

String Bundles in Multi-Axion Models and the QCD Axion Domain-Wall Problem

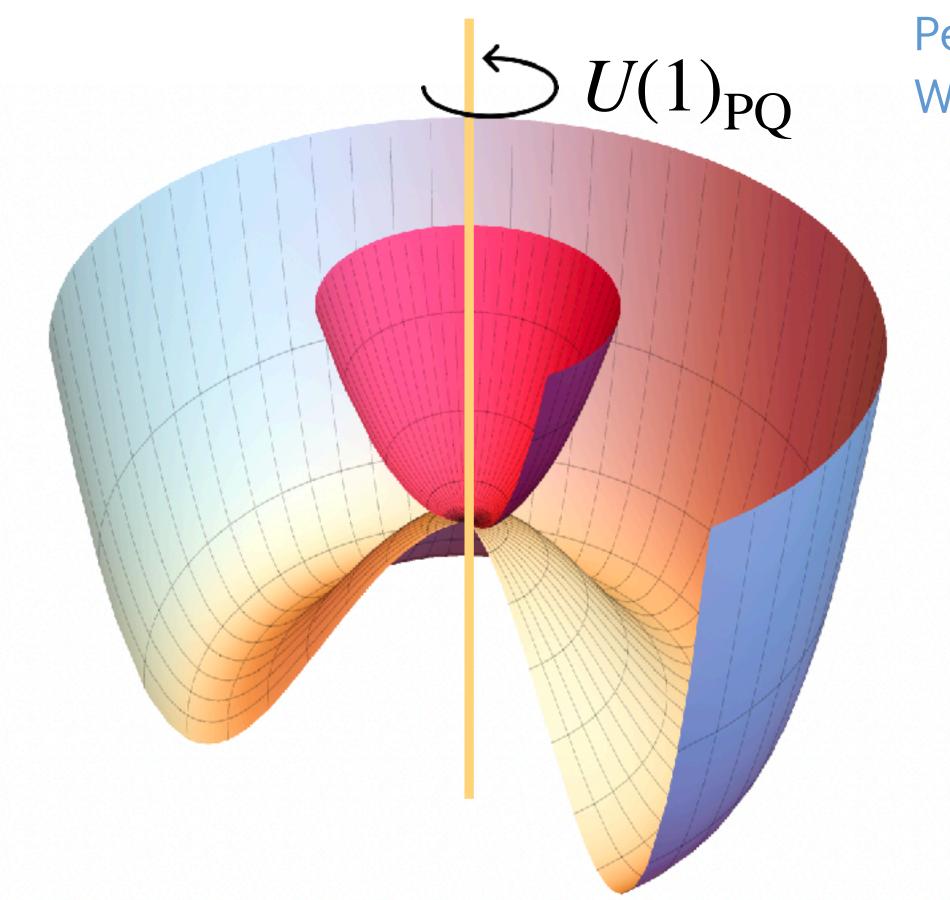
October 27, 2025

@IBS Conference on Dark World 2025

Fumi Takahashi (Tohoku University)

OCD axion

The QCD axion is a pseudo Nambu-Goldstone boson associated with SSB of U(1) Peccei-Quinn symmetry.



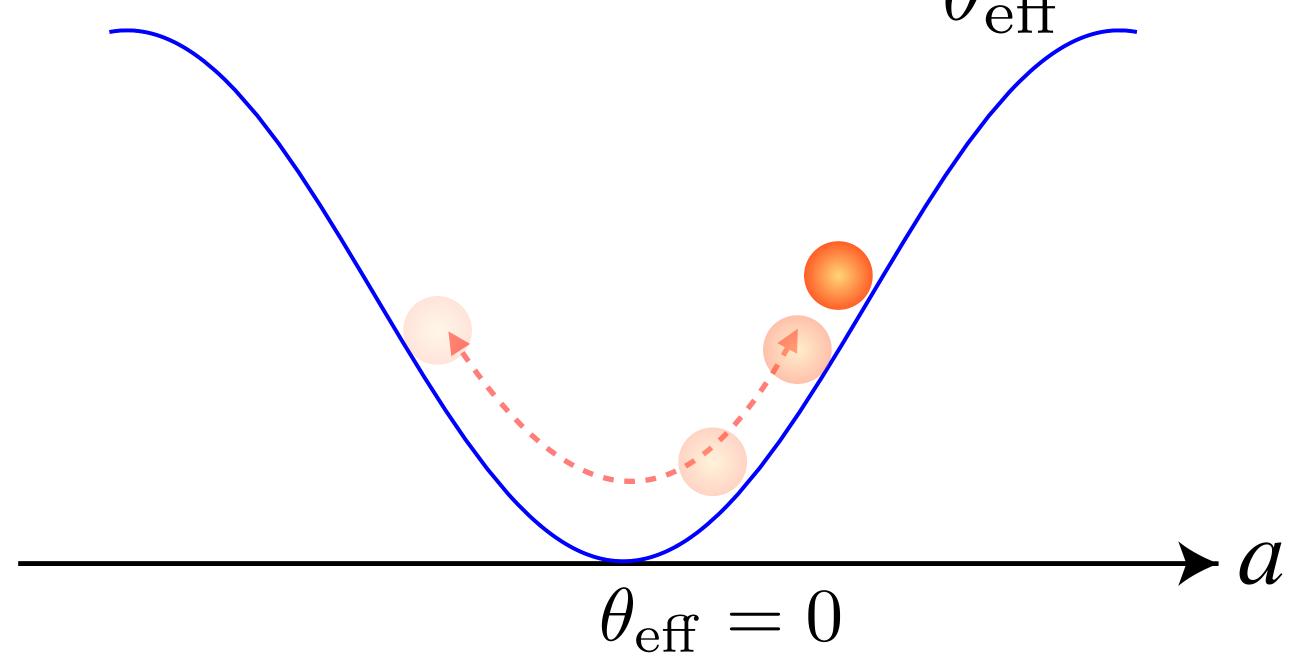
Peccei, Quinn `77, Weinberg `78, Wilczek `78

See talks by Rybka and Ahn

OCD axion

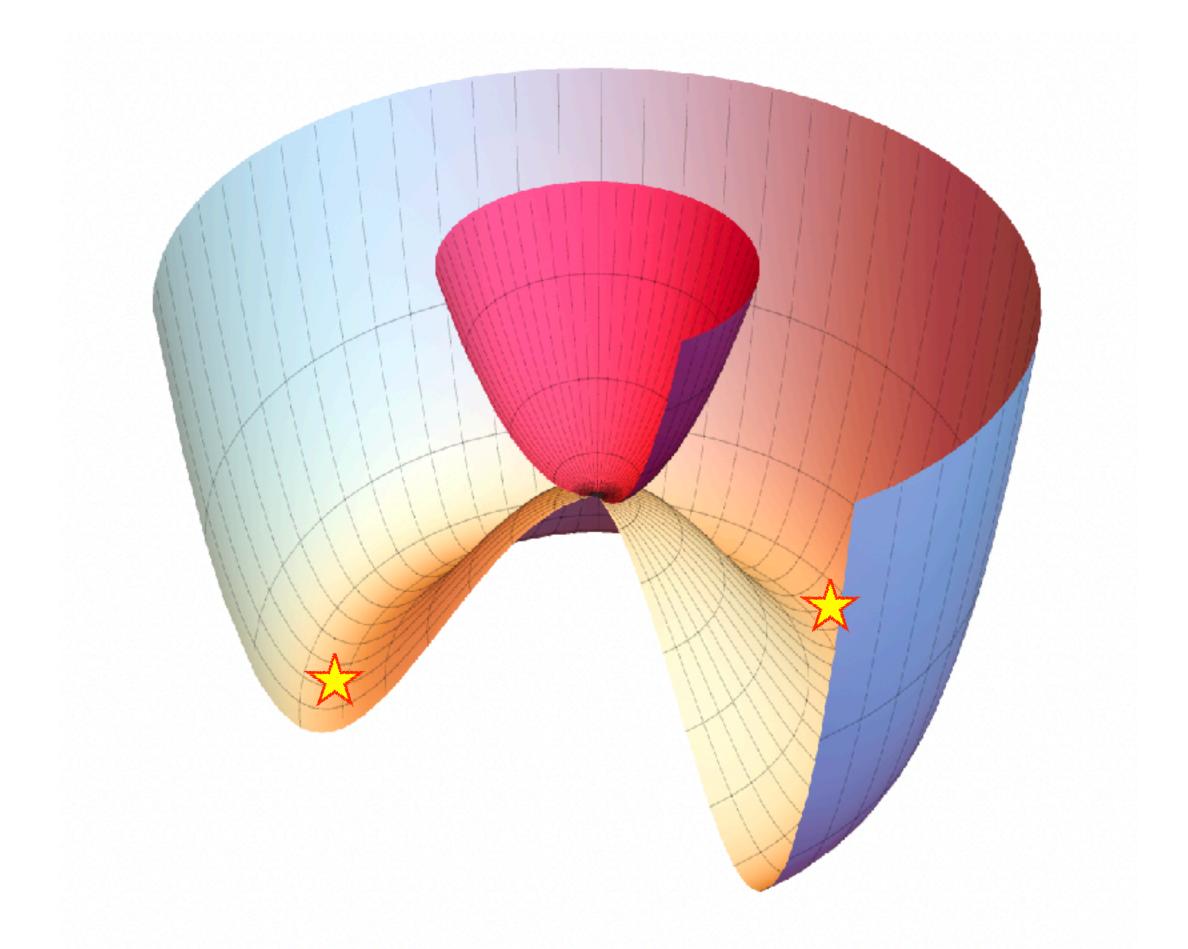
Dynamically solves the strong CP problem.

