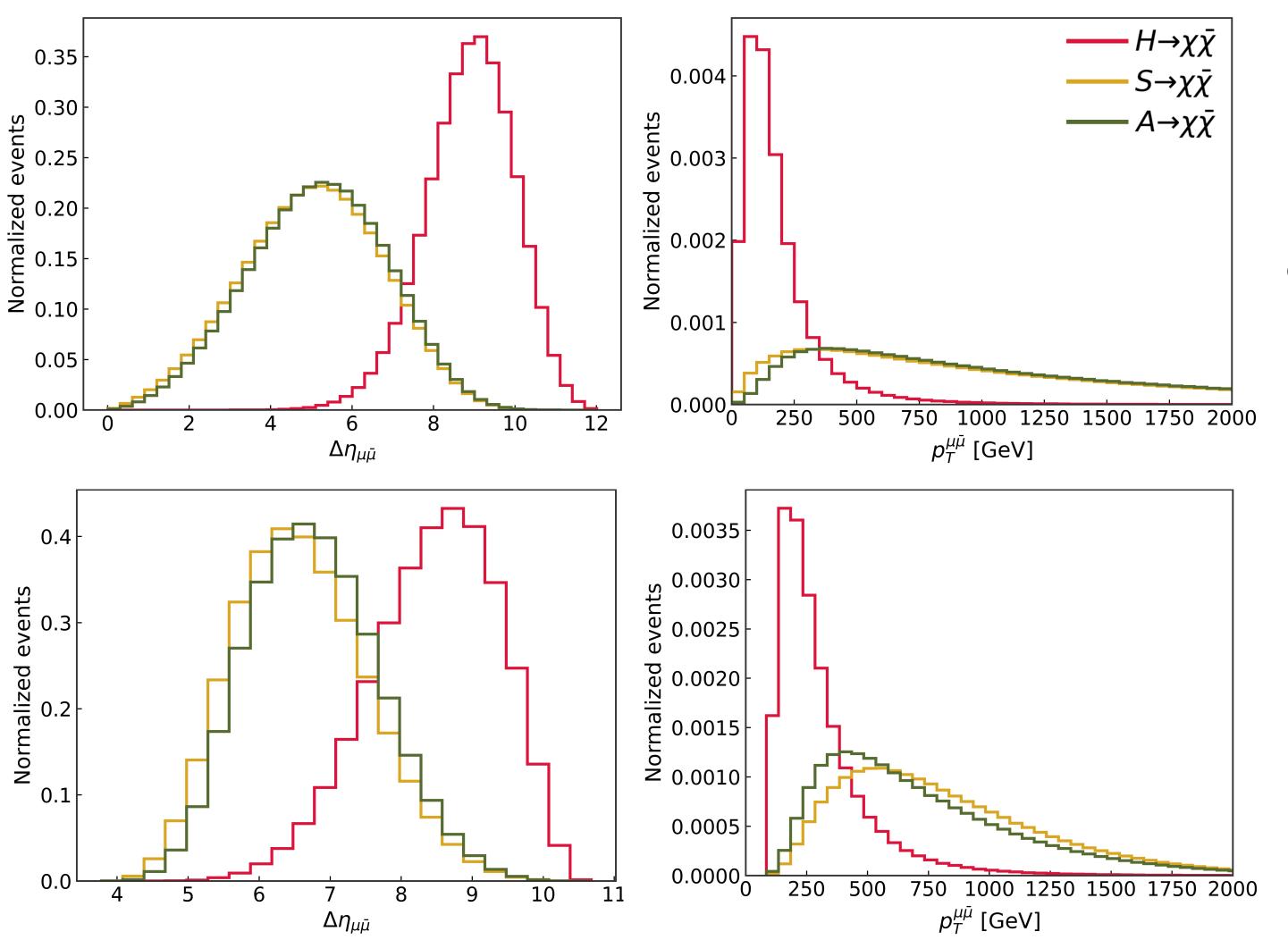


- No quantum interference between the signal and background
 - → Construct neural network that classifies H and S(A)
- Approximate score ratio to PDF ratio:

$$\frac{P_{H_1}(\overrightarrow{X}_i)}{P_{H_0}(\overrightarrow{X}_i)} \xrightarrow{\text{ratio trick}} \frac{s(\overrightarrow{X}_i)}{1 - s(\overrightarrow{X}_i)}$$

• Five input features, encoding ZZX coupling:

