

# Searches for Power-law Warped Extra Dimensions

Sang Hui Im (IBS-CTPU)

SHI and Krzysztof Jodlowski, 2412.20913

7<sup>th</sup> CUBES Workshop K-Hotel, Gurye, Korea / April 26, 2025

## Outline

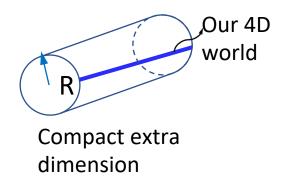
Motivations and a model for a power-law warped extra dimension

New KK graviton phenomenology

Experimental and astrophysical limits

## Extra spatial dimensions beyond 4D spacetime

- String theory (6 extra dimensions for consistency of theory)
- Flat N extra dimensions (ADD model)



N Arkani-Hamed, S Dimopoulos, G Dvali '98

$$V(r) \sim \begin{cases} \frac{1}{(M_{4+N})^{2+N}} \frac{m}{r^{1+N}}, & r \ll R\\ \frac{1}{(M_{4+N})^{2+N} R^N} \frac{m}{r}, & r \gg R \end{cases}$$

 $M_{4+N}$ : Planck scale in 4+N spacetime

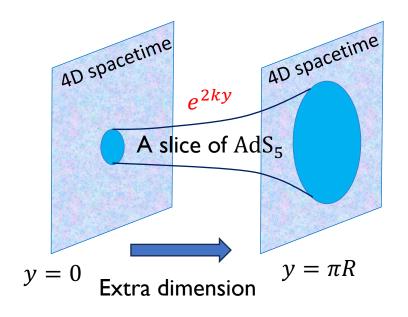
Effective 4D Planck scale 
$$M_P^2 = (M_{4+N})^{2+N} R^N$$

$$M_{4+N} = \left(\frac{M_P^2}{R^N}\right)^{1/(2+N)} \sim \text{TeV for } R \sim 10^{\frac{30}{N}-17} \text{ cm}$$

The hierarchy problem can be solved by large extra dimensions (e.g.  $\sim 0.1 \text{ mm for } N = 2$ ).

## Extra spatial dimensions beyond 4D spacetime

A warped extra dimension (RS model) L Randall, R Sundrum '99



$$ds^2 = e^{2ky}g_{\mu\nu}dx^{\mu}dx^{\nu} + dy^2$$

Effective 4D Planck scale

$$M_P^2 \simeq \frac{M_5^3}{k} e^{2k\pi R}$$

 $M_5$ : 5D Planck scale

 $k (\sim M_5)$ : AdS<sub>5</sub> curvature

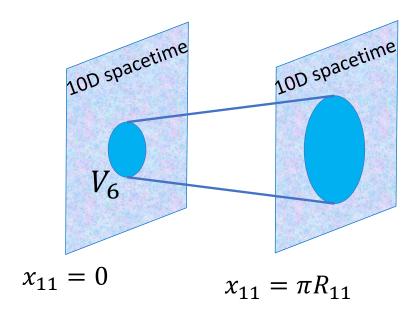
$$M_5 \sim M_P e^{-k\pi R} \sim \text{TeV}$$
 for  $R \sim 10^{-3} \text{ fm}$ 

The hierarchy problem can be solved by a small extra dimension.

## Extra dimensional models from string theory

#### 11D Heterotic M-theory

Dual theory of strongly coupled 10D heterotic string theory



Horava and Witten '96 Lukas, Ovrut, Stelle, Waldram '98 SHI, Nilles, Olechowski '19

- The I I<sup>th</sup> dimension can be parametrically larger than the other 6D extra dimensional space.
- Consequently, the theory can be described by 5D EFT after integrating out the 6D extra dimensions.
- The effective 5D metric is power-law warped due to the growing 6D extra dimensional space proportional to  $x_{11}$ .

$$ds_{5D}^2 = (ky+1)^{2q} g_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2 \qquad q = \frac{1}{6}, \frac{1}{7}, \frac{1}{10}, \dots$$

## Extra dimensional models from string theory

#### Little string theory

String theory in zero string coupling limit  $g_s \to 0$ , which may address the hierarchy problem

$$M_P^2 = \frac{1}{g_S^2} M_S^8 V_6$$
  $M_S^2$ : fundamental string scale  $V_6$ : the volume of 6D extra dimensional space