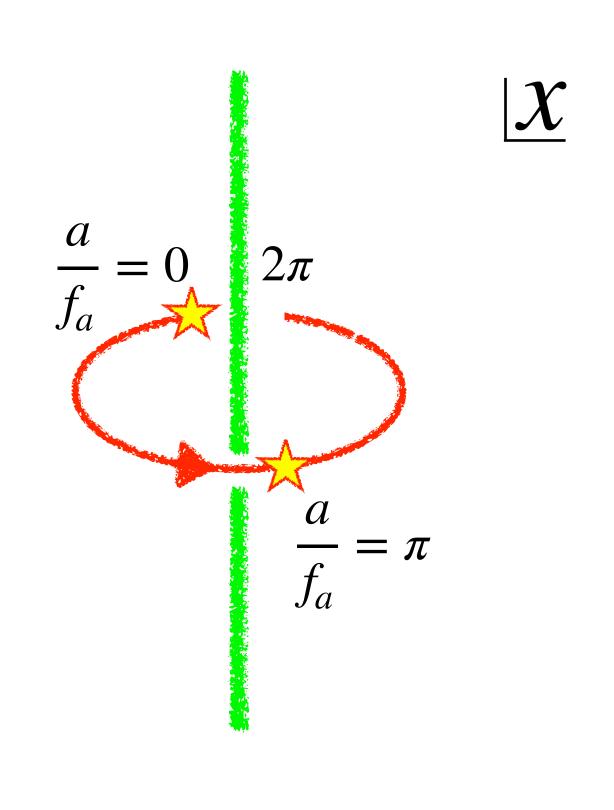
$$\mathcal{L}_{\theta} = \frac{g_s^2}{32\pi^2} G^{a\mu\nu} \tilde{G}_{\mu\nu}^a \qquad \qquad \mathcal{L}_{\theta} = \underbrace{\left(\theta + \frac{a}{f_a}\right)}_{\theta \in \mathrm{ff}} \frac{g_s^2}{32\pi^2} G^{a\mu\nu} \tilde{G}_{\mu\nu}^a$$
 |\bar{\theta} \in \mathcal{O}(10^{-10}) : strong CP problem \quad \theta_{\text{eff}} \quad \theta_{\text{eff}} \quad \theta_{\text{eff}} \quad \text{Neutron EDM,} \quad \text{Abel et al, 2001.11966}



Axion production from strings/walls

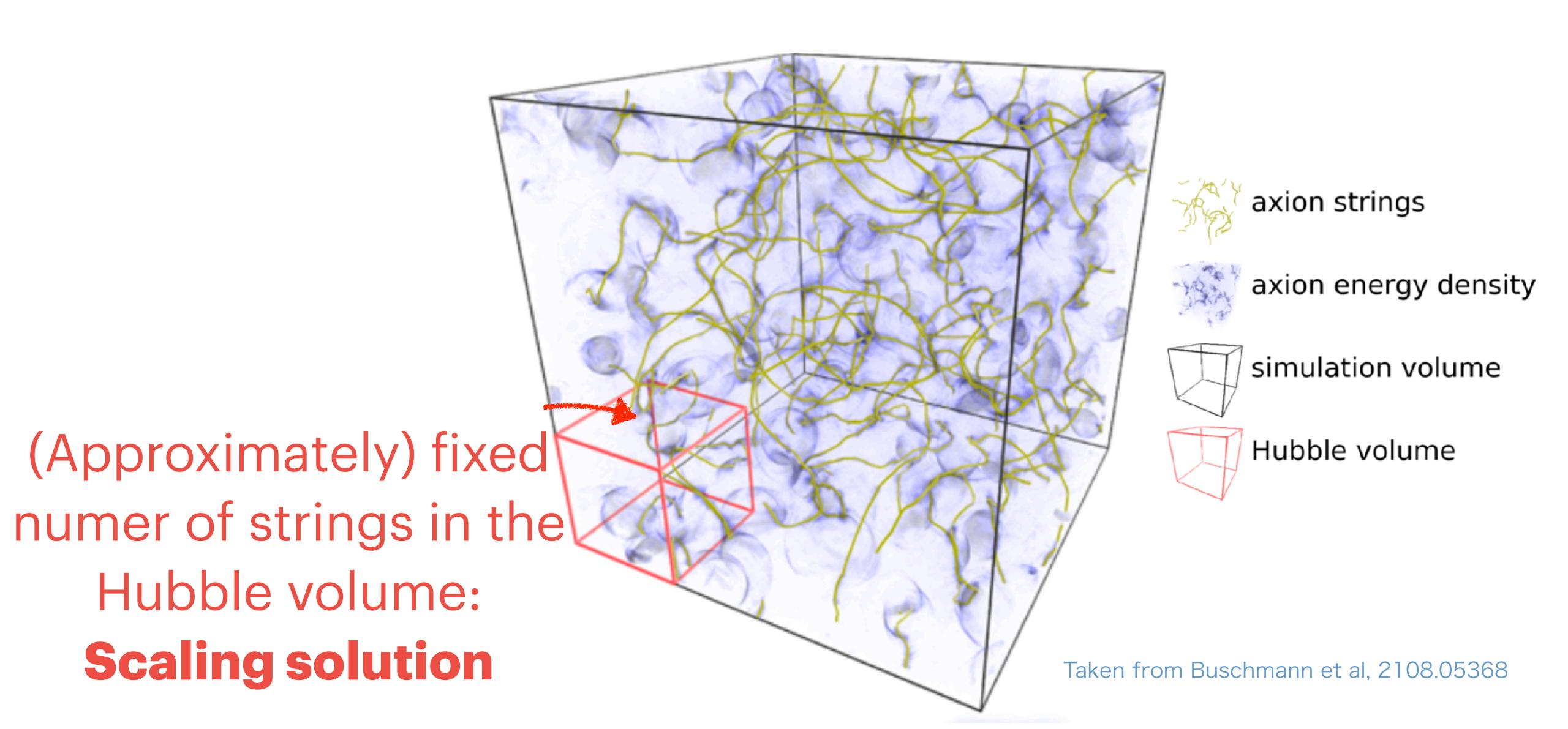
Cosmic strings and domain walls, formed in post-inflationary scenarios, produce axion dark matter.





