WIMP-FIMP option and neutrino masses via a novel anomaly-free B-L symmetry

Sarif Khan

Chung-Ang University, Seoul

Based On: 2503.02635

In Collaboration with: Hyun Min Lee

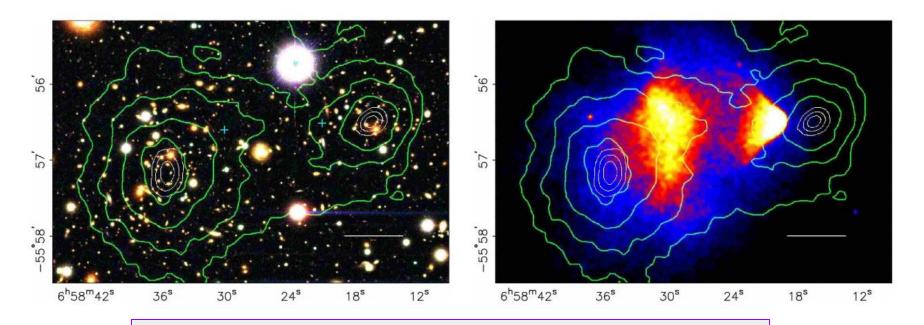
7th Mini-Workshop on
"CHIRALITY IN THE UNIVERSE BEYOND
THE ELECTROWEAK SCALE"

25th April - 28th April 2025 The K-Hotel, Sandong, Gurye

Tentative Plan

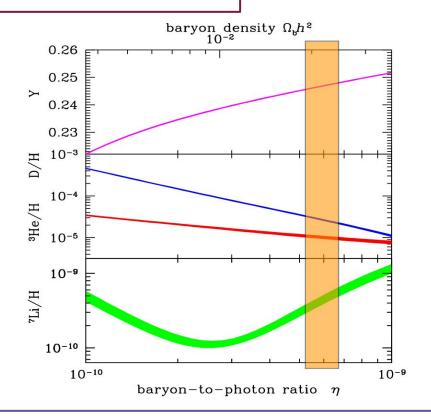
- Motivation for Dark Matter Study
- Dark matter status in direct detection
- Model Description
- Constraints
- Results
- Conclusion

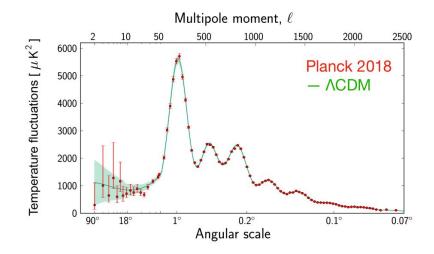
Bullet cluster 1E0657-558



- Bullet cluster is a recent merging of galaxy clusters.
- ➤ The gravitational potential is not produced by baryons, but by DM.
- ➤ Hot gas is collisional and loses energy, so lags behind DM.
- DM clusters are collisionless and passed through each other