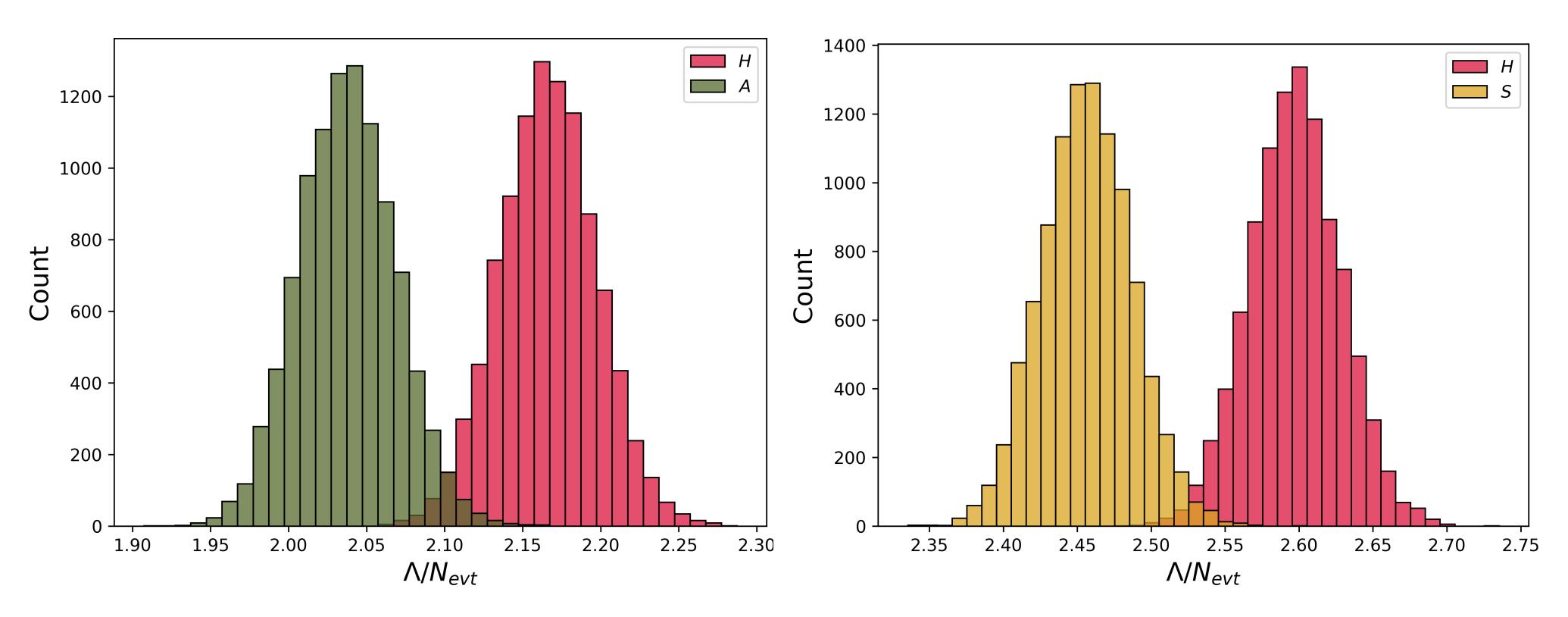
$$\log\left(\frac{p_T^{\mu(\bar{\mu})}}{20~\text{GeV}}\right),~\log\left(\frac{p_T^{\mu\bar{\mu}}}{50~\text{GeV}}\right),\frac{\Delta\eta_{\mu\bar{\mu}}}{12},\frac{|\Delta\phi_{\mu\bar{\mu}}|}{\pi}$$



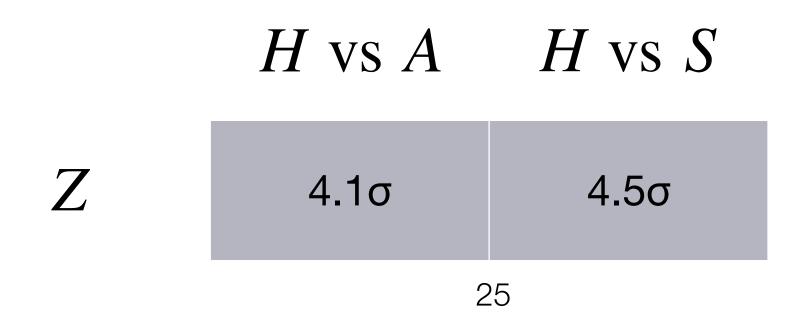
Normalized kinematic distribution of parton level after selection.

Same as upper line, but for after NN_{200} selection.

