Cosmological Phase Transition and Gravitational Wave

Summer institute 2025 (at Yeosu)

Kohei Fujikura (YITP; Nuclear physics group)

Self-introduction

Hello. My name is Kohei Fujikura (藤倉浩平).

I am currently working on the Hamiltonian formulation of lattice gauge theories with tensor network approach.

Outline

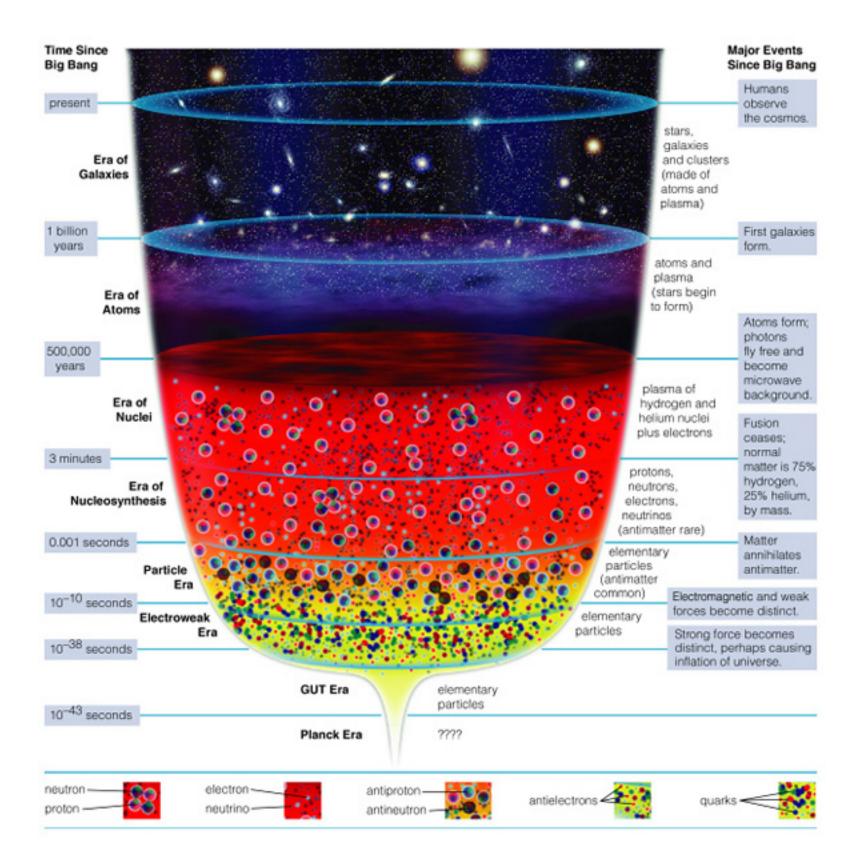
• 1: What is the order of phase transition?

•2: Hot phase diagrams in the SM, and gravitational wave spectra from first-order phase transitions

•3: Phase transitions in Inflationary universe, (and the Hamiltonian formulation of lattice gauge theories)

Cosmological Phase Transition

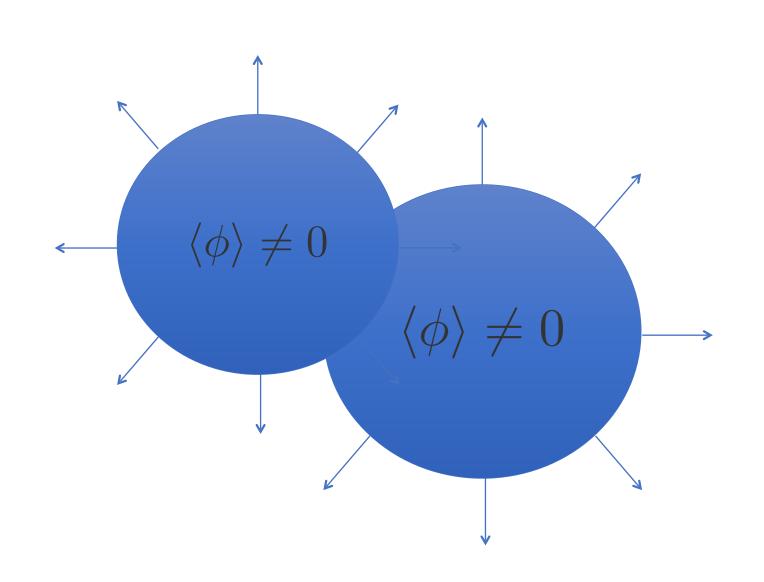
Early universe; finite temperature and (possibly finite density) system

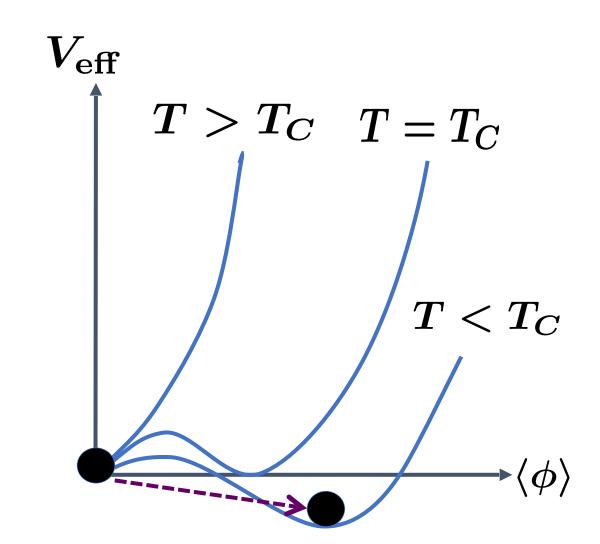


Due to the cosmic expansion, a cosmic temperature cools down.