BBN and **CMB**

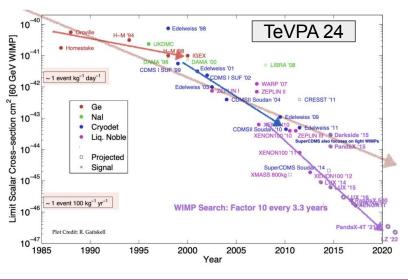


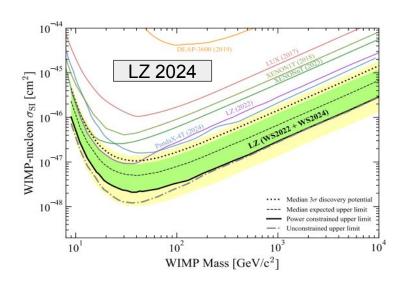


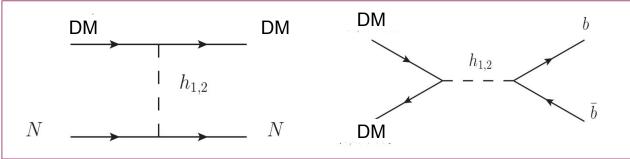
Parameter	Plik best fit	Plik[1]	CamSpec [2]	$([2] - [1])/\sigma_1$	Combined	
$\Omega_b h^2 \dots$	0.022383	0.02237 ± 0.00015	0.02229 ± 0.00015	-0.5	0.02233 ± 0.00015	
$\Omega_{\rm c}h^2$	0.12011	0.1200 ± 0.0012	0.1197 ± 0.0012	-0.3	0.1198 ± 0.0012	
$100\theta_{MC}$	1.040909	1.04092 ± 0.00031	1.04087 ± 0.00031	-0.2	1.04089 ± 0.00031	
τ	0.0543	0.0544 ± 0.0073	$0.0536^{+0.0069}_{-0.0077}$	-0.1	0.0540 ± 0.0074	
$ln(10^{10}A_s)$	3.0448	3.044 ± 0.014	3.041 ± 0.015	-0.3	3.043 ± 0.014	
$n_{\rm s}$	0.96605	0.9649 ± 0.0042	0.9656 ± 0.0042	+0.2	0.9652 ± 0.0042	
$\Omega_{\rm m}h^2$	0.14314	0.1430 ± 0.0011	0.1426 ± 0.0011	-0.3	0.1428 ± 0.0011	
H_0 [km s ⁻¹ Mpc ⁻¹]	67.32	67.36 ± 0.54	67.39 ± 0.54	+0.1	67.37 ± 0.54	
$\Omega_{\rm m}$	0.3158	0.3153 ± 0.0073	0.3142 ± 0.0074	-0.2	0.3147 ± 0.0074	
Age [Gyr]	13.7971	13.797 ± 0.023	13.805 ± 0.023	+0.4	13.801 ± 0.024	
$\sigma_8 \dots \dots$	0.8120	0.8111 ± 0.0060	0.8091 ± 0.0060	-0.3	0.8101 ± 0.0061	
$S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5}$	0.8331	0.832 ± 0.013	0.828 ± 0.013	-0.3	0.830 ± 0.013	
Z _{re}	7.68	7.67 ± 0.73	7.61 ± 0.75	-0.1	7.64 ± 0.74	
$100\theta_*$	1.041085	1.04110 ± 0.00031	1.04106 ± 0.00031	-0.1	1.04108 ± 0.00031	
$r_{\rm drag}$ [Mpc]	147.049	147.09 ± 0.26	147.26 ± 0.28	+0.6	147.18 ± 0.29	

LSS suggests without DM, density perturbations would start to grow only after recombination, so today there would not be structures.

Direct Detection in Present time







Standard Scenario is Tightly Constrained

Alternative Mechanisms ???

Particle Content & SSB

Gauge	Ex	tra f	ermi	Extra scalars		
Group	ξ_{1L}	ξ_{2L}	χ_{1L}	χ_{2L}	ϕ_1	ϕ_2
$\mathrm{SU(2)_L}$	1	1	1	1	1	1
$U(1)_{Y}$	0	0	0	0	0	0
$U(1)_{B-L}$	a	\boldsymbol{b}	c	c	n	2n

Gauge Anomaly Conditions

$$\begin{split} [U(1)_{B-L}]^3 &\to a^3+b^3-2c^3=3\,,\\ [\text{Gravity}]^2 \times U(1)_{B-L} &\to a+b-2c=3\,,\\ \text{Yukawa terms} &\to a-c=2n \text{ and } b-c=n\,. \end{split}$$

Usual Type-I

$$(a,b,c,n) = (1,0,-1,1) \ \ {\rm and} \ \ \left(\frac{4}{3},\frac{1}{3},-\frac{2}{3},1\right)$$
 . Will be used

$$\mathcal{V}(\phi_{h}, \phi_{1}, \phi_{2}) = -\mu_{h}^{2} \left(\phi_{h}^{\dagger} \phi_{h}\right) + \lambda_{h} \left(\phi_{h}^{\dagger} \phi_{h}\right)^{2} - \mu_{1}^{2} \left(\phi_{1}^{\dagger} \phi_{1}\right) + \lambda_{1} \left(\phi_{1}^{\dagger} \phi_{1}\right)^{2} - \mu_{2}^{2} \left(\phi_{2}^{\dagger} \phi_{2}\right)$$

$$+ \lambda_{2} \left(\phi_{2}^{\dagger} \phi_{2}\right)^{2} + \lambda_{h1} \left(\phi_{h}^{\dagger} \phi_{h}\right) \left(\phi_{1}^{\dagger} \phi_{1}\right) + \lambda_{h2} \left(\phi_{h}^{\dagger} \phi_{h}\right) \left(\phi_{2}^{\dagger} \phi_{2}\right)$$

$$+ \lambda_{12} \left(\phi_{1}^{\dagger} \phi_{1}\right) \left(\phi_{2}^{\dagger} \phi_{2}\right) + \mu \left(\phi_{2} \phi_{1}^{\dagger 2} + \phi_{2}^{\dagger} \phi_{1}^{2}\right)$$

$$M_{scalar}^{2} = \begin{pmatrix} 2\lambda_{h}v_{h}^{2} & \lambda_{h1}v_{h}v_{1} & \lambda_{h2}v_{h}v_{2} \\ \lambda_{h1}v_{h}v_{1} & 2\lambda_{1}v_{1}^{2} & v_{1}\left(\sqrt{2}\mu + \lambda_{12}v_{2}\right) \\ \lambda_{h2}v_{h}v_{2} & v_{1}\left(\sqrt{2}\mu + \lambda_{12}v_{2}\right) & \left(-\frac{\mu v_{1}^{2}}{\sqrt{2}v_{2}} + 2\lambda_{2}v_{2}^{2}\right) \end{pmatrix}.$$

During SSB

$$\phi_h = \begin{pmatrix} G^+ \\ \frac{v+h+iG^0}{\sqrt{2}} \end{pmatrix}, \quad \phi_1 = \frac{v_1 + H_1 + iA_1}{\sqrt{2}}, \quad \phi_2 = \frac{v_2 + H_2 + iA_2}{\sqrt{2}}.$$

$$M_{CP-odd}^{2} = \begin{pmatrix} -2\sqrt{2}\mu v_{2} & \sqrt{2}\mu v_{1} \\ \sqrt{2}\mu v_{1} & -\frac{\mu v_{1}}{\sqrt{2}v_{2}} \end{pmatrix}.$$