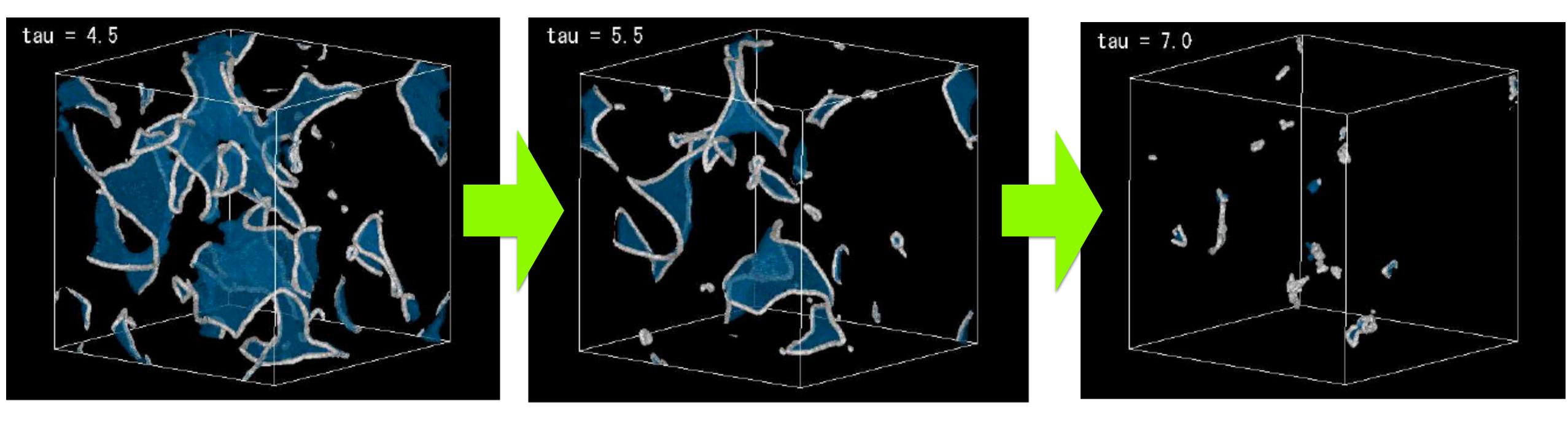
Cosmic strings

Axion production from strings/walls



Axion production from strings/walls

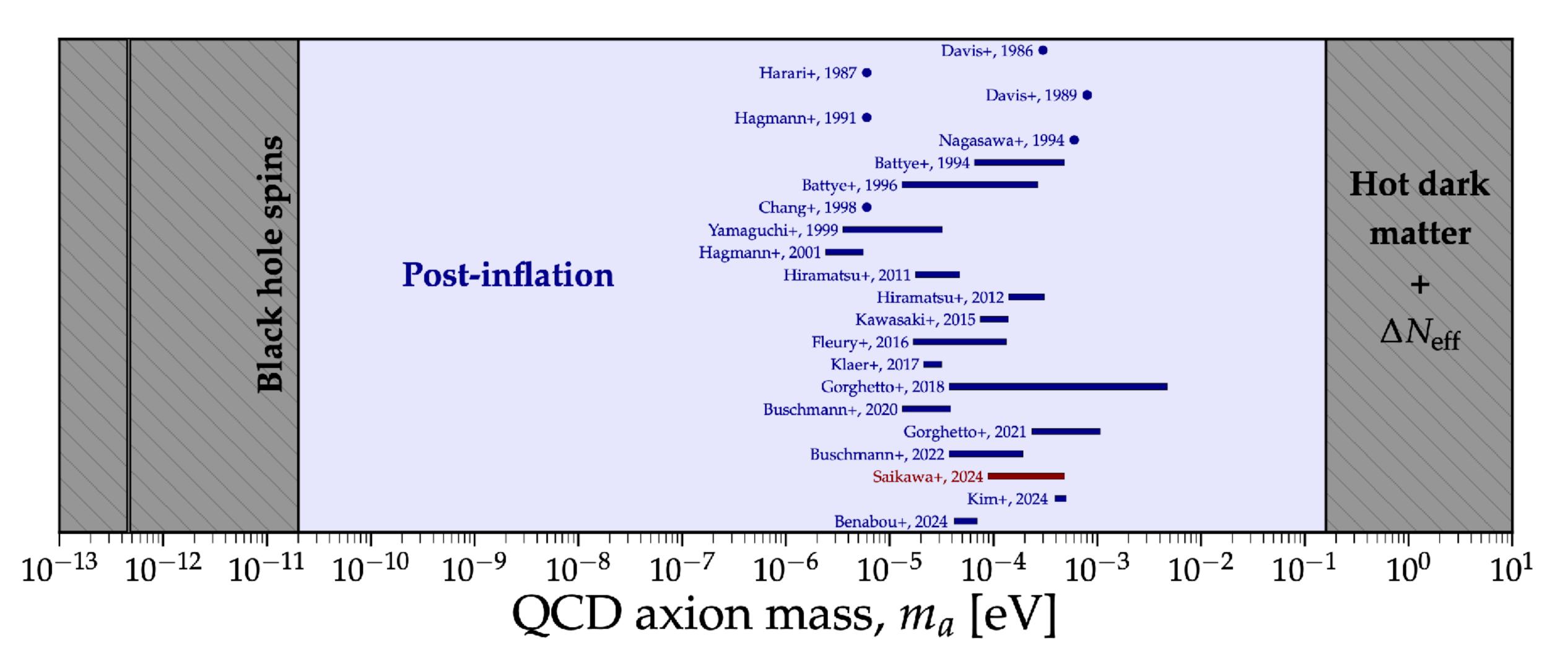
 $N_{\rm DW} = 1$



Hiramatsu, Kawasaki, Saikawa, Sekiguchi,, 1202.5851

Studying the evolution of strings and domain walls is crucial for predicting the mass of axion dark matter.

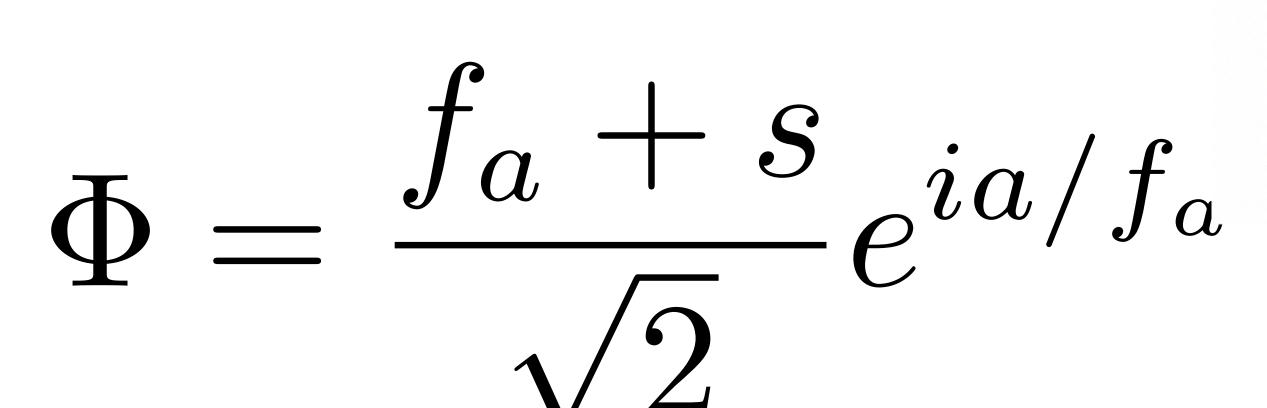
Prediction of post-inflationary scenario



Key assumption:

Single PQ scalar model

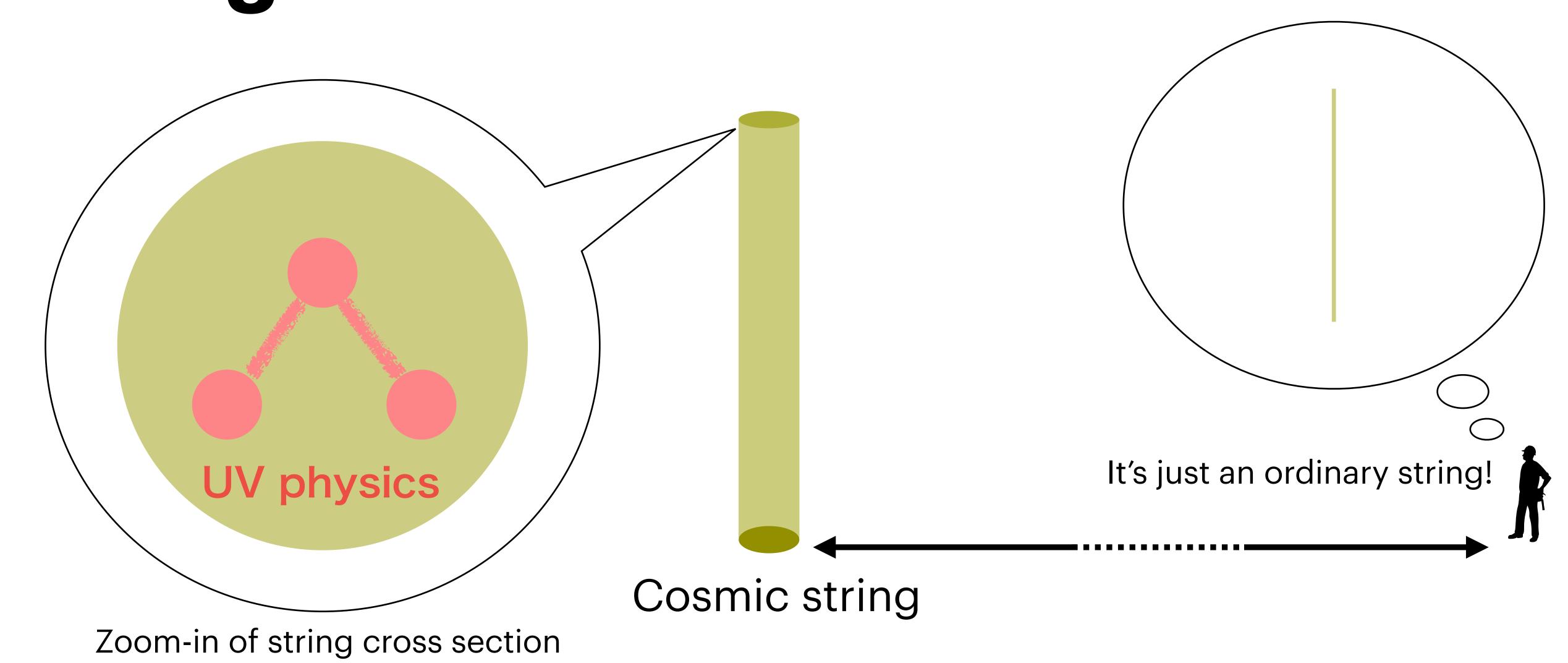
$$\Phi = \frac{f_a + s}{\sqrt{2}} e^{ia/f_a}$$



- Prevalent in high-precision lattice calculations.
- Simplifying assumption or crucial factor?

Origin and breaking of U(1) PQ are unknown!

Is UV physics always confined in the string core?



We introduce two PQ scalars

$$\Phi_1 = \frac{f_1}{\sqrt{2}} e^{i\frac{\phi_1}{f_1}} \text{ and } \Phi_2 = \frac{f_2}{\sqrt{2}} e^{i\frac{\phi_2}{f_2}}$$

$$\theta_1 \equiv \phi_1/f_1 \text{ and } \theta_2 \equiv \phi_2/f_2$$

We introduce two PQ scalars

$$\Phi_1 = \frac{f_1}{\sqrt{2}} e^{i\frac{\phi_1}{f_1}} \text{ and } \Phi_2 = \frac{f_2}{\sqrt{2}} e^{i\frac{\phi_2}{f_2}}$$

$$\theta_1 \equiv \phi_1/f_1 \text{ and } \theta_2 \equiv \phi_2/f_2$$

and the potential for axions

$$V_1(\phi_1, \phi_2) = \Lambda^4 \left[1 - \cos \left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2} \right) \right]$$

We introduce two PQ scalars

$$\Phi_1 = \frac{f_1}{\sqrt{2}} e^{i\frac{\phi_1}{f_1}} \text{ and } \Phi_2 = \frac{f_2}{\sqrt{2}} e^{i\frac{\phi_2}{f_2}}$$

$$\theta_1 \equiv \phi_1/f_1$$
 and $\theta_2 \equiv \phi_2/f_2$

and the potential for axions

$$V_{1}(\phi_{1}, \phi_{2}) = \Lambda^{4} \left[1 - \cos \left(n_{1} \frac{\phi_{1}}{f_{1}} + n_{2} \frac{\phi_{2}}{f_{2}} \right) \right] \qquad \Lambda \gg \Lambda'$$

$$V_{2}(\phi_{1}, \phi_{2}) = \Lambda'^{4} \left[1 - \cos \left(n'_{1} \frac{\phi_{1}}{f_{1}} + n'_{2} \frac{\phi_{2}}{f_{2}} + \alpha \right) \right] \qquad n_{1}, n_{2}, n'_{1}, n'_{2} \in \mathbf{Z}$$

with the post-inflationary initial condition.