Cosmological Phase Transitions

Cosmological first order phase transition \Rightarrow Formation of bubbles





Very roughly speaking, bubble nucleations take place when the temperature of the Universe \simeq mass scale of symmetry breaking (There exists exceptions.)

After bubble nucleations, they expand due to a pressure.

Phase Transitions in BSM

In this summer institute, many researchers give interesting presentations related to first-order cosmological phase transitions.

10 Presentations!

I hope that this lecture is helpful to understand these presentations.

1'st lecture: Order of thermal phase transition

Outline

Phase Transition and Thermal Field Theory

•Simple model

Application to the QCD chiral phase transition

A main claim: Order of thermal phase transition Infrared behavior of three-dimensional field theory

Introduction: Phase Transitions

Q. What is a (definition of) phase transition?

Textbook answer: *n'*th order phase transition takes place when *n'*th derivative of a free energy with respect to the temperature (or other parameters) becomes singular.

Landau's answer: Singularities of a free energy are caused by change of underlying global symmetries of the ground state.

I would like to review Landau's answer from now on.

Landau's argument (1)

A phase transition takes place when Φ develops an expectation value.

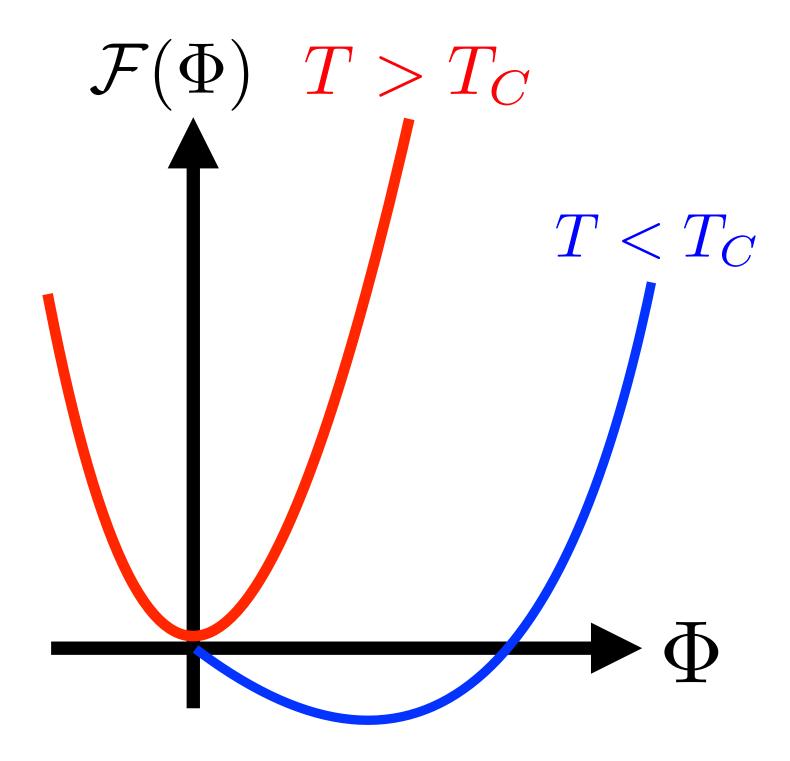
Landau assumes a simple polynomial form of a free energy:

Ex) Ferromagnetic system (Ising model)

$$\mathcal{F}(\Phi) = m^2(T)\Phi^2 + \lambda(T)\Phi^4 + \kappa(T)\Phi^6 + \cdots$$

$$Z_2$$
-Symmetric phase: $m^2(T > T_C) > 0 \Rightarrow \langle \Phi \rangle = 0$

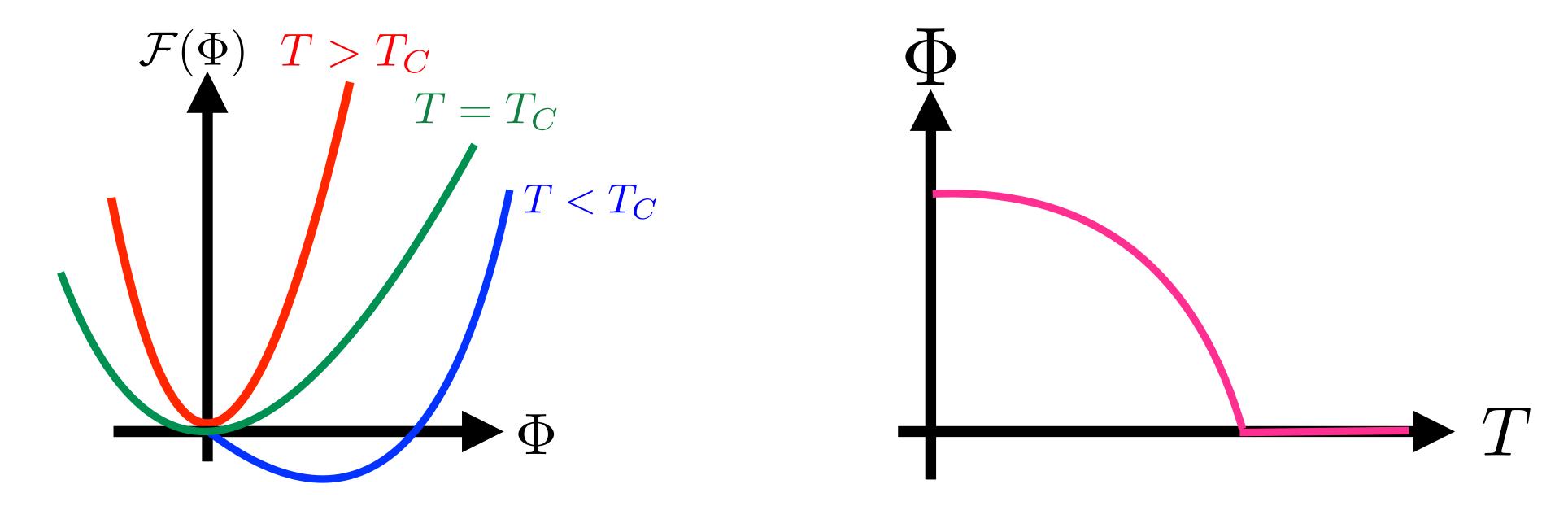
$$Z_2$$
-Broken phase: $m^2(T < T_C) < 0 \Rightarrow \langle \Phi \rangle \neq 0$