Fermionic Dark Matter

$$\mathcal{L}_{BL}^{Kin} = \sum_{\substack{X = \xi_{1L}, \xi_{2L}, \xi_{1R}, \chi_{2R} \\ +\beta_2 \bar{\xi}_{1L} \chi_{2R} \phi_2 + h.c.}} \bar{X} i \not D X + \alpha_1 \bar{\xi}_{1L} \chi_{1R} \phi_2 + \alpha_2 \bar{\xi}_{2L} \chi_{2R} \phi_1 + \beta_1 \bar{\xi}_{2L} \chi_{1R} \phi_1$$

$$\tan \theta_R = \frac{M_1 v_2 \beta_2 + M_2 v_1 \beta_1}{M_2 v_1 \alpha_2 - M_1 v_2 \alpha_1},$$

$$\tan \theta_L = \frac{M_1}{M_2} \frac{\alpha_1 \tan \theta_R + \beta_1}{\alpha_1 - \beta_2 \tan \theta_R}.$$

$$\mathcal{L}_{\xi\chi} = \left(\bar{\xi}_{1L} \ \bar{\xi}_{2L}\right) \begin{pmatrix} \frac{\alpha_1 v_2}{\sqrt{2}} & \frac{\beta_2 v_2}{\sqrt{2}} \\ \frac{\beta_1 v_1}{\sqrt{2}} & \frac{\alpha_2 v_1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \chi_{1R} \\ \chi_{2R} \end{pmatrix} + h.c.$$

$$\mathcal{L}_{\psi}^{Yuk} = \sum_{i=1,2,3} \alpha_{11i} \bar{\psi}_{1L} \psi_{1R} h_i + \sum_{i=1,2,3} \alpha_{12i} \bar{\psi}_{1L} \psi_{2R} h_i + \sum_{i=1,2,3} \alpha_{21i} \bar{\psi}_{2L} \psi_{1R} h_i$$

$$+ \sum_{i=1,2,3} \alpha_{22i} \bar{\psi}_{2L} \psi_{2R} h_i + i \alpha_{11A} \bar{\psi}_{1L} \psi_{1R} A + i \alpha_{12A} \bar{\psi}_{1L} \psi_{2R} A + i \alpha_{21A} \bar{\psi}_{2L} \psi_{1R} A$$

$$+ i \alpha_{22A} \bar{\psi}_{2L} \psi_{2R} A + h.c. .$$

$$\alpha_{11i} = \frac{M_1}{\sqrt{2}v_1v_2} [U_{3i}v_1 + U_{2i}v_2 + (U_{3i}v_1 - U_{2i}v_2)\cos 2\theta_L] ,$$

$$\alpha_{12i} = \frac{\sqrt{2}M_2}{v_1v_2} [(U_{3i}v_1 - U_{2i}v_2)\cos \theta_L \sin \theta_L] ,$$

$$\alpha_{21i} = \frac{\sqrt{2}M_1}{v_1v_2} [(U_{3i}v_1 - U_{2i}v_2)\cos \theta_L \sin \theta_L] ,$$

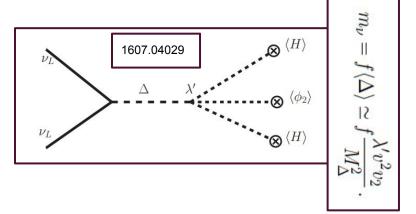
$$\alpha_{22i} = \frac{M_2}{\sqrt{2}v_1v_2} [U_{3i}v_1 + U_{2i}v_2 + (-U_{3i}v_1 + U_{2i}v_2)\cos 2\theta_L] .$$

$$\mathcal{L}_{\psi Z_{BL}} = -\frac{g_{BL}}{3} \left[\bar{\psi}_1 \gamma^{\mu} \left((3\cos^2 \theta_L + 1) P_L - 2P_R \right) \psi_1 + \bar{\psi}_2 \gamma^{\mu} \left((3\sin^2 \theta_L + 1) P_L - 2P_R \right) \psi_2 \right.$$

$$\left. + \left. \bar{\psi}_1 \gamma^{\mu} (2\sin^2 \theta_L) P_L \psi_2 + \bar{\psi}_2 \gamma^{\mu} (2\sin^2 \theta_L) P_L \psi_1 \right] Z_{BL\mu} \,. \tag{1}$$

Neutrino Mass

$$\mathcal{L}_{Neutrino} = \kappa_{ij} \frac{(L_i \phi_h) (L_j \phi_h)}{\Lambda} \frac{\phi_1^2}{\Lambda^2} + \kappa'_{ij} \frac{(L_i \phi_h) (L_j \phi_h)}{\Lambda} \frac{\phi_2}{\Lambda} + h.c..$$