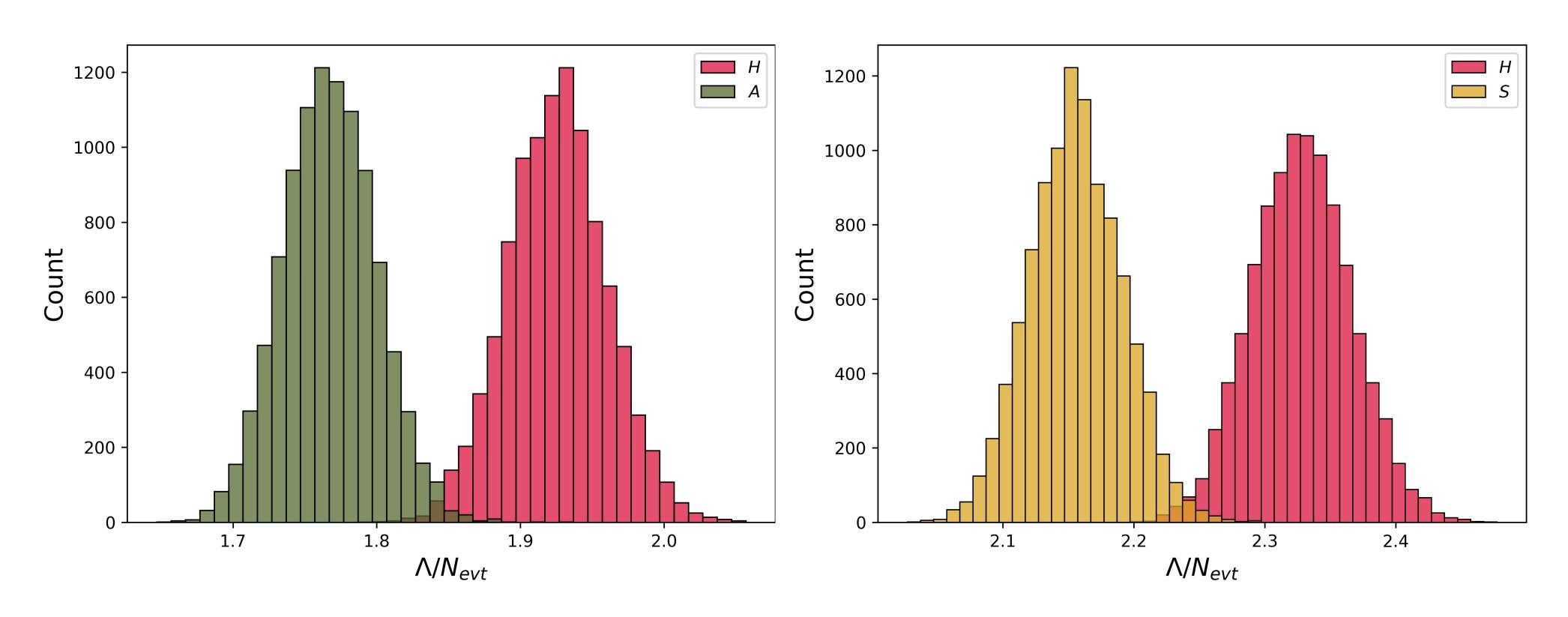
Hypothesis test: $\frac{1}{\Lambda} |H|^2 \bar{\chi} \chi$



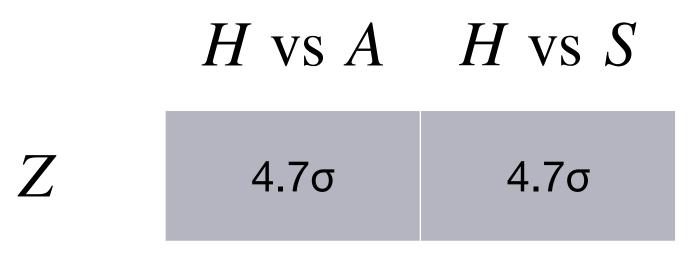
Results of 10,000 pseudo-experiments: left, H vs. A; right, H vs. S.