Landau's argument (2)

$$\mathcal{F}(\Phi) = m^2(T)\Phi^2 + \lambda(T)\Phi^4 + \kappa(T)\Phi^6 + \cdots$$

 $\lambda(T) > 0$: 2'nd order phase transition takes place.



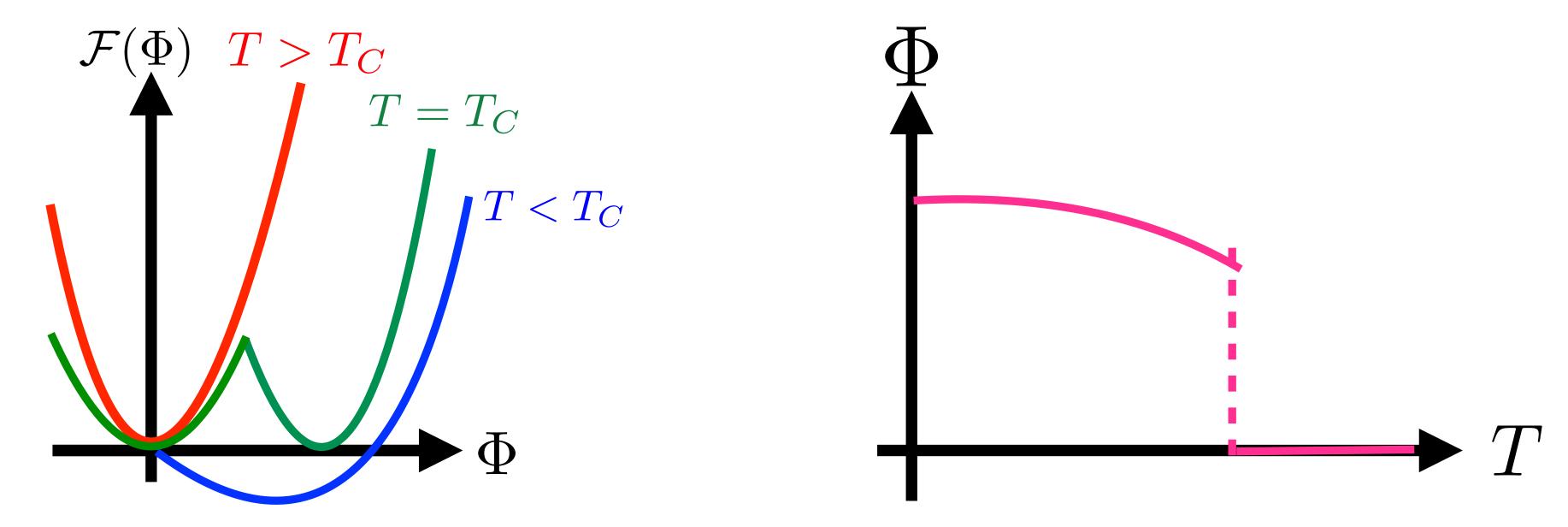
A salient feature of the 2'nd phase transition:

A correlation length diverges $1/m(T \to T_c) \to \infty$ at critical point. (Order parameter is continuous, but its derivative is not for T.)

Landau's argument (3)

$$\mathcal{F}(\Phi) = m^2(T)\Phi^2 + \lambda(T)\Phi^4 + \kappa(T)\Phi^6 + \cdots$$

 $\lambda(T) < 0$, $\kappa(T) > 0$: 1'st order phase transition takes place.