With additional gauge symmetry and scalar

1805.00568

$$L_{ISS} = \sum_{\alpha,\beta=\alpha,\nu,\tau} m_D^{\alpha\beta} \overline{\nu}_{\alpha} N_{\beta} + \overline{N_{\alpha}^c} M_N^{\alpha\beta} N_{\beta}' + \overline{N_{\alpha}'^c} \mu^{\alpha\beta} N_{\beta}' + h.c.$$

$$\mathcal{L}_{N} = y_{e1}\bar{L}_{e}\tilde{\phi}_{h}N_{1}\frac{\phi_{2}}{\Lambda} + y_{e2}\bar{L}_{e}\tilde{\phi}_{h}N_{2} + y_{e3}\bar{L}_{e}\tilde{\phi}_{h}N_{3}\frac{\phi_{1}}{\Lambda} + y_{\mu1}\bar{L}_{\mu}\tilde{\phi}_{h}N_{1}\frac{\phi_{2}}{\Lambda} + y_{\mu2}\bar{L}_{\mu}\tilde{\phi}_{h}N_{2}$$

$$+ y_{\mu3}\bar{L}_{\mu}\tilde{\phi}_{h}N_{3}\frac{\phi_{1}}{\Lambda} + y_{\tau1}\bar{L}_{\tau}\tilde{\phi}_{h}N_{1}\frac{\phi_{2}}{\Lambda} + y_{\tau2}\bar{L}_{\tau}\tilde{\phi}_{h}N_{2} + y_{\tau3}\bar{L}_{\tau}\tilde{\phi}_{h}N_{3}\frac{\phi_{1}}{\Lambda} + Y_{11}N_{1}N_{1}\phi_{2}$$

$$+ Y_{12}N_{1}N_{2}\phi_{2} + Y_{13}N_{1}N_{3}\phi_{2} + Y_{22}N_{2}N_{2}\phi_{2} + Y_{23}N_{2}N_{3}\phi_{1} + M_{33}N_{3}N_{3} + h.c..$$

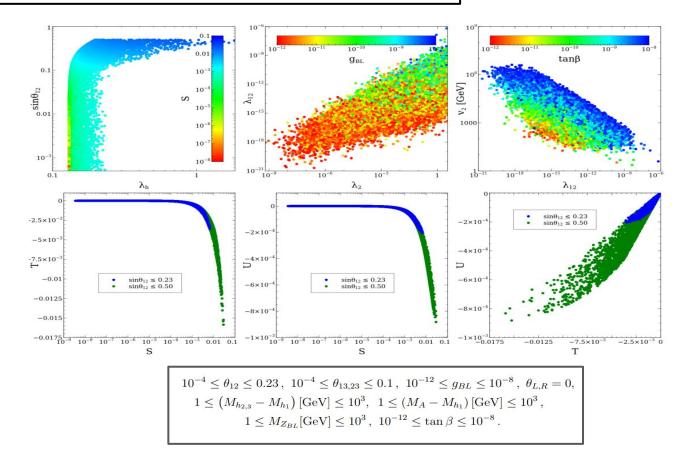
$$\mathcal{L}_{N-mass} = \begin{pmatrix} \bar{\nu}_{L\,i}^c & \bar{N}_i \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_{L\,i} \\ N_i^c \end{pmatrix} + h.c.$$

 $m_{\nu} \simeq -m_D^T M_R^{-1} m_D \,, \quad M_N \simeq M_R$

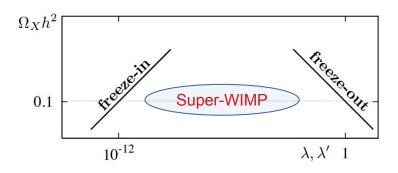
Constraints

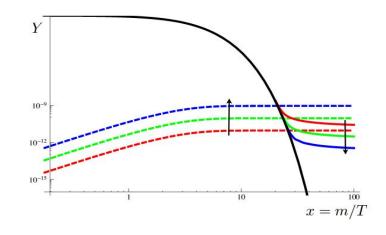
- → Checked gauge anomaly condition -> To keep the symmetry
- → Perturbativity Bound -> We can ignore higher order terms
- → Potential Bound from Below -> To make potential bounded for high field value
- → Direct Detection Bound -> Severe bound from LUX-ZEPLIN
- → Indirect Detection Bound -> Naturally small in present work
- → Collider Bound mainly SM Higgs -> Higgs signal strength and Invisible decay
- → BBN bound -> Decay before BBN time
- → Oblique parameters -> safe for the allowed mixing angle after Higgs data

Allowed range (w/o using DM bound)



DM Production Mechanisms





- WIMP DM is easy to detect but no signal puts bound on its parameter space.
- FIMP DM is difficult to probe in different experiments due to its feeble interaction.
- In this work, we focus on production via freeze-in at low reheating.

- In the present work we have FIMP DM at the strong coupling.
- The relic density at strong coupling makes FIMP DM detectable.