 $\Lambda \gg \Lambda'$

We introduce two PQ scalars

$$\Phi_1 = \frac{f_1}{\sqrt{2}} e^{i\frac{\phi_1}{f_1}} \text{ and } \Phi_2 = \frac{f_2}{\sqrt{2}} e^{i\frac{\phi_2}{f_2}}$$

$$\theta_1 \equiv \phi_1/f_1 \text{ and } \theta_2 \equiv \phi_2/f_2$$

and the potential for axions

$$V_1(\phi_1, \phi_2) = \Lambda^4 \left[1 - \cos \left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2} \right) \right]$$

$$V_2(\phi_1, \phi_2) = \Lambda'^4 \left[1 - \cos\left(n_1' \frac{\phi_1}{f_1} + n_2' \frac{\phi_2}{f_2} + \alpha\right) \right]$$

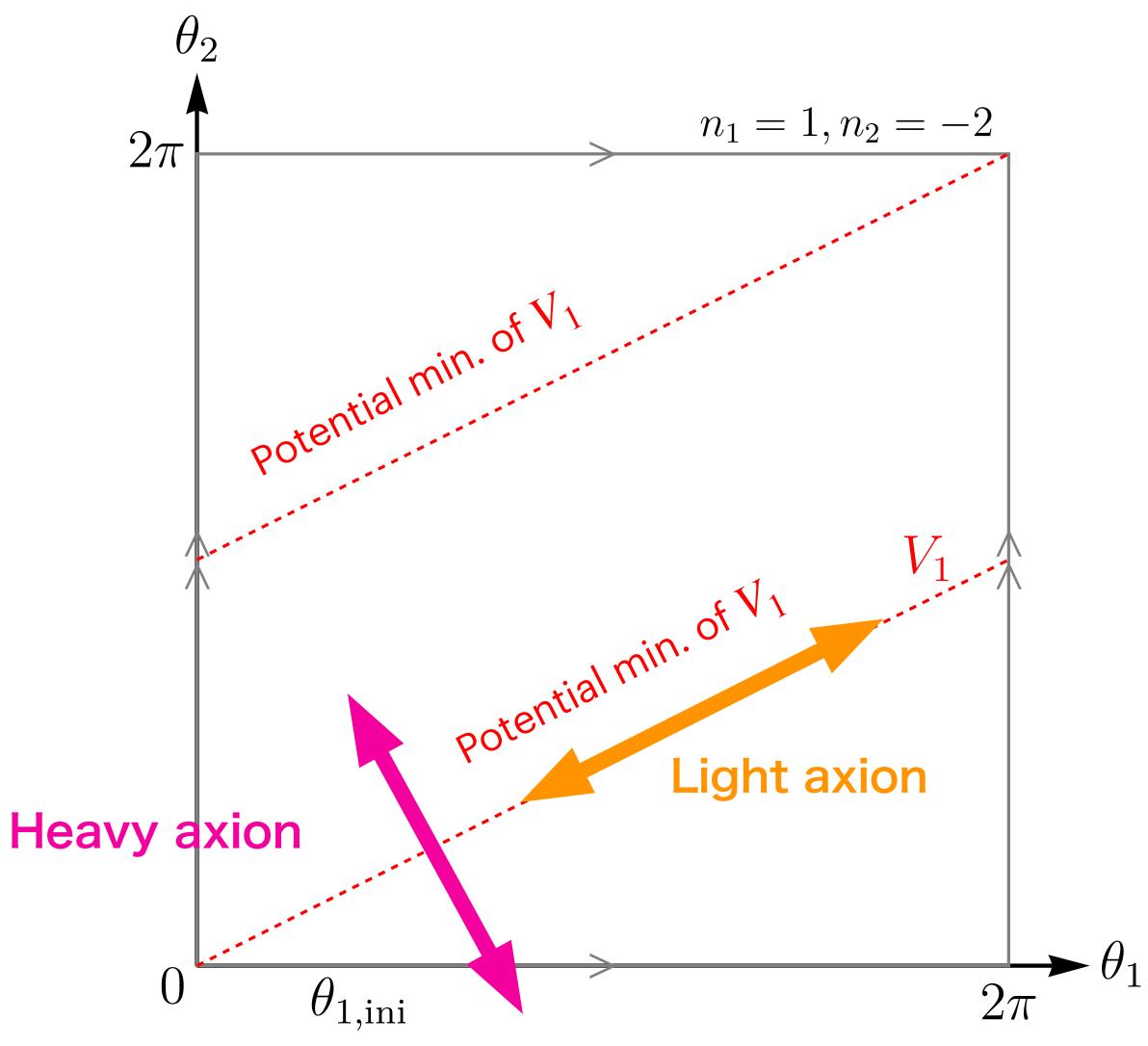
 $\Lambda \gg \Lambda'$ $n_1, n_2, n_1', n_2' \in \mathbf{Z}$

with the post-inflationary initial condition.

One linear combination of two axions becomes heavy, leaving the orthogonal one (nearly) massless.

$$\phi_{
m heavy} \propto n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2}$$

$$V_1(\phi_1, \phi_2) = \Lambda^4 \left[1 - \cos \left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2} \right) \right]$$



Two types of strings and multiple DWs

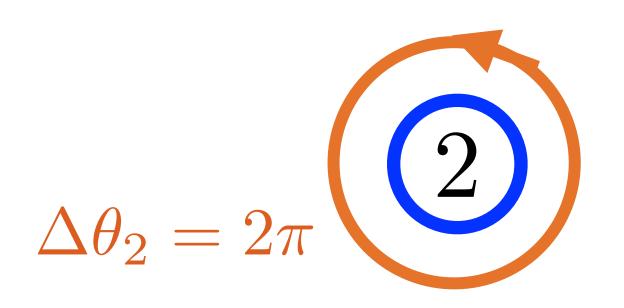
Both ϕ_1, ϕ_2 -strings quickly reach the scaling solution, and when V_1 becomes relevant, n_1 (n_2) domain walls appear, attached to the $\phi_1(\phi_2)$ -string.

1

2

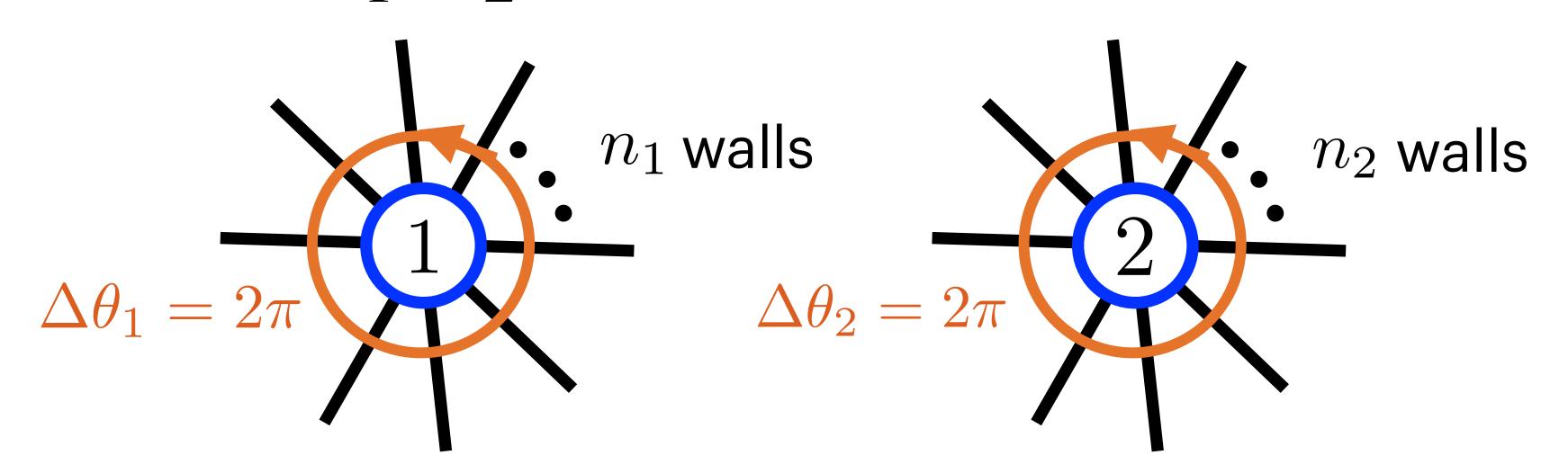
Two types of strings and multiple DWs

Both ϕ_1, ϕ_2 -strings quickly reach the scaling solution, and when V_1 becomes relevant, n_1 (n_2) domain walls appear, attached to the $\phi_1(\phi_2)$ -string.