Its dual theory is given by a 7D theory with a *linear dilaton* background, whose 5D approximate theory is described by a power-law warped extra dimension.

$$ds_{5D}^{2} = (ky + 1)^{2q} g_{\mu\nu} dx^{\mu} dx^{\nu} + dy^{2} \qquad q = 1$$

"Linear dilaton model" Antoniadis, Arvanitaki, S Dimopoulos, Giveon 'I I Giudice, Kats, McCullough, Torre, Urbano 'I 7

## Phenomenology of power-law warped extra dimensions?

• Many 5D EFTs from string theory predict a power-law warped extra dimension with 0 (ADD limit)  $< q < \infty$  (RS limit)

$$ds_{5D}^{2} = (ky + 1)^{2q} g_{\mu\nu} dx^{\mu} dx^{\nu} + dy^{2}$$

- Nevertheless, its phenomenology has not been studied except q=1 (linear dilaton model; LD).
- In our work, we demonstrate that the KK gravitons from a power-law warped extra dimension with 0 < q < 1 have quite distinct collider signatures compared with ADD, RS, and LD, while addressing the hierarchy problem.

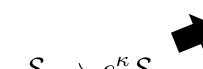
## String-inspired 5D model

$$S = \int d^5x \sqrt{-g} \, e^{S} \left( \frac{1}{2} \mathcal{R} + \frac{Z_S}{2} (\partial_M S)^2 - \Lambda \right)$$

This form of lagrangian can be generically obtained from string theory with the field S identified as the string dilaton or a Kähler modulus.

This is due to *classical scale invariance (CSI)* of EFTs from string theory.

Witten '85



 $S \rightarrow S + \kappa$   $\longrightarrow$   $S \rightarrow e^{\kappa}S$ 

Scale transformation non-linearly realized by dilaton shift symmetry

the action

$$\frac{\delta S}{\delta \Phi} = 0$$
 Classical e.o.m are invariant (i.e. CSI).



Overall scaling of the action 
$$\mathcal{A}_{\mathrm{QM}} \propto \exp\left(\frac{i}{\hbar}\mathcal{S}\right)$$
 Quantum amplitudes are

#### 5D CSI action

$$S = \int d^5x \sqrt{-g} \, e^{S} \left( \frac{1}{2} \mathcal{R} + \frac{Z_S}{2} (\partial_M S)^2 - \Lambda \right)$$

CSI: 
$$S \rightarrow S + \kappa$$



$$S \to e^{\kappa} S$$

$${\cal S} o e^{\kappa} {\cal S} \qquad {\cal A}_{
m QM} \propto \exp\left(rac{i}{\hbar}{\cal S}
ight) \quad {\sf Not\ respected\ by\ quantum\ effects}$$

Yet invariant under spurious transformation of Planck constant

$$\hbar \to e^{\kappa} \hbar$$



Selection rule for radiative corrections

$$S_{1\text{PI}} = \int d^5x \sqrt{-g} \, e^{\mathbf{S}} \left[ \frac{1}{2} \mathcal{R} + \frac{Z_S}{2} (\partial_M S)^2 - \Lambda + \sum_{n=1}^{\infty} C_n \left( \frac{\hbar}{16\pi^2} e^{-\mathbf{S}} \right)^n \right]$$

## Perturbative radiative corrections invariant under

Barring possible non-perturbative corrections and assuming

$$\begin{cases} S \to S + \kappa \\ \hbar \to e^{\kappa} \hbar \end{cases}$$

$$e^{-S} < 1$$
 (: normally true, since this serves as coupling.)

the leading action would be taken to be stable against quantum effects. Green, Schwarz, Witten

Giudice, Kats, McCullough, Torre, Urbano 17'