Boltzmann Equations

Bath Particles

$$SM, \psi_1, h_i, A$$

Non-thermal Particles

$$\psi_2, Z_{BL}$$

$$\hat{L}f_{Z_{BL}} = \sum_{i=1,2,3} C^{h_i \to Z_{BL} Z_{BL}} + \sum_{B,C=A,h_i} C^{B \to Z_{BL} C} + C^{Z_{BL} \to All}$$

$$\hat{L} = zH \left(1 + \frac{Tg'_s}{3g_s}\right) \frac{\partial}{\partial z}$$

$$\frac{dY_{\psi_1}}{dz} = -\frac{S(z_{\psi_1})\langle \sigma v \rangle_{\psi_1 \psi_1}}{z_{\psi_1} H(z_{\psi_1})} \left(Y_{\psi_1}^2 - Y_{\psi_1}^{eq^2}\right)$$

$$- \sum_{A=h_i,Z_{BL}} \theta(M_{\psi_1} - M_{\psi_2} - M_A) \frac{M_{pl} z \sqrt{g_{eff}}}{0.33 M_{sc}^2 g_{*,s}(z)} \left(\langle \Gamma_{\psi_1 \to \psi_2 A} \rangle \left(Y_{\psi_1}^{eq} - Y_{\psi_2} Y_A\right)\right)$$

$$\frac{dY_{Z_{BL}}}{dz} = \sum_{B=h_i} \theta(M_B - 2M_{Z_{BL}}) \frac{2M_{pl} z \sqrt{g_{eff}}}{0.33 M_{sc}^2 g_{*,s}(z)} \langle \Gamma_{B \to Z_{BL}} Z_{BL} \rangle \left(Y_B^{eq} - Y_{Z_{BL}}^2\right) \Big]$$

$$+ \sum_{B,C=h_i,A,\psi_1} \theta(M_B - M_C - M_{Z_{BL}}) \frac{M_{pl} z \sqrt{g_{eff}}}{0.33 M_{sc}^2 g_{*,s}(z)} \left(\langle \Gamma_{B \to CZ_{BL}} \rangle \left(Y_B^{eq} - Y_C Y_{Z_{BL}}\right)\right)$$

$$- \sum_{C=All} \theta(M_{Z_{BL}} - 2M_C) \frac{M_{pl} z \sqrt{g_{eff}}}{0.33 M_{sc}^2 g_{*,s}(z)} \langle \Gamma_{Z_{BL} \to CC} \rangle_{NTH} \left(Y_{Z_{BL}} - Y_C^2\right) \Big]$$

$$\frac{dY_{\psi_2}}{dz} = \sum_{B=h_i} \theta(M_B - 2M_{\psi_2}) \frac{2M_{pl} z \sqrt{g_{eff}}}{0.33 M_{sc}^2 g_{*,s}(z)} \langle \Gamma_{B \to \psi_2 \psi_2} \rangle \left(Y_B^{eq} - Y_{\psi_2}^2\right) \Big]$$

$$+ \theta(M_{Z_{BL}} - 2M_{\psi_2}) \frac{2M_{pl} z \sqrt{g_{eff}}}{0.33 M_{sc}^2 g_{*,s}(z)} \langle \Gamma_{Z_{BL} \to \psi_2 \psi_2} \rangle_{NTH} \left(Y_{Z_{BL}} - Y_{\psi_2}^2\right) \Big]$$

$$+ \sum_{A=h_i,Z_{BL}} \theta(M_{\psi_1} - M_{\psi_2} - M_A) \frac{M_{pl} z \sqrt{g_{eff}}}{0.33 M_{sc}^2 g_{*,s}(z)} \left(\langle \Gamma_{\psi_1 \to \psi_2 A} \rangle \left(Y_{\psi_1}^{eq} - Y_{\psi_2} Y_A\right)\right) (28)$$

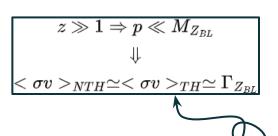
$$\langle \Gamma_{X \to BC} \rangle = \Gamma_{X \to BC} \frac{K_1(z_X)}{K_2(z_X)}, \ \langle \Gamma_{Z_{BL} \to BC} \rangle = M_{Z_{BL}} \Gamma_{Z_{BL} \to BC} \frac{\int \frac{f_{Z_{BL}} d^3p}{\sqrt{p^2 + M_{Z_{BL}}}}}{\int f_{Z_{BL}} d^3p}$$

Equilibrium vs Nonequilibrium DM distribution

$$\hat{L}f_{Z_{BL}} = \sum_{i=1,2,2} C^{h_i \to Z_{BL} Z_{BL}} + \sum_{B,C,A,L} C^{B \to Z_{BL} C} + C^{Z_{BL} \to All}$$