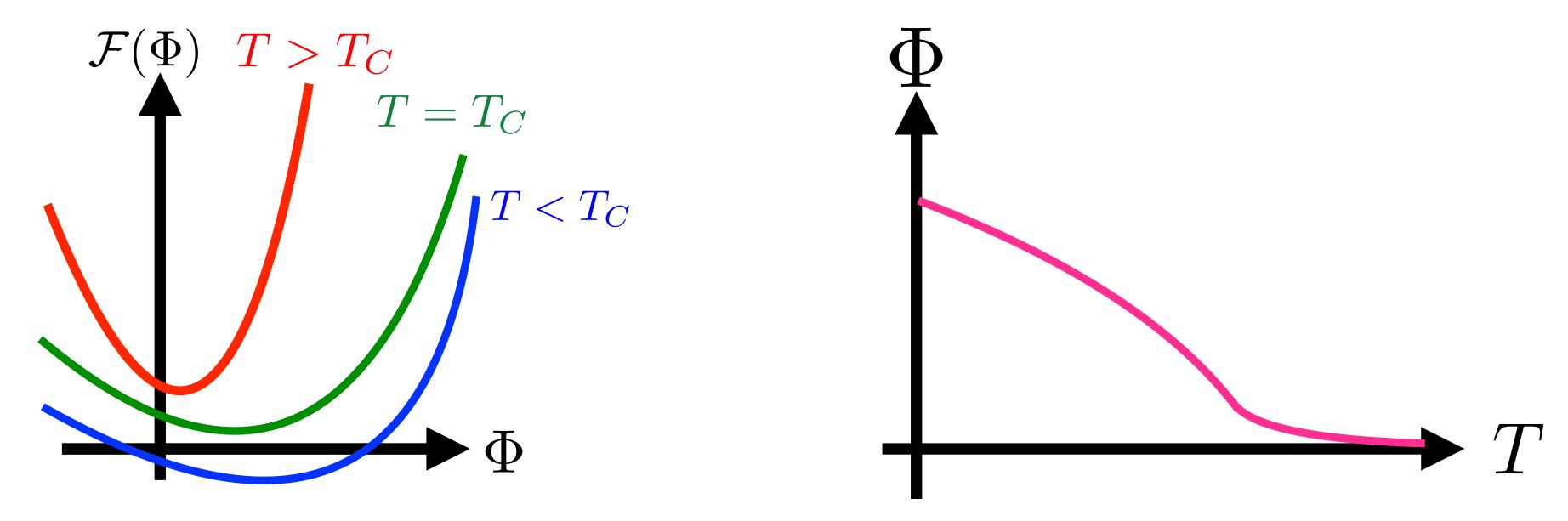


A salient feature of the 1'st phase transition: A correlation length is always finite, but it jumps! (Order parameter also jumps!)

A smooth crossover

$$\mathcal{F}(\Phi) = J\Phi + m^2(T)\Phi^2 + \lambda(T)\Phi^4$$

When there exists the operator which explicitly breaks the symmetry, there is no definite phase transition, or 1'st order phase transition takes place (depending on the parameter).



No global symmetry ~ crossover or 1'st order

Landau Free Energy

In principle, we can compute the Landau free energy from the first-principle approach for a given theory (action).

$$S[\phi,A_{\mu},\psi,\cdots]$$
 Thermal effect $F[\phi,A_{\mu},\psi,\cdots]$

Method: imaginary time (Matsubara) formalism

Thermal effect (1)

Thermal effect ~ Gibbs state

Gibbs state is described by the following density matrix:

$$\rho = \sum_{i} e^{-H/T} |i\rangle\langle i|$$

H: The total Hamiltonian of the theory i labels the (all possible) physical state.

An expectation value is understood as the canonical ensemble:

$$\langle \hat{O} \rangle = \operatorname{tr} \left(\hat{\rho} \, \hat{O} \right)$$

Thermal effect (2)

In an infinite temperature limit $T \to \infty$, the density matrix becomes

$$\rho = 1 = \sum_{i} |i\rangle\langle i|$$

Any states is equally appears.

Expectation values are invariant under any unitary (internal) transformations.

$$\langle \hat{O} \rangle \rightarrow \langle \hat{U}^{\dagger} \hat{O} \hat{U} \rangle = \text{Tr}(\hat{U}^{\dagger} \hat{O} \hat{U} \mathbf{1}) = \text{Tr}(\hat{O} \mathbf{1}) = \langle \hat{O} \rangle.$$

This is the intuition of symmetry restoration at very high-temperature.

Thermal effect (3)

In the zero temperature limit $T \rightarrow 0$, the density matrix becomes

$$\rho = \sum_{i} e^{-H/T} |i\rangle\langle i| \to e^{-E_0/T} |0\rangle\langle 0| \ (T \to 0)$$

Only the ground state $|0\rangle$ appears.

Therefore, $\langle \dots \rangle_{T \to 0}$ means an expectation value with respect to the ground state. (*ie*-prescription)

(From this consideration, it is obvious that the finite temperature theory is identical to the ordinary QFT at $T \rightarrow 0$.)

Liouville equation

In quantum theory, time evolution of the density matrix is described by the quantum Liouville equation:

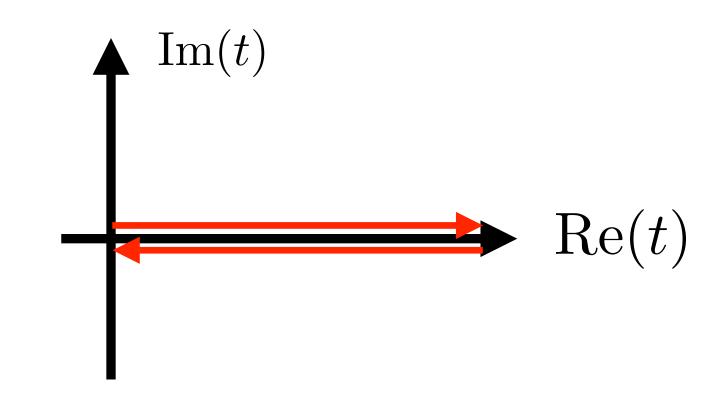
$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{\rho}(t) = -i[\hat{\rho}(t), \hat{H}].$$

A formal solution of this equation:

$$\hat{\rho}(t) = \bar{T} \left[e^{-i \int_{t_i}^t dt \, \hat{H}} \right] \hat{\rho}(t_i) T \left[e^{-i \int_{t_i}^t dt \, \hat{H}} \right].$$

$$T \left[e^{i \int_{t_i}^t dt \, \hat{H}} \right] = \lim_{n \to \infty} \prod_{\substack{n, t_{n+1} = t, t_0 = t_i}}^{t_{n-1} < t_n} e^{i \hat{H}(t_n - t_{n-1})},$$

$$\bar{T} \left[e^{i \int_{t_i}^t dt \, \hat{H}} \right] = \lim_{n \to \infty} \prod_{\substack{n, t_{n+1} = t, t_0 = t_i}}^{t_{n-1} > t_n} e^{i \hat{H}(t_n - t_{n-1})}.$$



Gibbs state as imaginary time evolution

$$\hat{\rho}(t) = \bar{T} \left[e^{-i \int_{t_i}^t dt \, \hat{H}} \right] \hat{\rho}(t_i) T \left[e^{-i \int_{t_i}^t dt \, \hat{H}} \right].$$

Assumption: The Hamiltonian does not depend on time.