Hypothesis test: $\frac{\lambda}{2}|H|^2\phi^2$

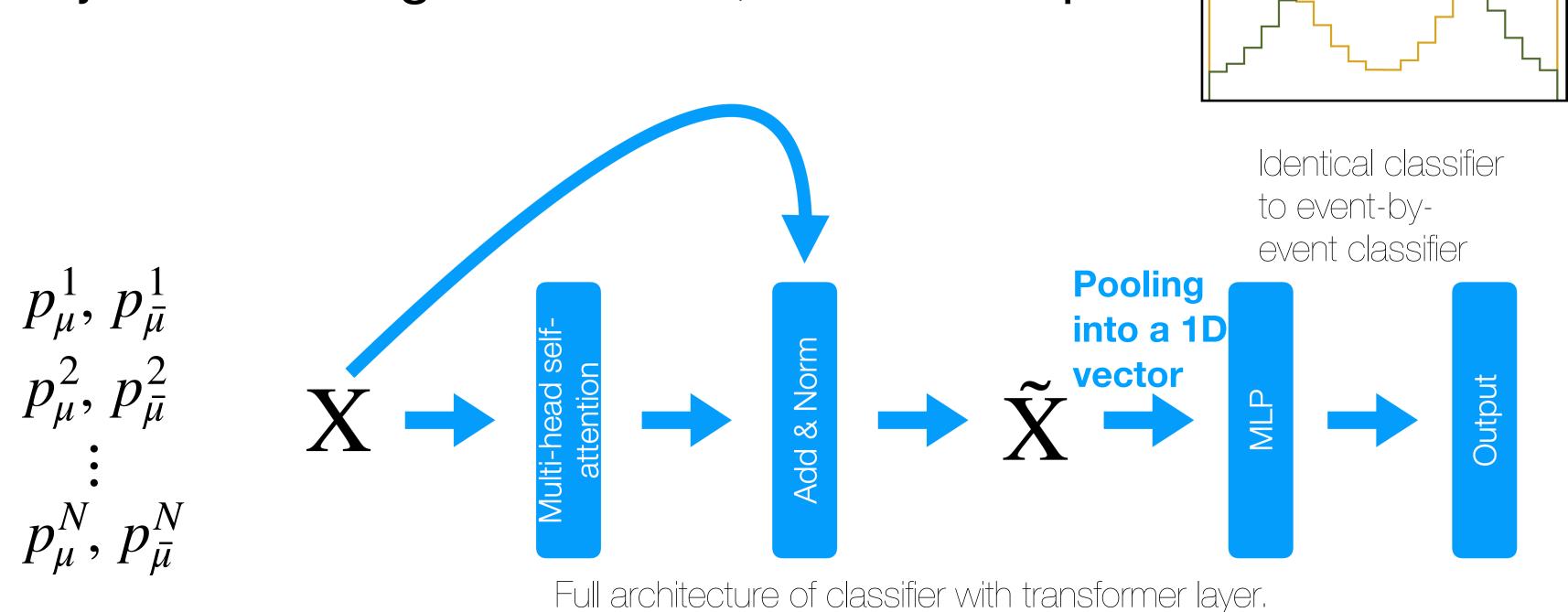


Results of 10,000 pseudo-experiments: left, H vs. A; right, H vs. S.



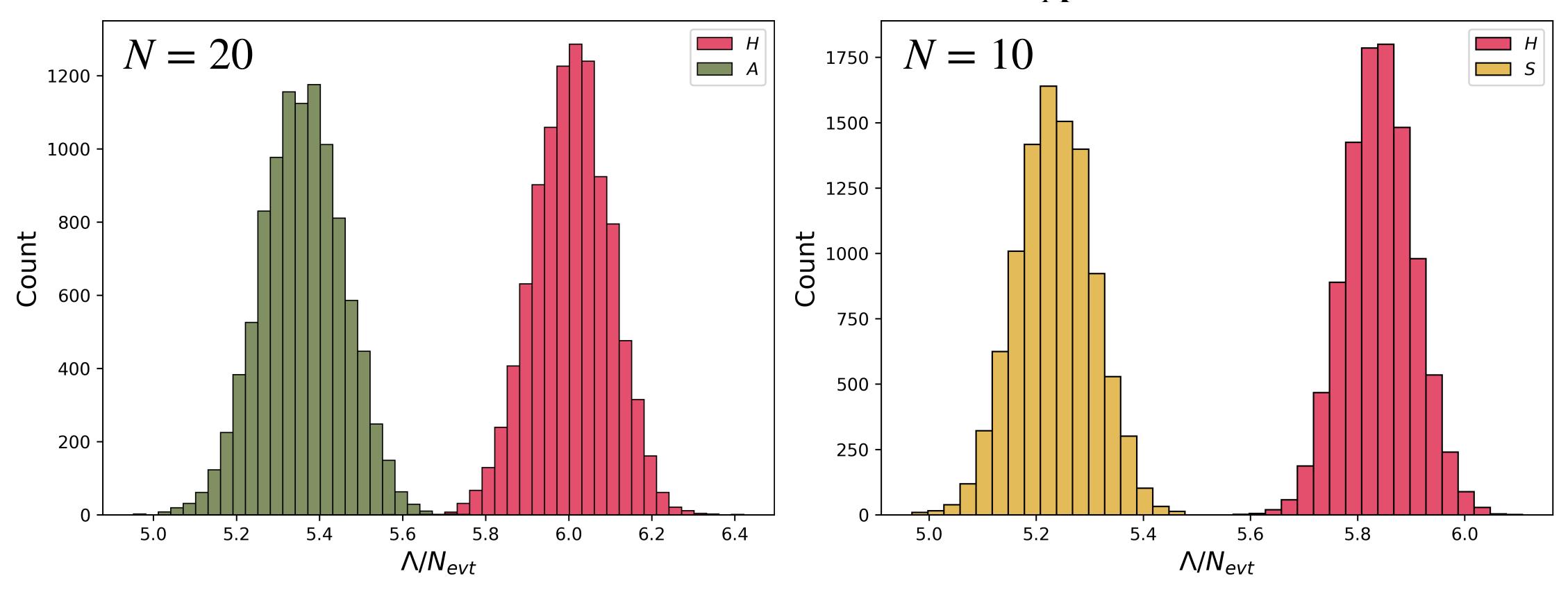
Hypothesis test - Transformer

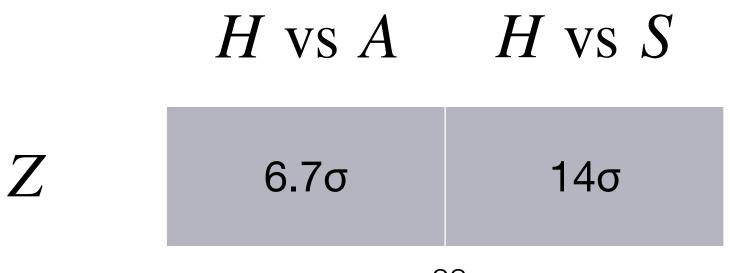
Not just encoding each event, but the shape