where the Lioville's operator, \hat{L} , can be expressed as,

$$\hat{L} = zH\left(1 + \frac{Tg_s'}{3a_s}\right)\frac{\partial}{\partial z}.$$



$$\mathcal{C}^{X \to Z_{BL}Y} = \frac{z}{16\pi M_{sc}} \frac{\mathcal{B}^{-1}(z)}{\xi_p \sqrt{\xi_p^2 \mathcal{B}(z)^2 + \left(\frac{M_{Z_{BL}}z}{M_{sc}}\right)^2}} \frac{|M|_{X \to Z_{BL}Y}^2}{g_{Z_{BL}}} \times \left(e^{-\sqrt{\left(\xi_k^{\min}\right)^2 \mathcal{B}(z)^2 + \left(\frac{M_{h_2}z}{M_{sc}}\right)^2} - e^{-\sqrt{\left(\xi_k^{\max}\right)^2 \mathcal{B}(z)^2 + \left(\frac{M_{h_2}z}{M_{sc}}\right)^2}}\right).$$

$$\xi_{k}^{\min}(\xi_{p}, z) = \frac{M_{sc}}{2 \mathcal{B}(z) z M_{Z_{BL}}} \left| \eta(\xi_{p}, z) - \frac{\mathcal{B}(z) \times M_{h_{2}}^{2}}{M_{Z_{BL}} \times M_{sc}} \xi_{p} z \right| ,$$

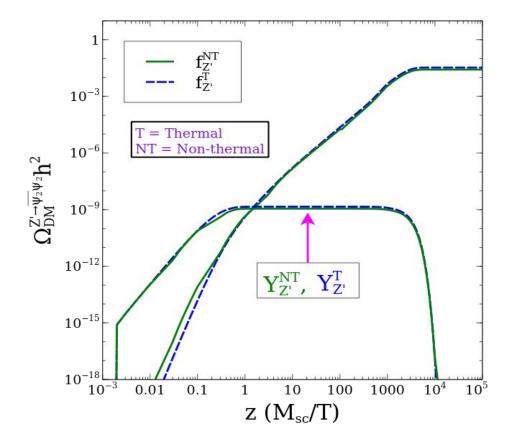
$$\xi_{k}^{\max}(\xi_{p}, z) = \frac{M_{sc}}{2 \mathcal{B}(z) z M_{Z_{BL}}} \left(\eta(\xi_{p}, z) + \frac{\mathcal{B}(z) \times M_{h_{2}}^{2}}{M_{Z_{BL}} \times M_{sc}} \xi_{p} z \right) ,$$

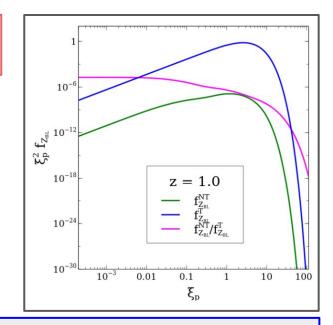
$$\eta(\xi_{p}, z) = \left(\frac{M_{h_{2}} z}{M_{sc}} \right) \sqrt{\left[\left(\frac{M_{X}}{M_{Z_{BL}}} + 1 \right)^{2} - \left(\frac{M_{Y}}{M_{Z_{BL}}} \right)^{2} \right] \left[\left(1 - \frac{M_{Z_{BL}}}{M_{X}} \right)^{2} - \left(\frac{M_{Z_{BL}}}{M_{X}} \right)^{2} \right]}$$

$$\times \sqrt{\xi_{p}^{2} \mathcal{B}(z)^{2} + \left(\frac{M_{Z_{BL}} z}{M_{sc}} \right)^{2}} .$$
(52)

$$\langle \Gamma_{X \to BC} \rangle = \Gamma_{X \to BC} \frac{K_1(z_X)}{K_2(z_X)}, \ \langle \Gamma_{Z_{BL} \to BC} \rangle_{NTH} = M_{Z_{BL}} \Gamma_{Z_{BL} \to BC} \frac{\int \frac{f_{Z_{BL}} d^3 p}{\sqrt{p^2 + M_{Z_{BL}}^2}}}{\int f_{Z_{BL}} d^3 p}.$$

Thermal and Non-thermal Distribution





- Thermal and Non-thermal distribution produce same amount of DM
- Non-thermal distribution code runs very longer, so it is enough to consider the thermal distribution and proceed.

Analytical estimate and range

$$\Omega_{P_{DM}} h^2 \simeq rac{1.09 \times 10^{27}}{g_{
ho}^{3/2}} rac{M_{P_{DM}} \Gamma_X}{M_X^2}$$

 $0.1116 \le (\Omega_{\psi_1} + \Omega_{\psi_2}) h^2 \le 0.1284.$

$$\Omega_{Z_{BL}} h^{2} \simeq \sum_{X=h_{1,2,3}} \frac{2.18 \times 10^{27}}{g_{\rho}^{3/2}} \frac{M_{Z_{BL}} \Gamma_{X \to Z_{BL}} Z_{BL}}{M_{X}^{2}} + \sum_{X,Q=h_{1,2,3},A} \frac{1.09 \times 10^{27}}{g_{\rho}^{3/2}} \frac{M_{Z_{BL}} \Gamma_{X \to Z_{BL}} Q}{M_{X}^{2}}
\Omega_{\psi_{2}} h^{2} \simeq \sum_{X=h_{1,2,3},A} \frac{2.18 \times 10^{27}}{g_{\rho}^{3/2}} \frac{M_{\psi_{2}} \Gamma_{X \to \psi_{2} \psi_{2}}}{M_{X}^{2}} + 2 Br(Z_{BL} \to \psi_{2} \psi_{2}) \frac{M_{\psi_{2}}}{M_{Z_{BL}}} \left(\Omega_{Z_{BL}} h^{2}\right) .$$
(44)