Let us set $\hat{\rho}(t_i) = 1$ and evolve the *imaginary time* from $t_i = 0$ to t = -i/(2T) (for a time-ordered product).

$$\hat{H}/T$$

$$Re(t)$$

$$\hat{\rho}(t = i/(2T)) = e^{-\hat{H}/(2T)} \mathbf{1}e^{-\hat{H}/(2T)} = e^{-\hat{H}/T}$$

A main claim: Gibbs state can be interpreted as the imaginary time evolution from the maximally entangled state $\hat{\rho} = 1$.

Path-integral Approach (I)

A generic expression is too formal to compute some physical quantities.

For an illustrative purpose, let us consider one-dimensional quantum mechanics.

$$\hat{H}_{(\hat{\pi}_q, \hat{q})} = \frac{1}{2} \hat{\pi}_q^2 + V(\hat{q}).$$

Canonical commutation relation:

$$[\hat{\pi}_q(t), \hat{q}(t)] = -i$$

Coherent state, $\hat{q} | q \rangle = q | q \rangle$.

Path-integral Approach (II)

Inserting the complete set and perform the integration w.r.t π_q :

$$T\left[e^{-i\int_{t_{i}}^{t} dt \, \hat{H}}\right] = \lim_{n \to \infty} \prod_{n, t_{n+1} = t, t_{0} = t_{i}}^{t_{n-1} < t_{n}} e^{-i\hat{H}(t_{n} - t_{n-1})} = \# \int Dq \, |q(t)\rangle e^{iS} \langle q(t_{i})| \,\,,\,\, S = \int_{t_{i}}^{t} dt \left[\frac{\dot{q}^{2}}{2} - V(q)\right]$$

The density matrix has the following path-integral representation:

$$\hat{\rho}(t) = \# \int Dq_{+}Dq_{-} |q_{-}(t_{i})\rangle e^{iS_{-}} \langle q_{-}(t)|\hat{\rho}(t_{i})|q_{+}(t)\rangle e^{iS_{+}} \langle q_{+}(t_{i})|,$$

$$S_{\pm} = \pm \int_{t_{i}}^{t} dt \left[\frac{\dot{q}_{\pm}^{2}}{2} - V(q_{\pm}) \right]$$

Periodic boundary condition

Putting $\hat{\rho}(t_i) = 1$ and imaginary time evolution:

$$e^{-\hat{H}/T} = \# \int_{q(\tau = -\beta/2) = q(\tau = \beta/2)} Dq |q_{-}(0)\rangle e^{-S_{T}} \langle q_{+}(0)|, S_{T} = \int_{-\beta/2}^{\beta/2} d\tau \left[\frac{1}{2} \left(\frac{dq}{d\tau} \right)^{2} + V(q) \right]$$

Hence canonical ensemble can be computed by the standard path integral approach with a periodic boundary condition.

$$Z = \int Dq \, e^{-S_T} \qquad \qquad \text{:same point}$$

Caution: Anti-periodic boundary condition is taken for a fermion field.

Field theory at finite-temperature

Quantum field theory ~ each space points has a harmonic oscillator.

$$\hat{q}(t) \rightarrow \hat{\phi}(t, \mathbf{x})$$

The thermal partition function is now defined on Euclidean $\mathbb{R}^3 \times \mathbb{S}^1$:

$$Z = \operatorname{Tr} e^{-\beta H} = \int D\phi \, e^{-S[\phi]}$$

The summation is taken over all possible field configurations under the boundary condition $\phi(\tau, \mathbf{x}) = \phi(\tau + 1/T, \mathbf{x})$ for bosons.

Outline

Phase Transition and Thermal Field Theory

•Simple model

Application to the QCD chiral phase transition

Example: (continuum) Ising model

Let us consider the following example.

$$Z = \operatorname{Tr} e^{-\beta H} = \int D\phi \, e^{-S[\phi]}$$

$$S = \int_{-1/(2T)}^{1/(2T)} d\tau \int d^3x \left[\frac{1}{2} (\partial \phi)^2 + \frac{1}{2} m^2 \phi^2 + \frac{\lambda}{4} \phi^4 \right]$$

There exists a Z_2 symmetry: $\phi \rightarrow -\phi$.

At zero-temperature with $m^2 < 0$ leads to spontaneous symmetry breaking, $\langle \phi \rangle \neq 0$.

Feynman rule at finite temperature

You can perturbatively evaluate the path integral using the standard Feynman diagram technique.

Because of the periodic (or anti-periodic boundary) condition, propagator is replace by the sum of discrete frequencies.

$$\frac{1}{\omega_{B,n}^2 + \mathbf{p}^2 + m_B^2} \qquad \frac{\gamma^{\mu} p_{\mu} + m_F}{\omega_{F,n}^2 + \mathbf{p}^2 + m_F^2}$$

$$\omega_{B,n} = 2\pi n T \qquad \omega_{F,n} = 2\pi \left(n + \frac{1}{2}\right) T$$

$$\text{Loop integral: } T \sum_{n = -\infty}^{\infty} \int \frac{\mathrm{d}^3 p}{(2\pi)^3}$$

There are no zero-modes for fermion fields (anti-periodic condition).

Effective action for zero-mode

Let us focus on the lightest field and integrating out all massive modes.