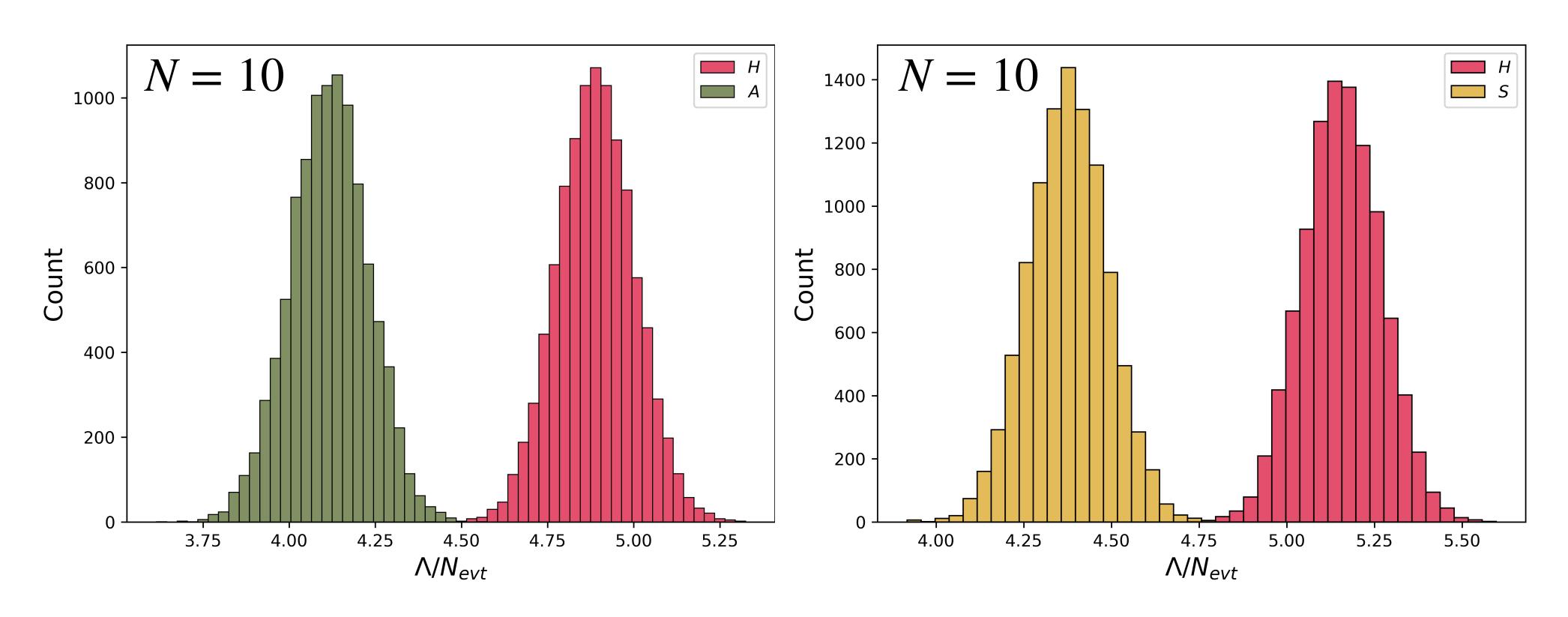
- Use $p_\mu,\,p_{ar\mu}$ as input vectors, so that the machine can learn hidden correlations without prior bias
- The number of input events, N, is important hyperparameter.

Hypothesis test - Transformer: $\frac{1}{\Lambda}|H|^2 \bar{\chi} \chi$

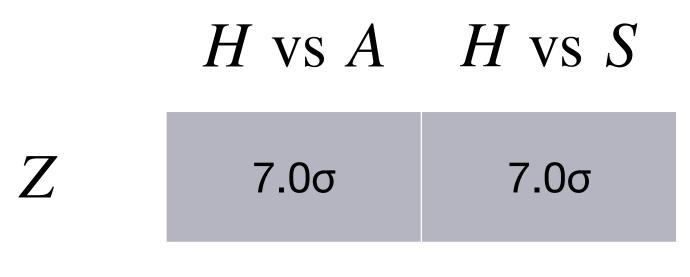




Hypothesis test - Transformer: $\frac{\lambda}{2}|H|^2\phi^2$



Results of 10,000 pseudo-experiments: left, H vs. A; right, H vs. S. Using classifier with transformer layer.