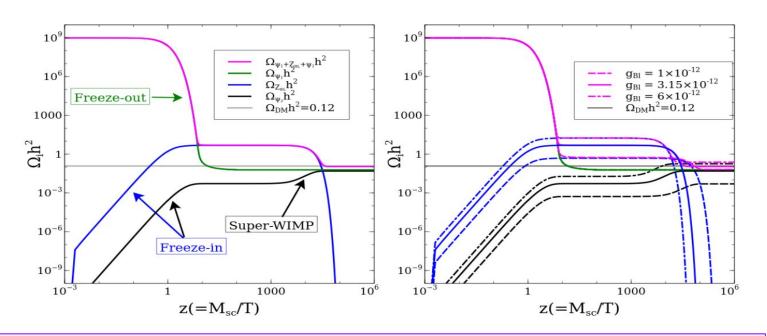
$$10^{-4} \le \theta_{ij} \ (i, j = 1, 2, 3) \le 10^{-1} \ , 1 \le \left(M_{h_{2,3}} - M_{h_1} \right) \ [\text{GeV}] \le 10^3 \ , 10^{-12} \le g_{BL} \le 10^{-8} \ ,$$

$$1 \le M_{Z_{BL}} \ [\text{GeV}] \le 10^3 \ , 1 \le \left(M_A - \left(M_{Z_{BL}} + M_{h_1} \right) \right) \ [\text{GeV}] \le 10^3 \ , 10^{-12} \le \tan \beta \le 10^{-6} \ ,$$

$$1 \le M_{\psi_1} \ [\text{GeV}] \le 10^3 \ , 1 \le M_{\psi_2} \ [\text{GeV}] \le 10^3 \ , \theta_L = 0 \ .$$
(4)

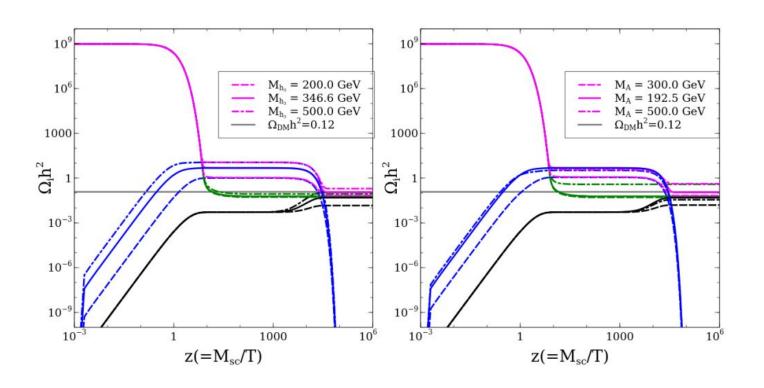
1807.06209

DM Production Mechanisms

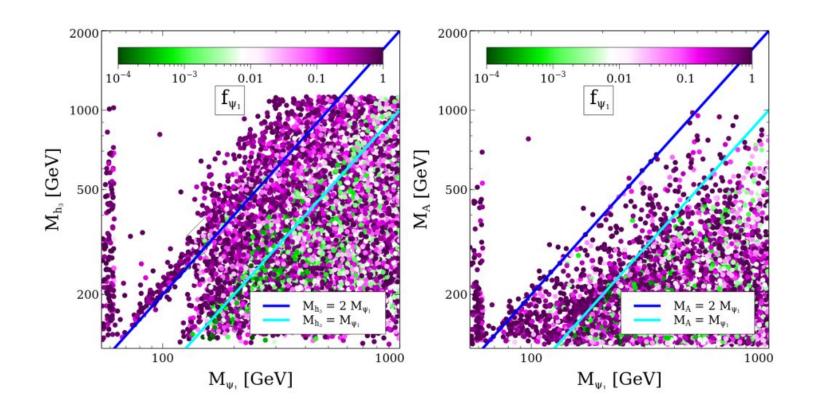


- ➤ LP shows the WIMP and FIMP DM productions by different mechanisms
- > RP shows the dependence of DM relic density with the change of the gauge coupling