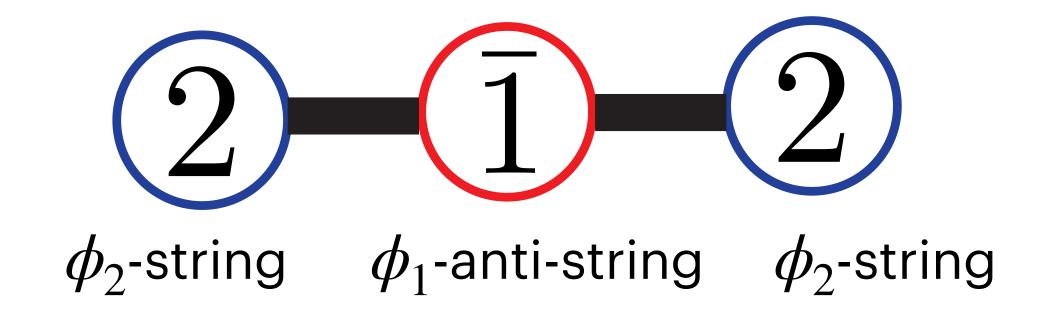
Two types of strings and multiple DWs

Both ϕ_1, ϕ_2 -strings quickly reach the scaling solution, and when V_1 becomes relevant, n_1 (n_2) domain walls appear, attached to the $\phi_1(\phi_2)$ -string.



$$V_1(\phi_1, \phi_2) = \Lambda^4 \left[1 - \cos \left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2} \right) \right] \qquad n_1, n_2 \in \mathbf{Z}$$

$$V_1(\phi_1, \phi_2) = \Lambda^4 \left[1 - \cos \left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2} \right) \right]$$

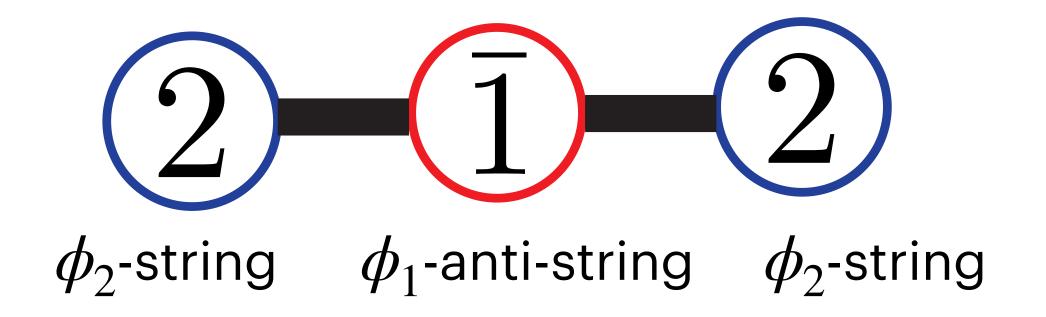


String bundle

(= ordinary cosmic string)

cf. Higaki, Jeong, Kitajima, Sekiguchi and FT, 1606.05552, See also Eto, Hiramatsu, Saito and Sakakihara, 2309.04248

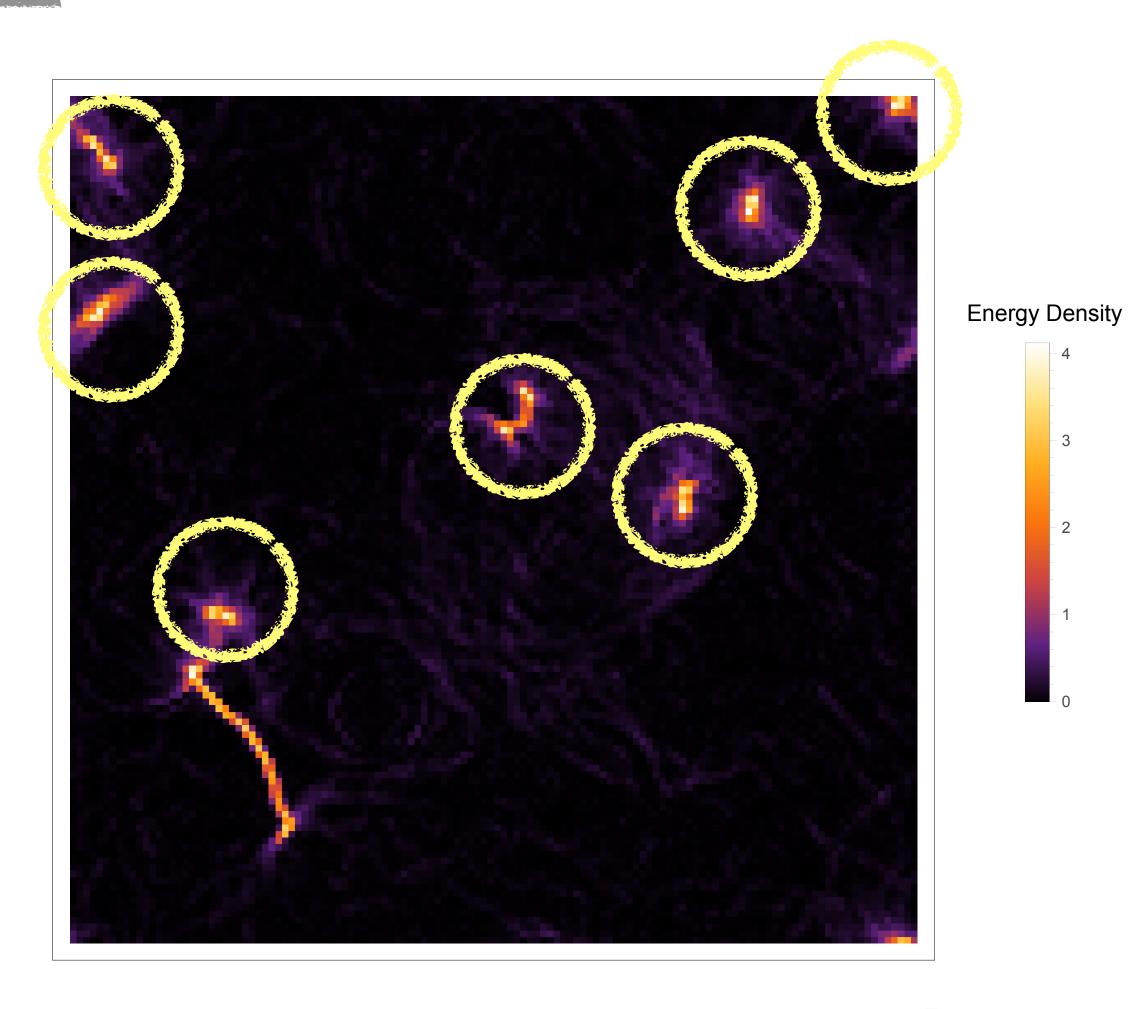
$$V_1(\phi_1, \phi_2) = \Lambda^4 \left[1 - \cos \left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2} \right) \right]$$



String bundle

(= ordinary cosmic string)

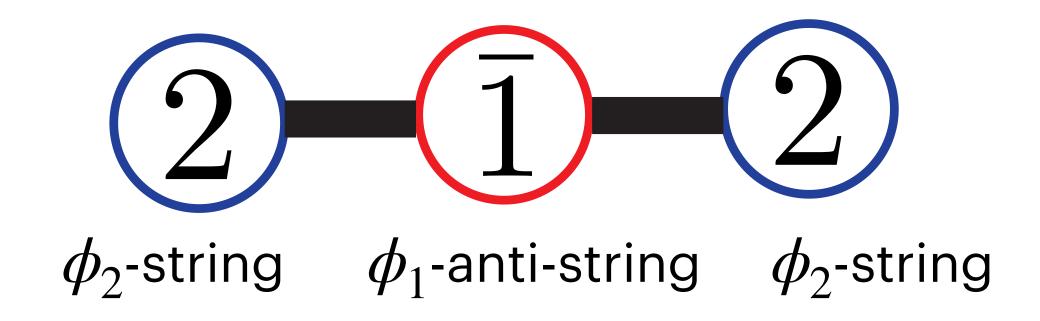
cf. Higaki, Jeong, Kitajima, Sekiguchi and FT, 1606.05552, A. Long, 1803.07086, See also Eto, Hiramatsu, Saito and Sakakihara, 2309.04248



Numerical results (2D)

Lee, Murai, FT and Yin 2409.09749

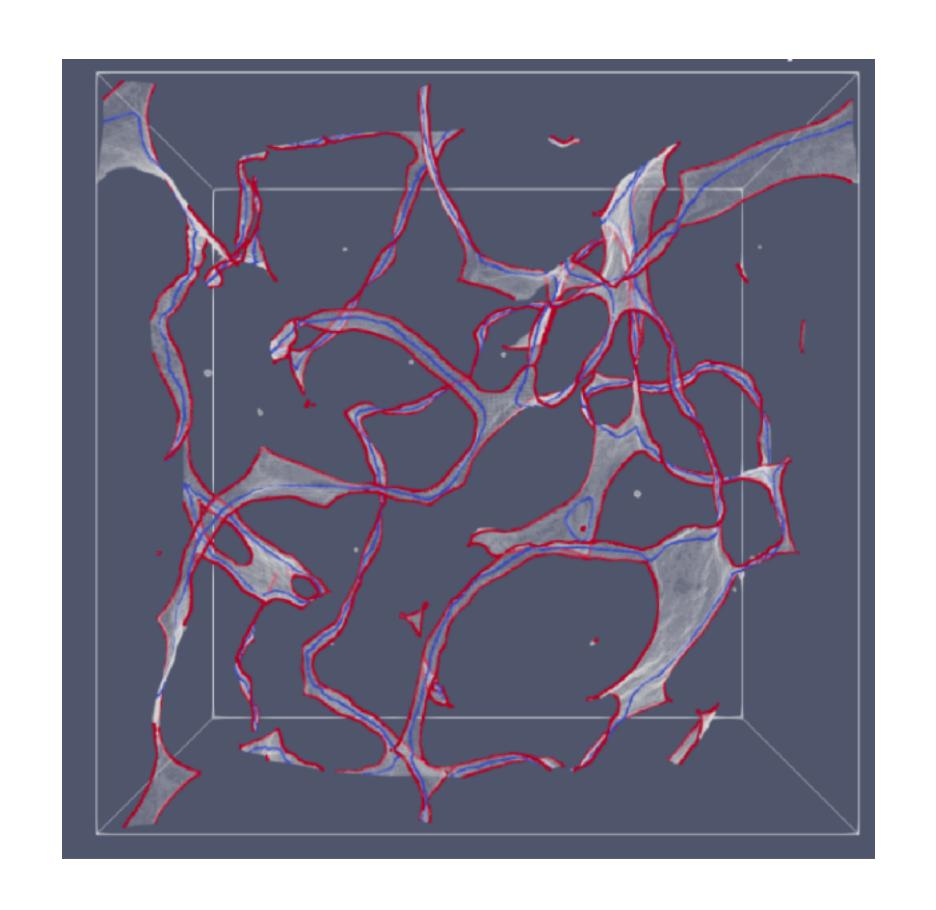
$$V_1(\phi_1, \phi_2) = \Lambda^4 \left[1 - \cos \left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2} \right) \right]$$