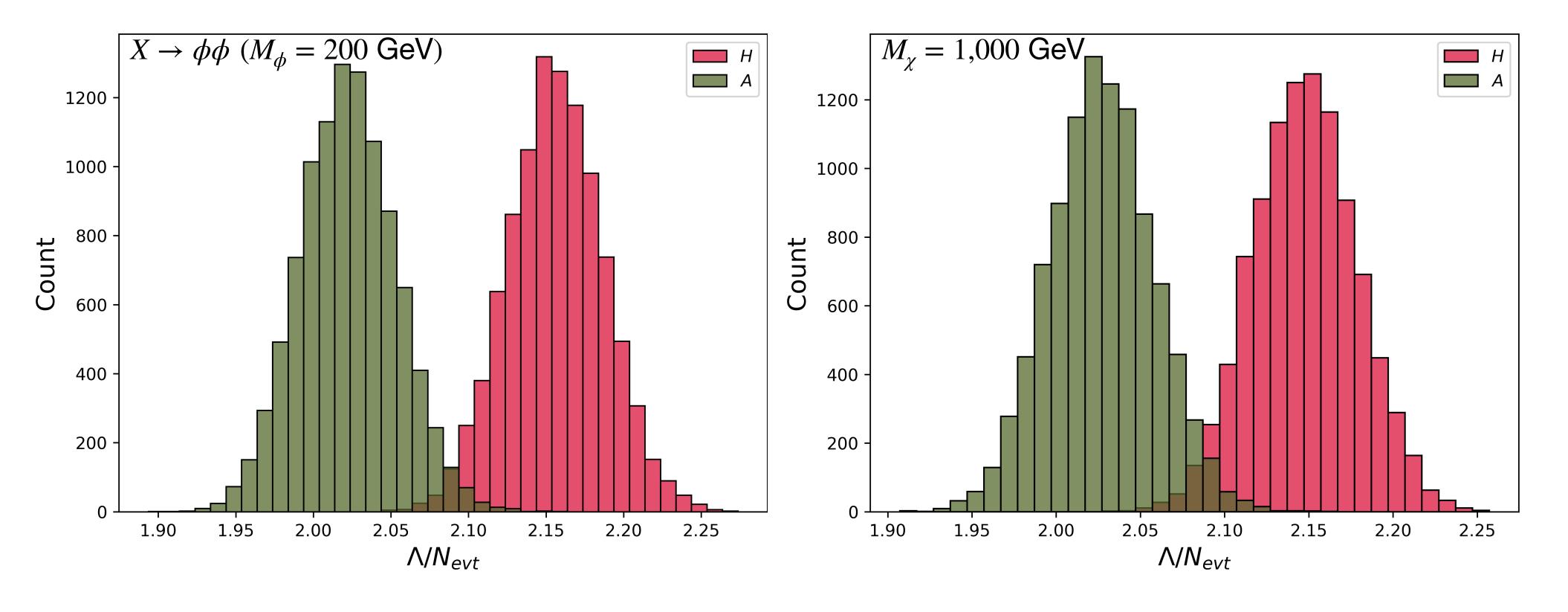
Hypothesis test - Generalization

- Recall that the angular correlation depends on ZZX, not on X-something.
- The same holds $f_{\mu o Z_{\lambda}}$.
- Therefore, even if the mediator discriminator is trained with specific mass point ($M_{\chi}=200$ GeV in our case), we expect it can classify other cases as well (e.g., different mass points or final-state couplings).

Hypothesis test - Generalization

Event-byevent classifier

H vs. A



Left: different spin ($\pmb{\phi}$), Right: different mass ($M_\chi=1{,}000$ GeV). Using event-by-event classifier

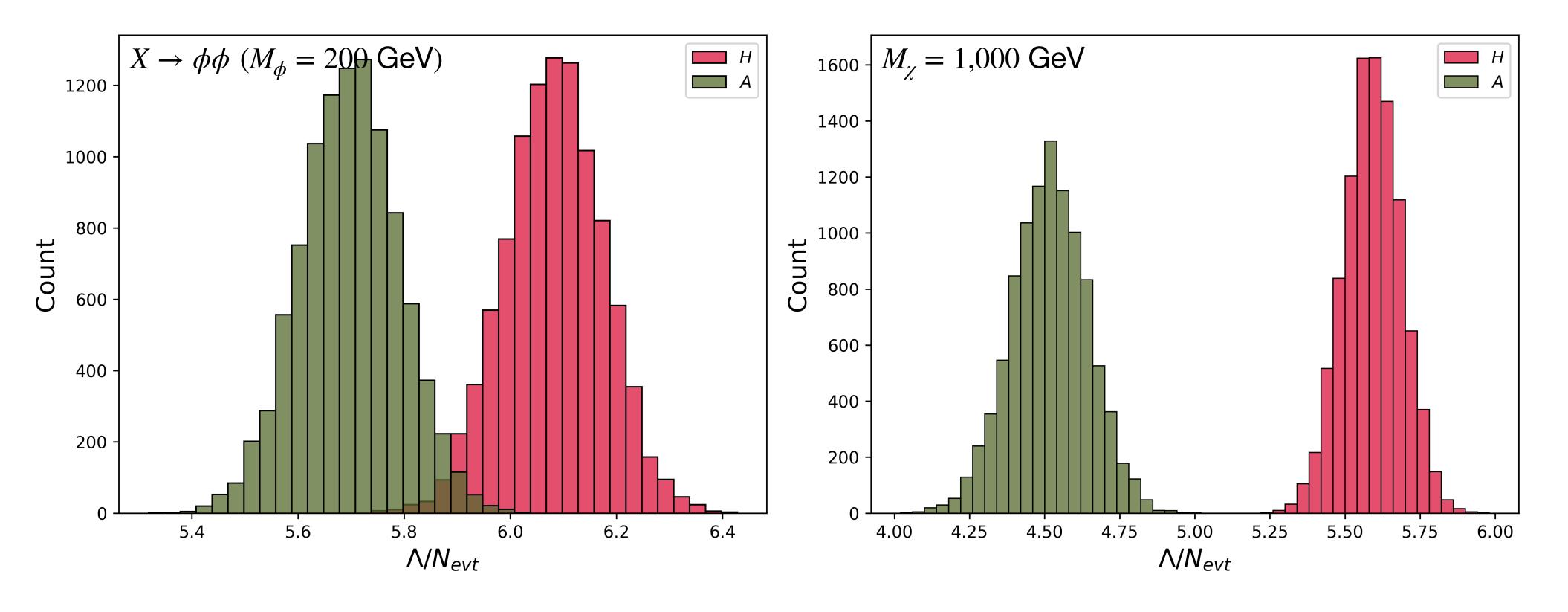
$$M_{\phi} = 200 \text{ GeV} M_{\chi} = 1000 \text{ GeV}$$