### Examples of UV origins

$$S = \int d^5x \sqrt{-g} e^S \left( \frac{1}{2} \mathcal{R} + \frac{Z_S}{2} (\partial_M S)^2 - \Lambda \right)$$

$$Z_S = \begin{cases} 1, & \text{String dilaton} \\ \frac{\mathcal{D}-1}{\mathcal{D}} < 1, & \mathcal{D}\text{-dim internal volume } V_{\mathcal{D}} \\ \geq \frac{23}{18}, & \text{K\"{a}hler modulus in Heterotic M-theory} \end{cases}$$

$$\Lambda = \begin{cases}
\frac{D-10}{3\alpha'}, & \text{Non-critical string} \\
\text{stack of NS5-branes,} & \text{Little String Theory (LST)} \\
\text{c.c. in higher dimension,} & \mathcal{D} + 5 \text{ dim theory} \\
\text{4-form flux,} & \text{Heterotic M-theory}
\end{cases}$$

## Background solution

$$S = \int d^5x \sqrt{-g} e^S \left( \frac{1}{2} \mathcal{R} + \frac{Z_S}{2} (\partial_M S)^2 - \Lambda \right)$$

$$S = k_s y$$

Dilaton field 
$$S=k_sy$$
 "Linear dilaton"  $k_s=\sqrt{\frac{-2Z_S\Lambda}{(4-3Z_S)(5-Z_S)}}$ 

Metric in the Einstein frame

$$ds_E^2=e^{\frac{2}{3}S}ds_J^2=e^{\frac{2}{3}k_sy}\left(e^{2py}\eta_{\mu\nu}dx^\mu dx^\nu+dy^2\right) \qquad \begin{array}{l} \text{AdS}_5 \text{ in the} \\ \text{Jordan frame} \end{array}$$
 
$$\equiv e^{2k_1y}\eta_{\mu\nu}dx^\mu dx^\nu+e^{2k_2y}dy^2$$

$$\frac{p}{k_s} = 1 - Z_S \quad \left( \Leftrightarrow \frac{k_1}{k_2} = 4 - 3Z_S \right) \quad Z_S = 1$$
: Linear Dilaton model (LD)  $Z_S \neq 1$ : "General" Linear Dilaton model (GLD)

Choi, SHI, Shin '17

## Background solution

$$ds_E^2 = e^{2k_1 y} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + e^{2k_2 y} dy^2$$

$$= (k_2 z + 1)^{2q} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^2$$

$$dz \equiv e^{k_2 y} dy$$

$$k_2 = \frac{1}{3} \sqrt{\frac{-2\Lambda}{(4-3Z_S)(5-Z_S)}}$$
  $q = \frac{k_1}{k_2} = 4-3Z_S$ 

The General Linear Dilaton model (GLD) gives rise to a power-law warped extra dimension with a power q determined by the dilaton wave function normalization.

#### Power-law warping solution to the hierarchy problem

$$ds^{2} = (kz+1)^{2q} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^{2} \qquad z \in [0, L]$$

Effective 4D Planck scale

$$M_P^2 \sim M_5^3 (kL)^{2q} L$$
 power-law warping size of the extra dimension

For  $k \sim M_5$ 

$$M_5 \sim \left(\frac{M_P^2}{L^{1+2q}}\right)^{1/(3+2q)} \sim \text{TeV for } L \sim 10^{\frac{30}{1+2q}-17} \text{ cm}$$

The hierarchy problem can be solved by an intermediate size of the extra dimension (e.g.  $\sim 1$  nm for q=1).

## KK graviton spectrum and couplings

$$ds^{2} = (kz+1)^{2q} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^{2} \qquad \Delta \mathcal{L}_{int} = c_{n} h_{\mu\nu}^{(n)} T_{SM}^{\mu\nu}$$

$$q>1$$
  $m_n\sim nk, \quad c_n\sim rac{1}{M_5}$   $n=1,2,3,\cdots$  RS-like  $q=1$   $m_n\sim k\sqrt{1+\left(rac{n\pi}{\ln(M_P/M_5)}
ight)^2}, \quad c_n\sim rac{1}{M_5}$ 

$$q < 1 \qquad m_n \sim nk \left(\frac{M_5}{M_P}\right)^{\frac{2(1-q)}{1+2q}}, \quad c_n \sim \frac{1}{M_P} n^{\frac{3q}{2(1-q)}} \qquad \begin{array}{l} \text{Similar to ADD with } N = \frac{1+2q}{1-q} \\ \text{but having larger couplings} \end{array}$$

$$\begin{array}{ll} \text{ADD with} \\ \textit{N extra dimensions} \end{array} \quad m_{n_1...n_N} \sim \sqrt{n_1^2 + \dots + n_N^2} \, M_{4+N} \left(\frac{M_{4+N}}{M_P}\right)^{2/N}, \quad c_{n_1...n_N} = \frac{1}{M_P} \end{array}$$