String bundle

(= ordinary cosmic string)

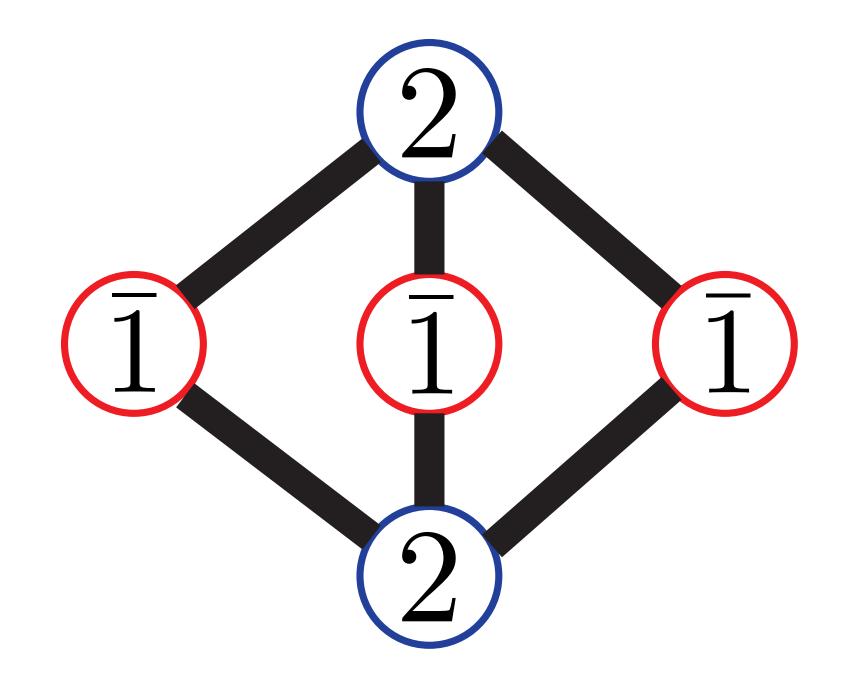
cf. Higaki, Jeong, Kitajima, Sekiguchi and FT, 1606.05552, A. Long, 1803.07086, See also Eto, Hiramatsu, Saito and Sakakihara, 2309.04248



Numerical results (3D)

Lee, Murai, FT and Yin 2409.09749

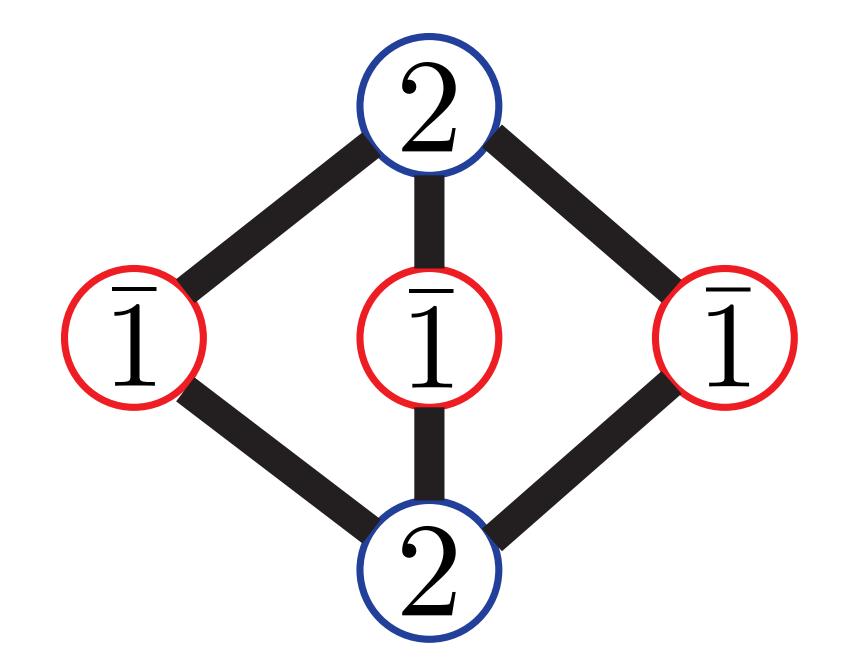
$$V_1(\phi_1, \phi_2) = \Lambda^4 \left[1 - \cos \left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2} \right) \right]$$



String bundle

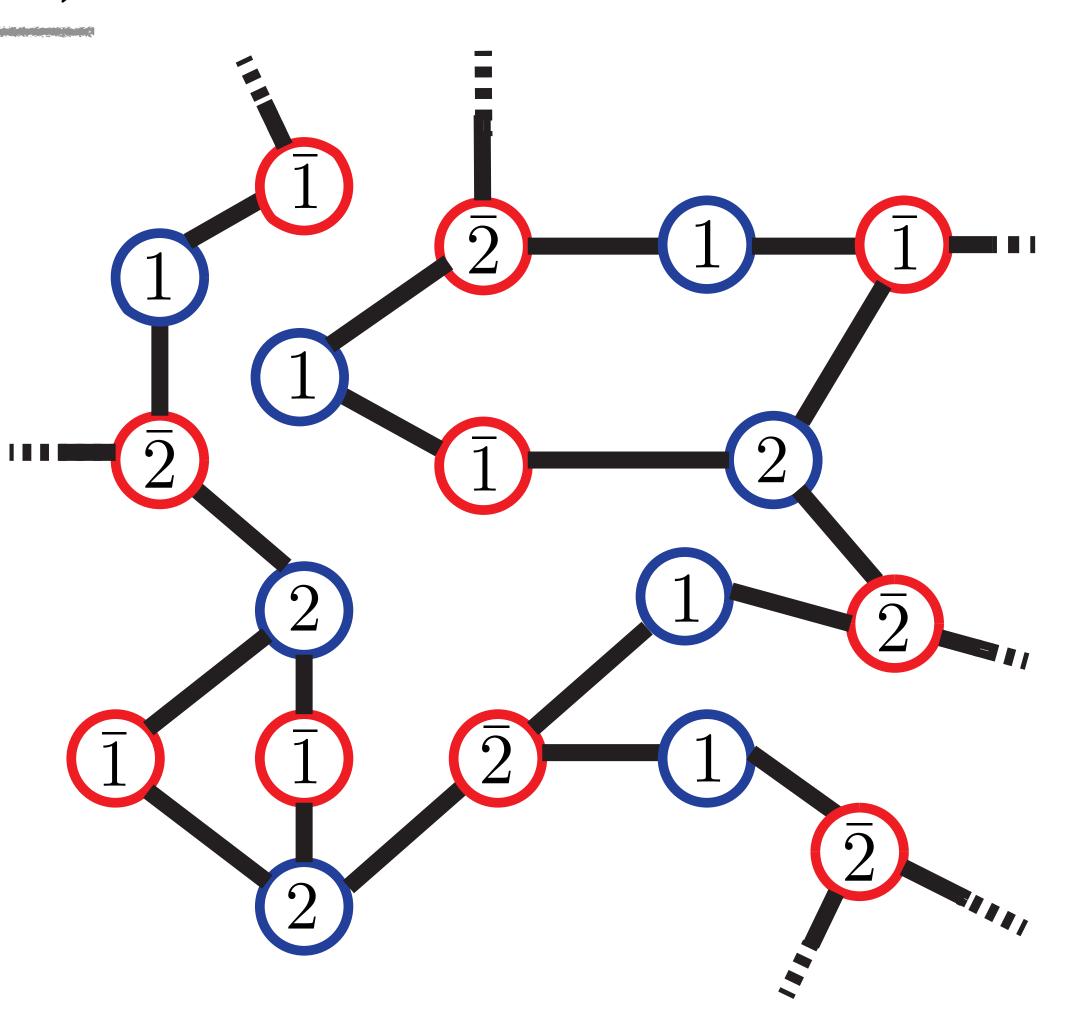
(= ordinary cosmic string)

$$V_1(\phi_1, \phi_2) = \Lambda^4 \left[1 - \cos \left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2} \right) \right]$$