Z 4.2σ 3.9σ

Hypothesis test - Generalization

Classifier with transformer

H vs. A



Left: different spin (ϕ), Right: different mass ($M_\chi=1{,}000$ GeV). Using classifier with transformer layer.

$$M_{\phi} = 200 \text{ GeV} M_{\chi} = 1000 \text{ GeV}$$

Z 4.1σ 17σ

Summary and Conclusion

- The Higgs direct coupling to SM neutral particles dominated by VBF process can be effectively tested at a muon collider using the forward detector.
- With high confidence, it can be verified whether it is actually produced via the Higgs, regardless of its mass or coupling

Thank you for your attention

S to BG discrimination - Cut-flow: $\frac{1}{\Lambda}|H|^2 \bar{\chi} \chi$

Cut flow table for $M_\chi=200~{\rm GeV}$

	$\muar{\mu}\chiar{\chi}$	$\muar{\mu} uar{ u}$	$\muar{\mu}\gamma$	$\mu ar{\mu} f ar{f}$	$\mu \bar{\mu} W^- W^+$	$W^-W^+ uar u$	$ auar{ au}$
Baseline	$5.9 imes 10^2 \cdot ({ m TeV}/\Lambda)^2$	1.3×10^{6}	2.4×10^{7}	1.4×10^{6}	3.0×10^{5}	2.5×10^3	75
$\operatorname{sign} \left(M_{\chi \bar{\chi}}^2 \right) \cdot \sqrt{ M_{\chi \bar{\chi}}^2 } $ $> 180 \; \mathrm{GeV}$	$4.9 imes 10^2 \cdot ({ m TeV}/\Lambda)^2$	$6.5 imes 10^5$	9.9×10^{6}	$6.6 imes 10^5$	$2.5 imes 10^5$	2.5×10^3	75
$\Delta \eta_{\mu \bar{\mu}} > 8.2$	$3.5 imes 10^2 \cdot ({ m TeV}/\Lambda)^2$	1.8×10^{5}	5.0×10^{6}	4.0×10^{5}	$1.3 imes 10^5$	72	0
$ \Delta\phi_{\mu\bar{\mu}} < 2.2$	$2.8 imes 10^2 \cdot ({ m TeV}/\Lambda)^2$	1.2×10^{5}	1.2×10^{6}	2.9×10^{5}	8.6×10^{4}	55	0
$p_T^{\mu\mu} > 150 \text{ GeV}$	$1.2 imes 10^2 \cdot ({ m TeV}/\Lambda)^2$	1.6×10^{4}	7.9×10^{4}	3.4×10^{4}	1.9×10^{4}	8	0
$M_{\mu\bar{\mu}} > 6.0 \text{ TeV}$	$1.1 \times 10^2 \cdot ({ m TeV}/\Lambda)^2$	1.1×10^{4}	5.9×10^{4}	2.8×10^{4}	1.4×10^{4}	5	0
$E_{\rm min} > 4.1~{ m TeV}$	$38 \cdot ({ m TeV}/\Lambda)^2$	1.3×10^{3}	4.8×10^{2}	3.8×10^{2}	8.5×10^{2}	1	0

$$\sqrt{s} = 10 \, \text{TeV}, \, \mathcal{L} = 10 \, \text{ab}^{-1}, \, |\eta_{\text{main}}| < 2.44, \, \delta E_{res.} = 10 \, \%$$

• 5σ discovery at $\Lambda=360$ GeV

Maximum likelihood ratio

$$\sigma_{\text{exc.}} = \sqrt{-2 \ln \left(\frac{L(B|B)}{L(S+B|B)}\right)}$$

$$\sigma_{\text{disc.}} = \sqrt{-2 \ln \left(\frac{L(B|S+B)}{L(S+B|S+B)} \right)}$$

$$L(x \mid y) = \frac{x^y}{y!} e^{-x}$$

- Exclusion significance by excluding the signal plus background hypothesis
- Discovery significance by excluding the background only hypothesis

Details on NN: SIG-BG classifier

```
Input-Layer (10-dim) \rightarrow Hidden-Layer 1 (64-dim) / Batch normalization / ReLU / Dropout(p=0.3) \rightarrow Hidden-Layer 2 (64-dim) / Batch normalization / ReLU / Dropout(p=0.3) \rightarrow Output-Layer (1-dim)
```

Network architecture

			400		l	l	l	l	,
χ	128	256	128	128	128	256	256	512	256
ϕ	512	128	1,024	256	128	128	512	256	512

Mini-batch size of each NN_M

Optimizer: Adam

Loss function: Binary cross entropy

- Training / Validation
 - 20k events / background, 160k for signal → split
 8:2
- Test
 - Same # of events as training/validation
- Weighting
 - Background events weighted by cross section (loss calculation)
- Limit
 - Calculated on validation set → verified on test set (per mass point)