(Kaluza Klein modes)

[P. Ginsparg (1980)]

$$\phi(\tau, \mathbf{x}) = \sum_{n = -\infty}^{\infty} \left(\phi_n(\mathbf{x}) e^{i\omega_n \tau} + \phi_n^*(\mathbf{x}) e^{-i\omega_n \tau} \right) - \frac{\int_{-\infty}^{\infty} S^1 \times R^3}{R^3}$$

 $\phi_{n=0}$: zero mode (External legs)

 $\phi_{n\neq 0}$: Integrated out (Internal lines)

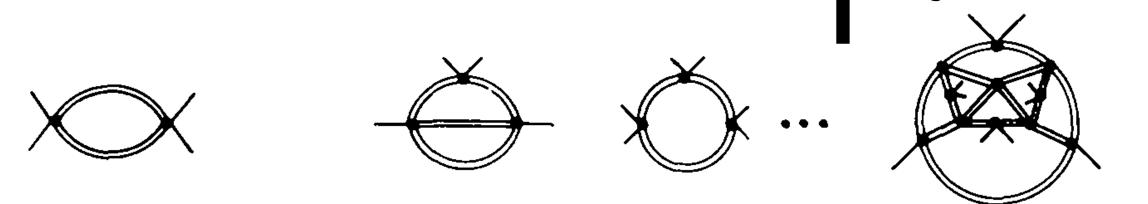


Fig. 4. Some higher-order contributions to \mathcal{C}_{eff} .

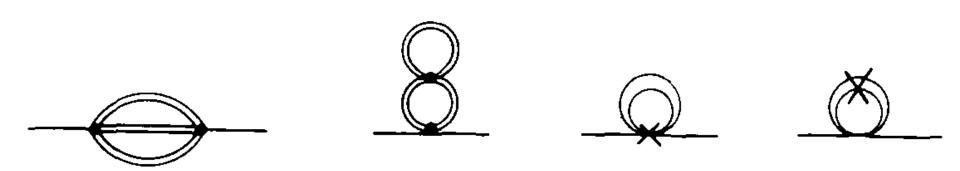


Fig. 5. Two-loop contributions to tree approximation mass term in \mathcal{L}_{eff} .

Landau free energy

The resultant effective action at finite temperature with one-loop:

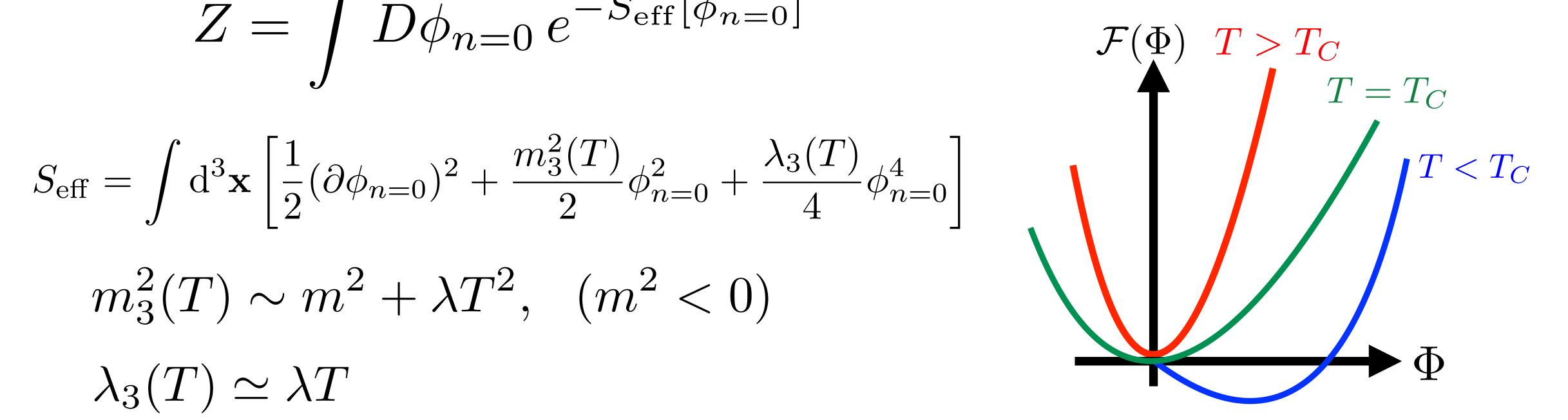
$$Z = \int D\phi_{n=0} e^{-S_{\text{eff}}[\phi_{n=0}]}$$

$$S_{\text{eff}} = \int d^3 \mathbf{x} \left[\frac{1}{2} (\partial \phi_{n=0})^2 + \frac{m_3^2(T)}{2} \phi_{n=0}^2 + \frac{\lambda_3(T)}{4} \phi_{n=0}^4 \right]$$

$$m_3^2(T) \sim m^2 + \lambda T^2, \quad (m^2 < 0)$$

$$\lambda_3(T) \simeq \lambda T$$

A mean field approximation:



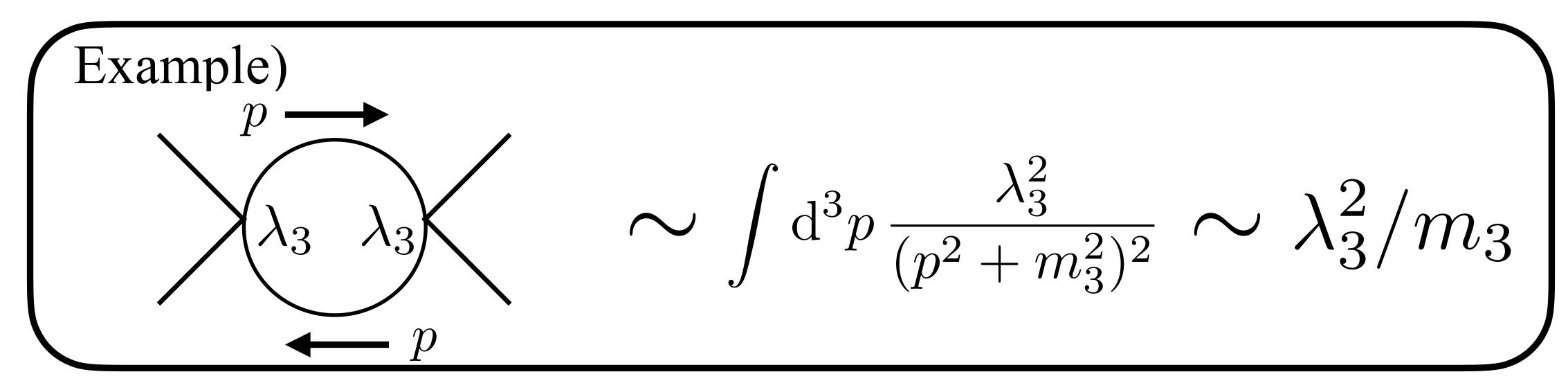
However, you cannot believe the analysis based on the mean field analysis at $m^2(T_C) = 0$.