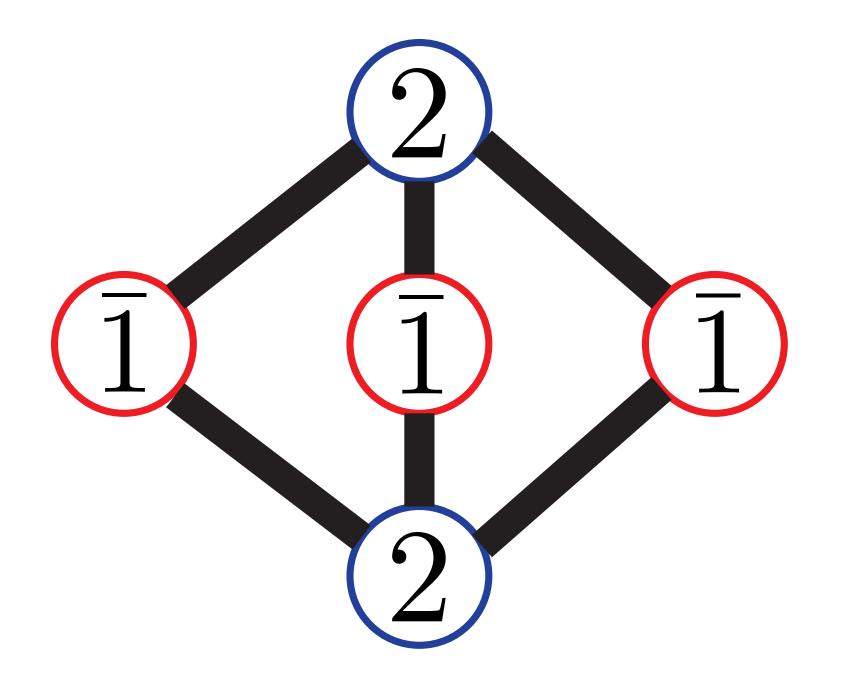
String bundle

(= ordinary cosmic string)



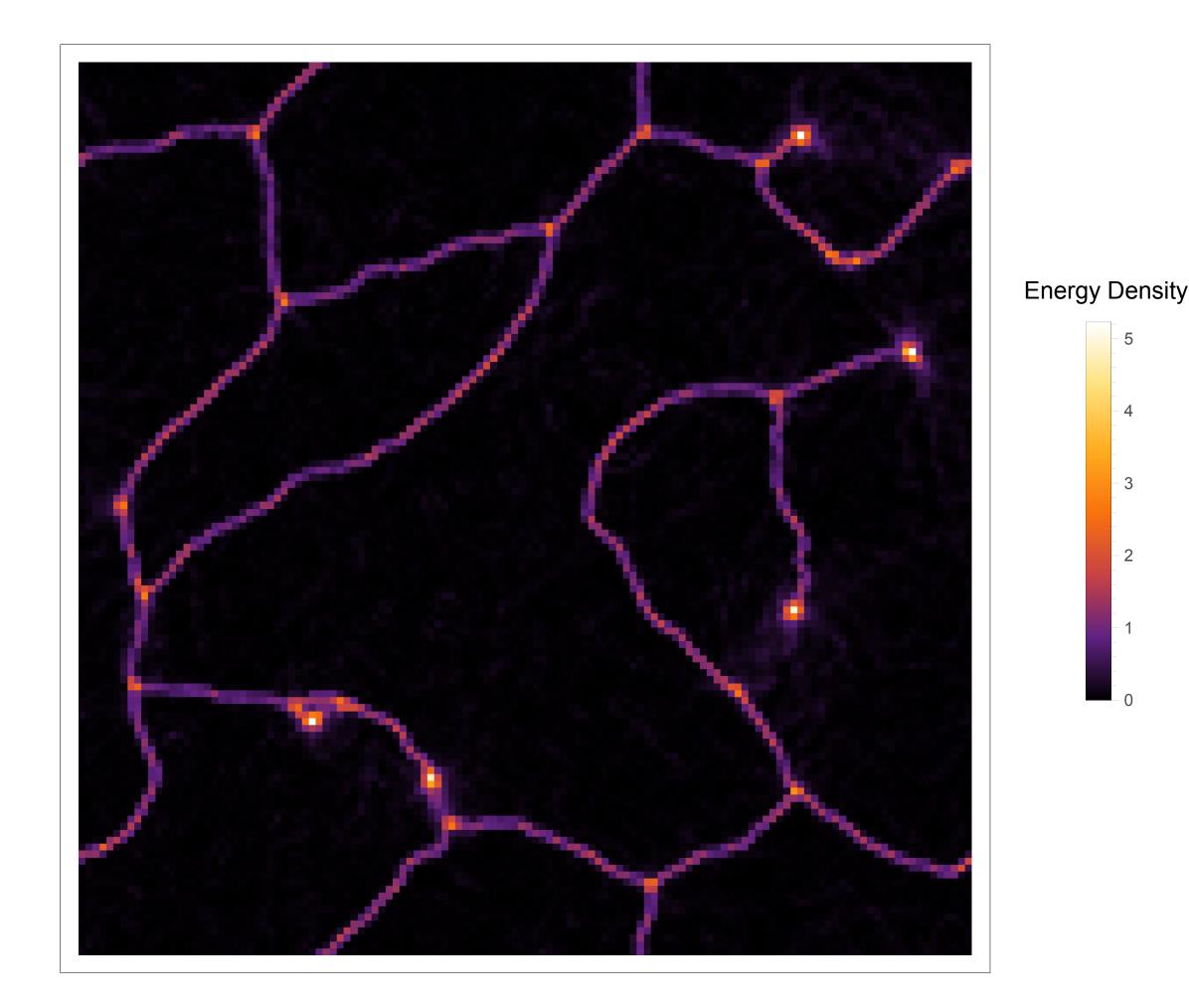
String-wall network

String-wall network forms in stead of string bundles.



String bundle

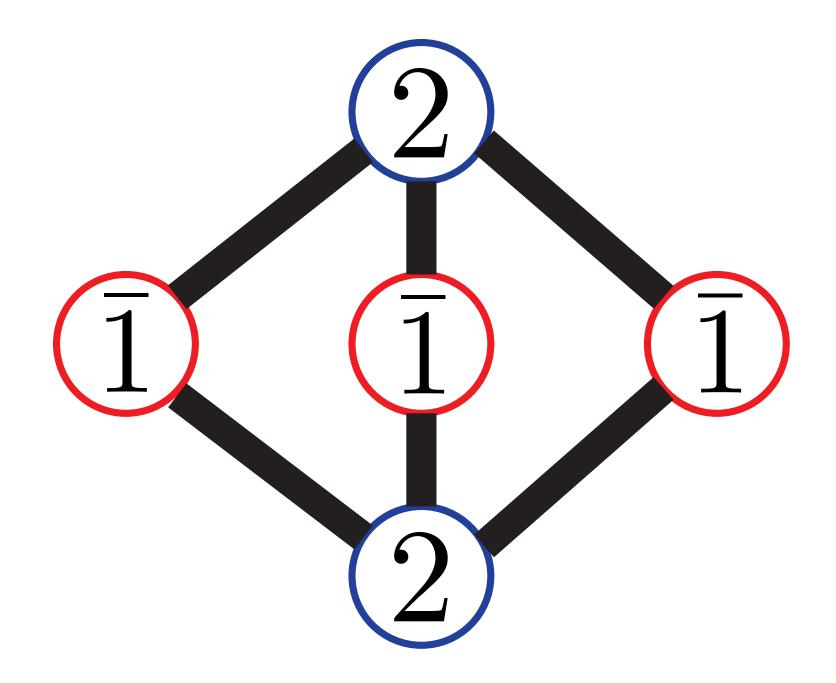
(= ordinary cosmic string)



Numerical results (2D)

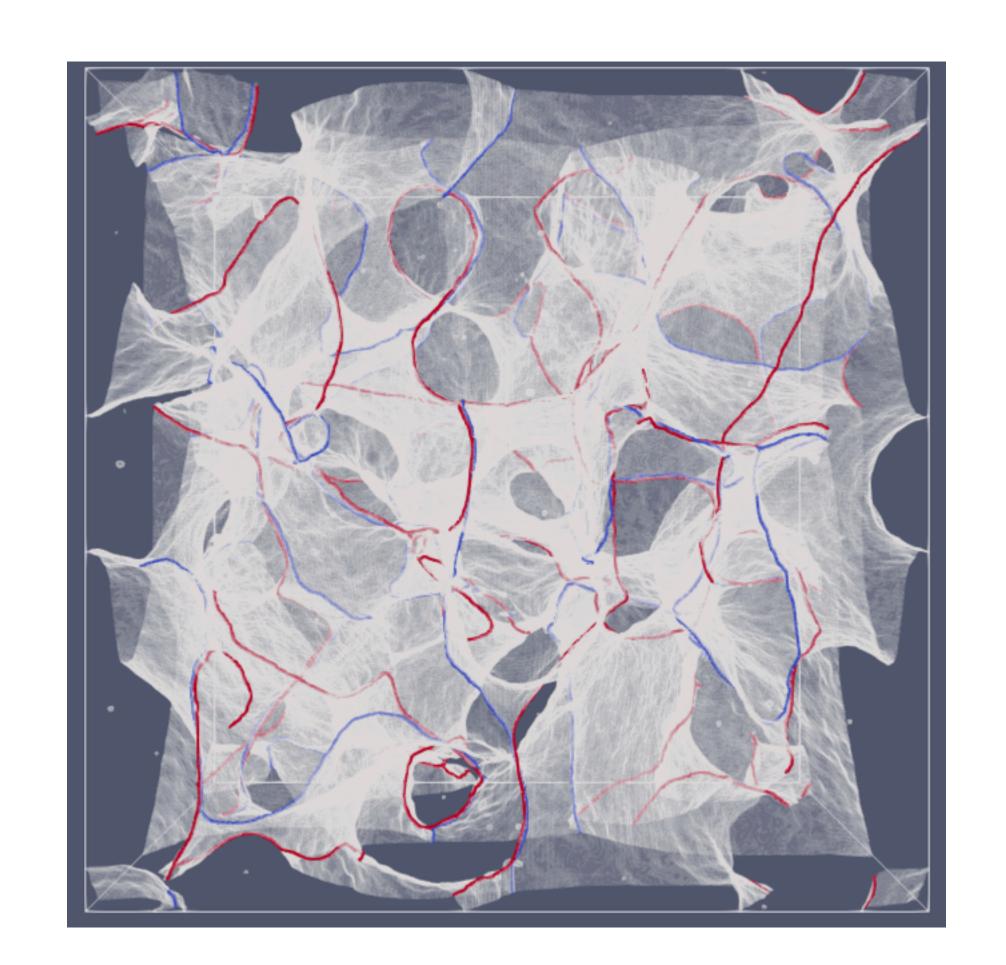
Lee, Murai, FT and Yin 2409.09749

String-wall network forms in stead of string bundles.