Details on NN: Mediator discrimination (event-by-event)

```
Input-Layer (5-dim) \rightarrow Hidden-Layer 1 (32-dim) / Batch normalization / ReLU / Dropout(p=0.3) \rightarrow Hidden-Layer 2 (32-dim) / Batch normalization / ReLU / Dropout(p=0.3) \rightarrow Output-Layer (1-dim)
```

Network architecture

Optimizer: Adam

Loss function: Binary cross entropy

Mini-batch size: 512

- Training / Validation / Test
 - 40k events / model → split 8:1:1
- Pseudo-experiment
 - Multiple sets
 - 15 sets / signal & background (for statistical independence)
 - Variation
 - Gaussian $\pm 5\%$ on # of passing events (for statistical fluctuations)
 - 10k runs \rightarrow construct Λ distribution

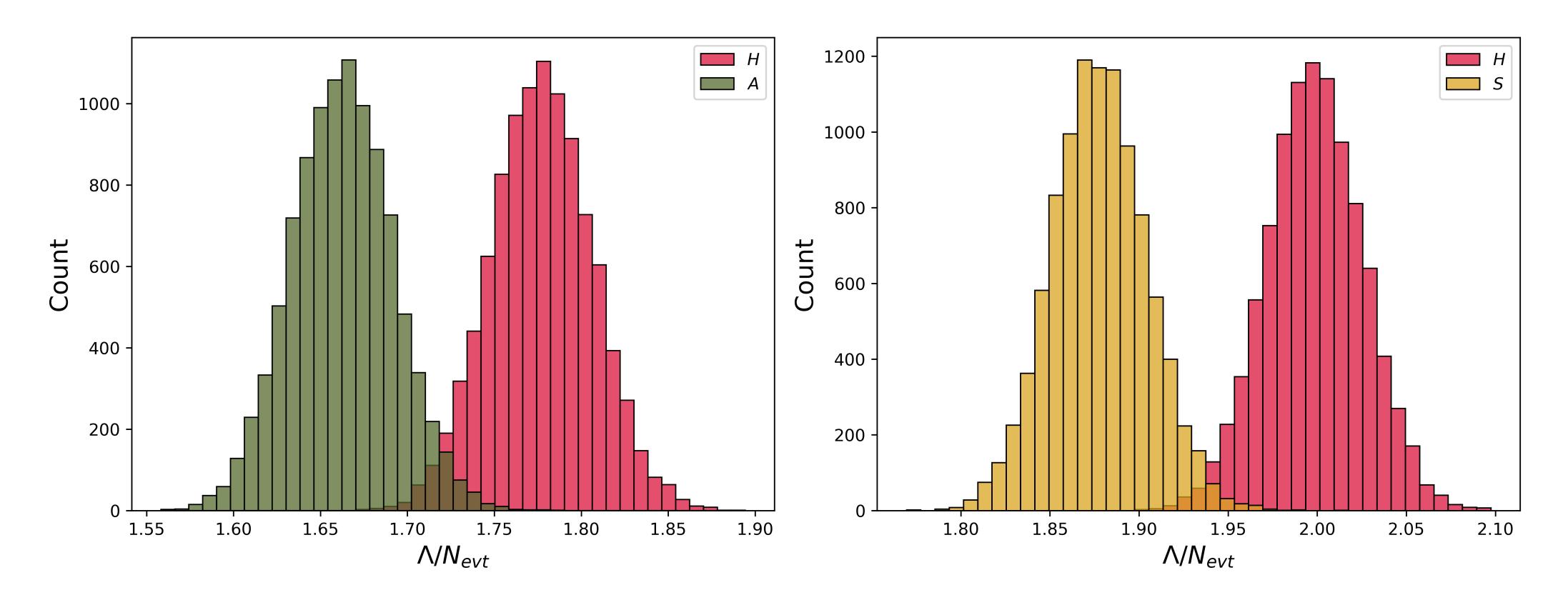
Details on NN: Mediator discrimination (transformer)

Input: $\mathbf{X} \in \mathbb{R}^{B \times N \times D} \to$ Multi-Head Self-Attention (8 heads, each with d=1) \to Transpose to $\mathbb{R}^{B \times D \times N} \to$ 1D Pooling over sequence dimension $(N \to 1)$ Transformer layer architecture

Classifier part is identical to event-by-event classifier

- Training / Validation
 - 500k events / model → grouped into input matrices → split 8:2
- Pseudo-experiment
 - Input matrix construction
 - Total events may not divide evenly → last event duplicated to fill the group
 - Multiple sets
 - 15 sets / signal & background (for statistical independence)
 - Variation
 - Gaussian $\pm 5\,\%$ on # of passing events (for statistical fluctuations)
 - 10k runs \rightarrow construct Λ distribution

Is the improved performance truly due to the transformer?



Event-by-event classifier, but using four-momentum, $p_{\mu},p_{ar{\mu}}$, as input features.

Better results aren't due to different input features.

 $H ext{ vs } A H ext{ vs } S$ $Z 3.9 \sigma 4.4 \sigma$