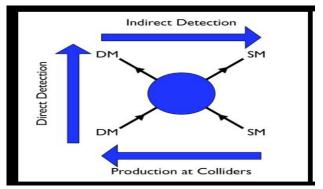
DM Variation with M_h2 and M_A

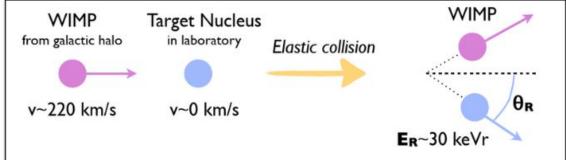


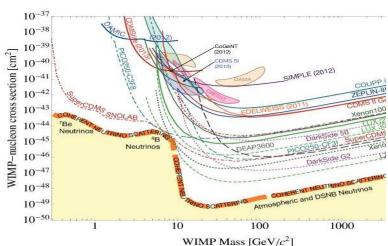
Variation in DM mass and Higgs mass

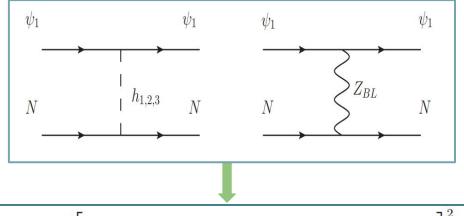


Direct Detection



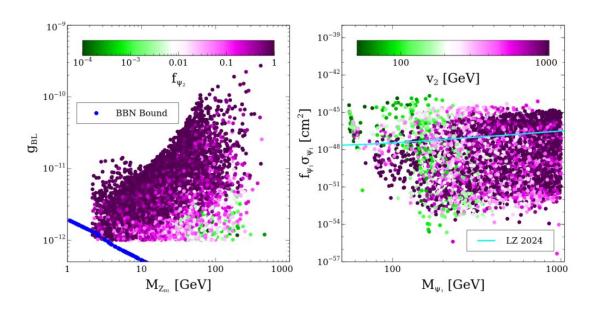






$$\sigma_{\psi_1} = \frac{\mu^2}{\pi} \left[\frac{f_N M_N}{v} \sum_{i=1,2,3} \frac{U_{1i} \alpha_{11i}}{M_{h_i}^2} + \frac{f_{Z_{BL}} g_{BL}^2 \left(3\cos^2\theta_L - 1 \right)}{18 M_{Z_{BL}}^2} \right]^2$$

Direct Detection Prospects



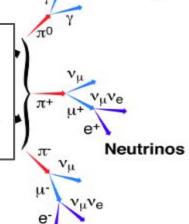
- A. LP: Variation in the M_ZBL g_BL plane, some part is close to the BBN time.
- B. RP: We see variation in the M_DM sigma_SI plane, some part has been explored by LZ.

CTA consorbum, 2011

 $h_{1,2,3}$

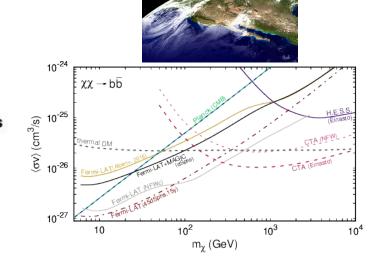
Indirect Detection

Gamma-rays



a few p/p, d/d

Anti-matter



$$(\sigma v)_{kk} \simeq \frac{n_c v_{rel}^2 M_b^2 M_{\psi_1}^2 \left(1 - \frac{M_b^2}{M_{\psi_1}^4}\right)^{3/2}}{8\pi v^2} \sum_{i,j=1,2,3} A_i A_j^*, \text{ for } k - b,$$

$$\simeq \frac{v_{rel}^2 M_W^4 \sqrt{1 - \frac{M_W^2}{M_{\psi_1}^2}}}{16\pi v^2} \left(3 - \frac{4M_{\psi_1}^2}{M_{\psi_1}^2} + \frac{4M_{\psi_1}^4}{M_{\psi_1}^4}\right) \sum_{i,j=1,2,3} A_i A_j^*,$$

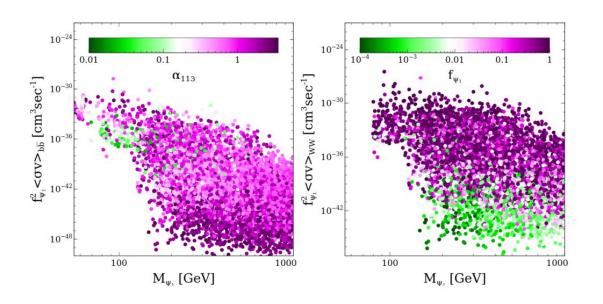
 $<\sigma v>\propto (s-4M_{DM}^2)$

 $<\sigma v> \Rightarrow s
ightarrow 4 M_{DM}^2 + M_{DM}^2 v_{rel}^2 \propto M_{DM}^2 v_{rel}^2$

 $h_{1.2.3}$

$$A_i = \frac{\alpha_{11i} U_{1i}}{\left(4M_{\psi_1}^2 - M_{h_i}^2\right) + i\Gamma_{h_i} M_{h_i}}.$$

Indirect Detection Prospects



- A. LP:DM mass vs cross section for the bb channel which ic below the thermal CS for velocity suppress.
- B. RP: We have shown the variation for the WW chanel.

Conclusion

- ★ We have studied fermionic dark matter produced from the freeze-out and super WIMP.
- ★ Some part of the region has been explored in the direct detection experiments
- ★ For fermionic DM, we have indirect detection which is suppressed by velocity
- ★ At collider we can expect similar search as WIMP type DM
- ★ We have shown for delayed decay it is not necessary to determine the distribution function which is cumbersome.
- ★ By changing the mass ordering we can easily accommodate FIMP type DM with less detection prospects.

Thank you for listening