Infrared divergence

There is a non-perturbatively large correction at $m_3^2(T) = 0$.

Perturbative expansion is justified when $\alpha \simeq \lambda_3^2/m_3 < 1$

 λ_3 : mass dimension 1/2, m_3 : mass dimension 1.



A three-dimensional field theory is superenomalizable and is strongly coupled at infrared.

What can we learn from this analysis?

Let us summarize the situation again.

• A finite-temperature field theory is a field theory on $\mathbb{R}^3 \times \mathbb{S}^1$.

- We can obtain effective action by integrating out all massive modes.
- The resultant zero-modes effective action is defined in three spatial dimension and is strongly coupled at infrared (at a transition point).
- (Roughly speaking, S^1 direction shrinks at long distance physics.)

Order of phase transition

An effect of non-perturbative fluctuation should be included.

• Renormalization group (RG) analysis(ϵ -expansion, functional RG method)

• Lattice simulation

Conformal bootstrap

Renormalization group analysis

A non-perturbative effect is included as the renormalization group effect.

• First-order phase transition

No stable infrared fixed point Fluctuation-induced first-order phase transition

• Second-order phase transition

Attract to the infrared fixed point

New minimum appears [P. H. Ginsparg (1980)] Without RG effect $T = T_C$ RG effect

Question

Now the problem is the following. Starting from the three-dimensional effective theory:

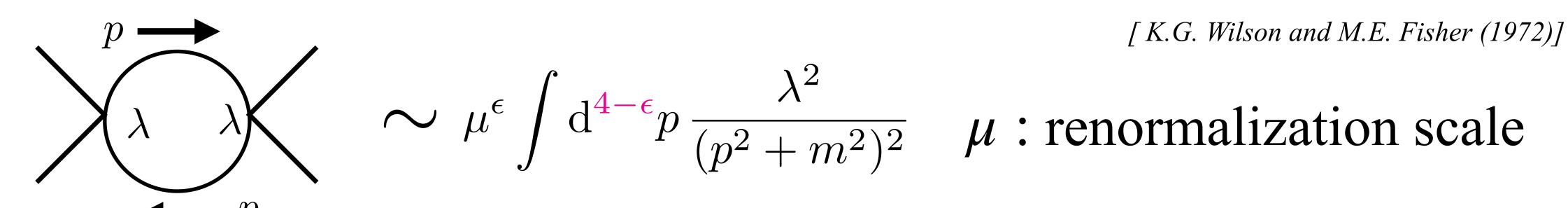
$$Z = \int D\phi_{n=0} e^{-S_{\text{eff}}[\phi_{n=0}]}$$

$$S_{\text{eff}} = \int d^3 \mathbf{x} \left[\frac{1}{2} (\partial \phi_{n=0})^2 + \frac{m_3^2(T)}{2} \phi_{n=0}^2 + \frac{\lambda_3(T)}{4} \phi_{n=0}^4 \right]$$

Is there stable IR fixed point at $m_3^2(T_C) = 0$?

Wilson Fisher fixed point

 ε —expansion: compute Feynman diagram in $(4 - \varepsilon)$ -dim with $\varepsilon \ll 1$ (and finally takes the extrapolation $\varepsilon \to 1$).



Renormalization group equation at one-loop:

$$\beta_{\lambda} \equiv \mu \frac{\partial \lambda}{\partial \mu} = -\epsilon \lambda + 3 \frac{\lambda^2}{16\pi^2}$$
IR stable fixed-point

At the fixed-point, correlation length diverges.

⇒ 2'nd order transition! (Also confirmed by other methods)

Application: QCD chiral phase transition

Pisarski and Wilczek (1984) applied this analysis to the QCD chiral phase transition. $SU(N_F)_L \times SU(N_F)_R \times U(1)_V \times U_A(1) \rightarrow SU(N_F)_V \times U(1)_V$

Order parameter (chiral condensate): $\bar{q}_i q_j \sim \Phi \rightarrow U \Phi V^{\dagger} (U, V \in U(N_F))$

Effective action:

$$S_{\text{eff}} = \int d^3\mathbf{x} \left[\text{Tr}(\partial \Phi \partial \Phi^{\dagger}) + M^2(T)\Phi \Phi^{\dagger} + u(\text{Tr}\Phi \Phi^{\dagger})^2 + v\text{Tr}(\Phi \Phi^{\dagger}\Phi \Phi^{\dagger}) + \underline{c_0 \det \Phi} + c, c. \right]$$
Axial anomaly
$$(U(1)_A)$$

Is there infrared stable fixed point? (Order of phase transitions)

QCD phase chiral phase transition

Results (based on the ϵ -expansion with one-loop analysis)

$$S_{\text{eff}} = \int d^3 \mathbf{x} \left[\text{Tr}(\partial \Phi \partial \Phi^{\dagger}) + M^2(T) \Phi \Phi^{\dagger} + u (\text{Tr} \Phi \Phi^{\dagger})^2 + v \text{Tr}(\Phi \Phi^{\dagger} \Phi \Phi^{\dagger}) + c_0 \det \Phi + \text{c.c.} \right]$$

	$N_{ m f}=2$	$N_{\rm f} \geq 3$
$U(1)_A$ symmetric $(c_0 = 0)$	Fluctuation-induced 1st order	1st order
$U(1)_A$ broken $(c_0 \neq 0)$	2nd order $[O(4)$ universality]	1st order

However, this conclusion is based on the extrapolation, $\epsilon \to 1$.