#### Characteristic features of KK graviton phenomenology

$$ds^{2} = (kz+1)^{2q} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^{2}$$

RS-like scenarios  $(q \ge 1)$ : heavy KK gravitons with sizable couplings (determined by  $M_5 > \text{TeV}$ )



Visible KK gravitons at colliders (i.e. short-lived)

ADD model: light & heavy KK gravitons with the small coupling  $1/M_P$ 



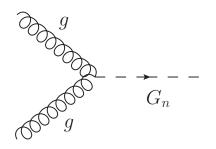
Invisible KK gravitons at colliders (i.e. long-lived), strong astrophysical limits

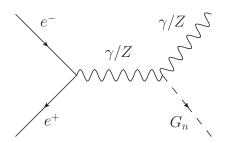
Scenarios with 0 < q < 1: light & heavy KK gravitons with couplings growing with KK graviton mass

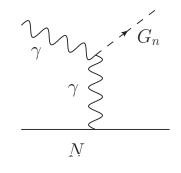


Visible KK gravitons with a small mass gap at colliders, strong or moderate astrophysical limits

## KK gravitons in colliders and astrophysical sources







Hadron colliders (LHC)

Lepton colliders (LEP, FCC-ee, CLIC)

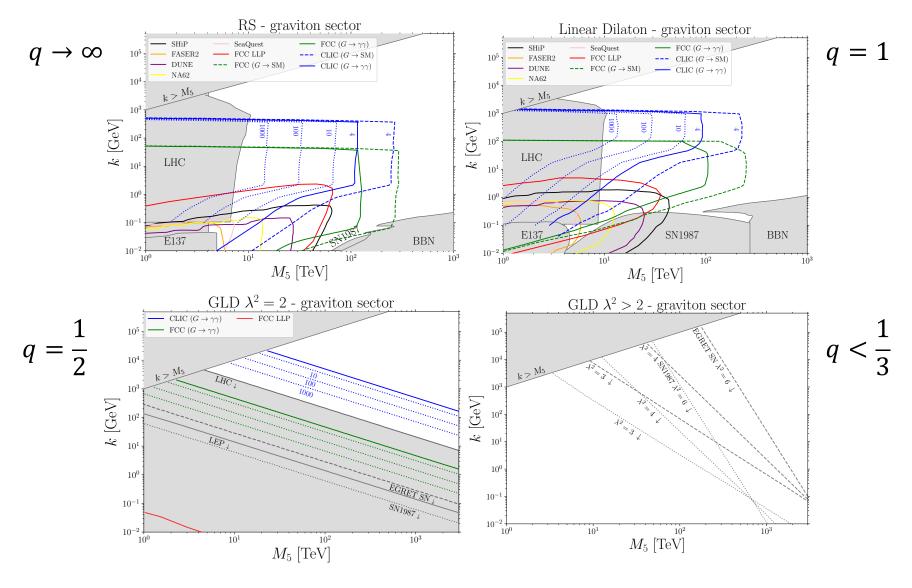
Proton beam dumps (SHiP, NA62, DUNE, ...)

$$R$$
 $N$ 
 $\pi$ 
 $N$ 
 $N$ 

or long-lived

Neutron stars and Supernovae

Decay channels



Future colliders such as CLIC can search for a power-law warped extra dimension by signatures from densely packed visible KK gravitons.

## Conclusions

- Power-law warped extra dimensions are common in string theory, realized by a dilaton field propagating in extra dimensions and the *classical scale invariance*.
- Their phenomenology has never been seriously studied so far except the power q=1 (LD model).
- A power-law warped extra dimension can address the hierarchy problem with an intermediate size of the extra dimension (~ nm).
- The associated KK graviton spectrum and couplings show a distinctive pattern compared with the conventional models such as ADD, RS, and LD.
- Future colliders can test a power-law warped extra dimension by visible KK graviton signatures with a very small mass gap.