Application to BSM physics

QCD-like dynamics is well-motivated in the physics beyond the standard model. (Composite Higgs model)

List of chiral symmetry breaking pattern $\mathscr{G} \to \mathscr{H}$ in composite Higgs model

$\overline{\mathcal{G}}$	\mathcal{H}	C	N_G	$\mathbf{r}_{\mathcal{H}} = \mathbf{r}_{\mathrm{SU}(2) imes \mathrm{SU}(2)} \left(\mathbf{r}_{\mathrm{SU}(2) imes \mathrm{U}(1)} ight)$	Ref.
$\overline{SO(5)}$	SO(4)	\checkmark	4	$oldsymbol{4}=(oldsymbol{2},oldsymbol{2})$	[11]
$SU(3) \times U(1)$	$SU(2) \times U(1)$		5	${\bf 2_{\pm 1/2} + 1_0}$	[10, 35]
SU(4)	$\mathrm{Sp}(4)$	\checkmark	5	${f 5}=({f 1},{f 1})+({f 2},{f 2})$	[29, 47, 64]
SU(4)	$[SU(2)]^2 \times U(1)$	√ *	8	$({f 2},{f 2})_{\pm{f 2}}=2\cdot({f 2},{f 2})$	[65]
SO(7)	SO(6)	\checkmark	6	${f 6} = 2 \cdot ({f 1},{f 1}) + ({f 2},{f 2})$	_
SO(7)	G_2	*	7	${f 7}=({f 1},{f 3})+({f 2},{f 2})$	[66]
SO(7)	$SO(5) \times U(1)$	*	10	$oldsymbol{10_0} = (oldsymbol{3}, oldsymbol{1}) + (oldsymbol{1}, oldsymbol{3}) + (oldsymbol{2}, oldsymbol{2})$	_
SO(7)	$[SU(2)]^{3}$	*	12	$({f 2},{f 2},{f 3})=3\cdot({f 2},{f 2})$	
$\operatorname{Sp}(6)$	$\mathrm{Sp}(4) \times \mathrm{SU}(2)$	\checkmark	8	$(4,2)=2\cdot(2,2)$	[65]
SU(5)	$SU(4) \times U(1)$	*	8	${f 4}_{-5} + {f ar 4}_{+{f 5}} = 2 \cdot ({f 2},{f 2})$	[67]
SU(5)	SO(5)	*	14	${f 14} = ({f 3},{f 3}) + ({f 2},{f 2}) + ({f 1},{f 1})$	[9, 47, 49]
SO(8)	SO(7)	\checkmark	7	${f 7} = 3 \cdot ({f 1},{f 1}) + ({f 2},{f 2})$	_
SO(9)	SO(8)	\checkmark	8	$8 = 2 \cdot (2, 2)$	[67]
SO(9)	$SO(5) \times SO(4)$	*	20	$({f 5},{f 4})=({f 2},{f 2})+({f 1}+{f 3},{f 1}+{f 3})$	[34]
$[SU(3)]^2$	SU(3)		8	$8 = \mathbf{1_0} + \mathbf{2_{\pm 1/2}} + \mathbf{3_0}$	[8]
$[SO(5)]^2$	SO(5)	*	10	${f 10} = ({f 1},{f 3}) + ({f 3},{f 1}) + ({f 2},{f 2})$	[32]
$SU(4) \times U(1)$	$SU(3) \times U(1)$		7	$3_{-1/3} + \mathbf{\bar{3}}_{+1/3} + 1_{0} = 3 \cdot 1_{0} + 2_{\pm 1/2}$	[35, 41]
SU(6)	$\operatorname{Sp}(6)$	√ *	14	$14 = 2 \cdot (2, 2) + (1, 3) + 3 \cdot (1, 1)$	[30, 47]
$[SO(6)]^2$	SO(6)	√ *	15	$15 = (1, 1) + 2 \cdot (2, 2) + (3, 1) + (1, 3)$	[36]

One-loop analysis

Collaborators and I analyze the phase transition dynamics in composite Higgs model.

[KF, Nakai, Sato, Wang (2023)]

$\mathcal{G} o \mathcal{H}$	PT dynamics	Model	Order
$SO(N) \rightarrow SO(N-1)$	E. Brezin et al. (1973)	N=5 K. Agashe et al. (2005)	2'nd
	P. H. Ginsparg (1980)	N=9 E. Beltuzzo et al. (2013)	2'nd
$SO(9) \rightarrow SO(5) \times SO(4)$	This work	S. Chang (2013)	1'st
$SU(2N) (U(2N)) \to Sp(2N)$		$N=2^{\mathrm{J.Barnaldetal.}(2014)}$	$oldsymbol{v}$
	J. Wirstam (2000)	N = 3 E. Katz et al. (2005) and many works	1'st
$SU(N) (U(N)) \to SO(N)$	F. Basile et al. (2005)	N=5 N. Arkani-Hamed et al. (2005)	1'st

Summary: 1'st lecture

- Order of phase transition can be determined by computing the Landau free energy.
- A thermal field theory is a field theory on $\mathbb{R}^3 \times \mathbb{S}^1$.

- At high-temperature, S^1 direction can be integrated out and obtain three-dimensional effective theory.
- A non-perturbative fluctuation should be taken into account to determine the order of a thermal phase transition.