String bundle

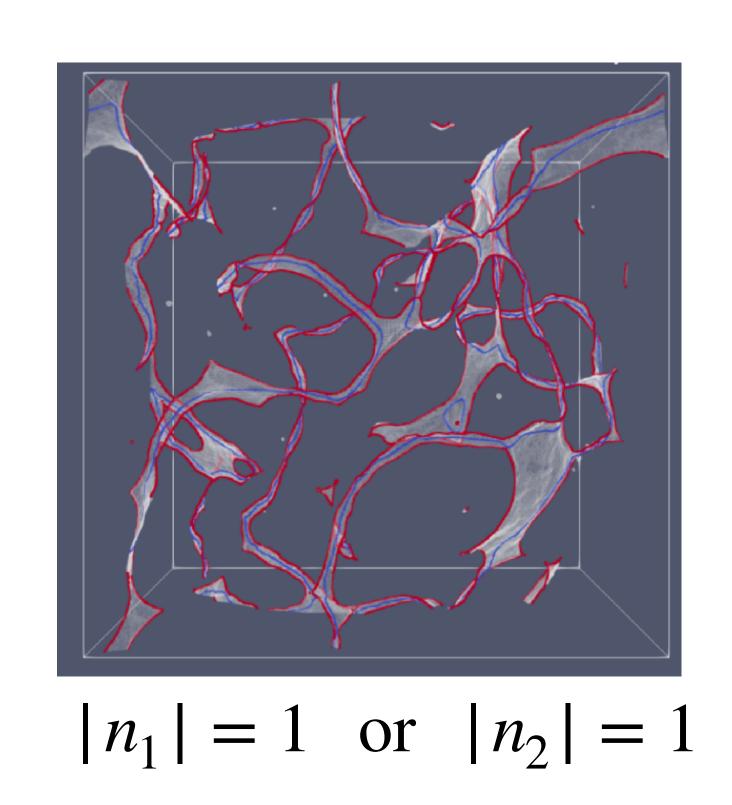
(= ordinary cosmic string)

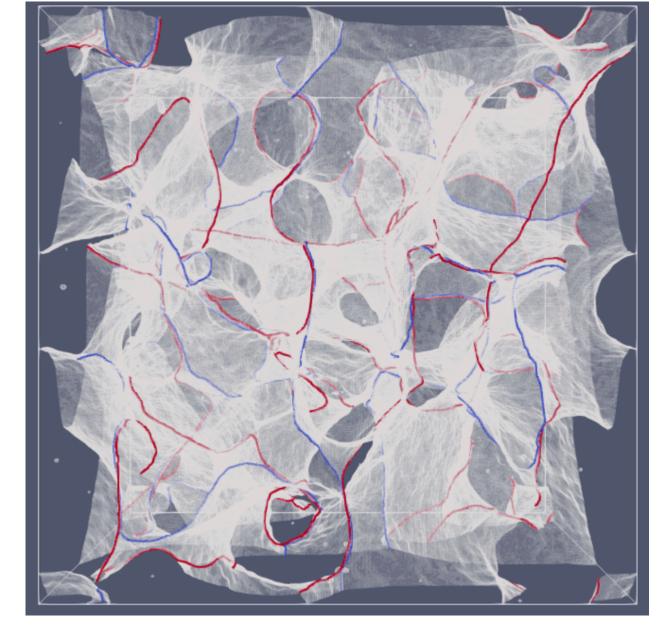


Numerical results (3D)

Coutesy of Junseok Lee

In the post-inflationary scenario, a string-wall network forms instead of ordinary cosmic strings if $|n_1|, |n_2| \ge 2$.





 $|n_1|, |n_2| \ge 2.$

These heavy axion DWs also produce a large amount of GWs.

Mixed initial conditions

We may impose a mixed "pre-post" initial condition, i.e.,

pre-inflationary initial condition for ϕ_1

post-inflationary initial condition for ϕ_2

Then, no strings bundles are formed, and string-wall network of ϕ_2 remains if $|n_2| \ge 2$ (even if $|n_1| = 1$).

Mixed initial conditions makes string-wall network formation more likely.

"Induced DW" formation due to V_2

Before proceeding, let me first explain what an induced domain wall is.

$$\phi = \phi_{\text{right}}$$

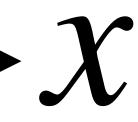
$$\phi = \phi_{\text{left}}$$

Couple ϕ to gluons: ϕGG

$$\theta = \theta_{\text{right}}$$

$$\theta = \theta_{\text{left}}$$

$$\theta = \theta_{\text{left}}$$
 $\phi = \phi_{\text{left}}$



Couple ϕ to gluons: ϕGG

Introduce QCD axion a: $aG\tilde{G}$

$$\frac{a_{\text{left}}}{f_a} = -\theta_{\text{left}}$$

$$\theta = \theta_{\text{left}}$$

$$\theta = \theta_{\text{left}}$$
 $\phi = \phi_{\text{left}}$

$$\frac{\phi}{\theta} = \phi_{right}$$

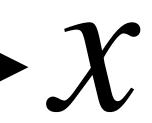
$$\frac{\theta}{\theta} = \theta_{right}$$

$$\frac{\alpha_{right}}{\theta} = -\theta_{right}$$

Couple ϕ to gluons: $\phi G \tilde{G}$

$$\frac{a_{\text{left}}}{f_{\alpha}} = -\theta_{\text{left}}$$

$$\frac{a_{\text{right}}}{f_a} = -\theta_{\text{right}}$$



"Induced DW" formation due to V_2

Now we consider the DW formation due to $V_2 \ll V_1$.

$$V_{1}(\phi_{1}, \phi_{2}) = \Lambda^{4} \left[1 - \cos \left(n_{1} \frac{\phi_{1}}{f_{1}} + n_{2} \frac{\phi_{2}}{f_{2}} \right) \right]$$

$$V_{2}(\phi_{1}, \phi_{2}) = \Lambda'^{4} \left[1 - \cos \left(n'_{1} \frac{\phi_{1}}{f_{1}} + n'_{2} \frac{\phi_{2}}{f_{2}} \right) \right] \qquad \Lambda' \ll \Lambda$$

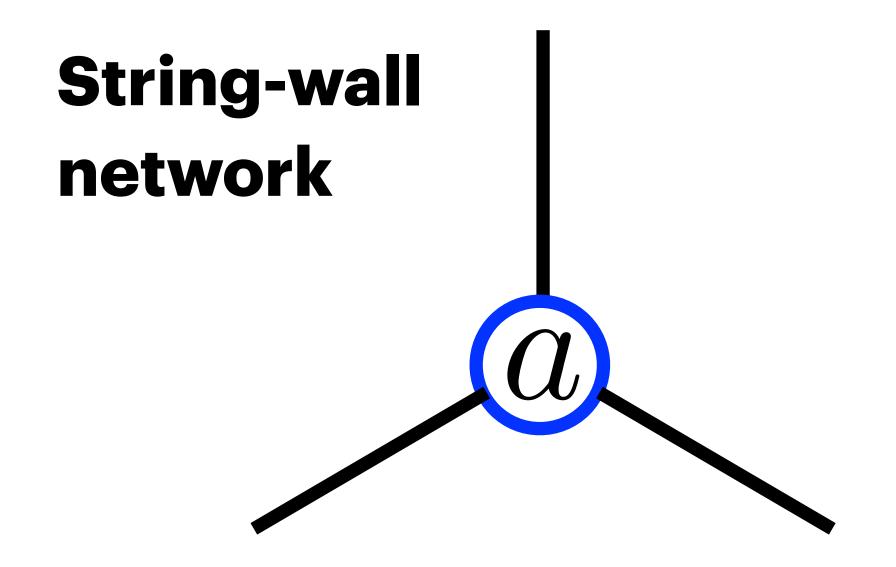
Both V_1 and V_2 can be minimized in any domains, and so there is no potential bias at the minimum.

Induced DW due to V_2 $V_1 \, {\sf DW} \qquad \qquad \phi_1 \ ({\sf or} \ \phi_2) \ {\sf string} \qquad \begin{array}{c} V_1 \, {\sf DW} \\ n_1 = 2 \end{array}$

FT and Yin 2012.11576, Lee, Murai, FT and Yin <u>2507.07075</u>, see also Kondo, Murayama 2507.07973

$$\mathcal{L} = -N_{\rm DW} \frac{g_s^2}{32\pi^2} \frac{a}{v_a} G\tilde{G}$$

 $N_{\mathrm{DW}} = 3 \text{ or } 6 \text{ for DFSZ axion}$



FT and Yin 2012.11576, Lee, Murai, FT and Yin 2507.07075,

$$\mathcal{L} = -N_{\text{DW}} \frac{g_s^2}{32\pi^2} \frac{a}{v_a} G\tilde{G} \longrightarrow \mathcal{L} = -\frac{g_s^2}{32\pi^2} \left(N_{\text{DW}} \frac{a}{v_a} + \frac{\varphi}{v_{\varphi}} \right) G\tilde{G}$$

 $N_{
m DW}=3~{
m or}~6~{
m for}~{
m DFSZ}$ axion

 φ : Massless (or very light) axion e.g. KSVZ axion (different from a)

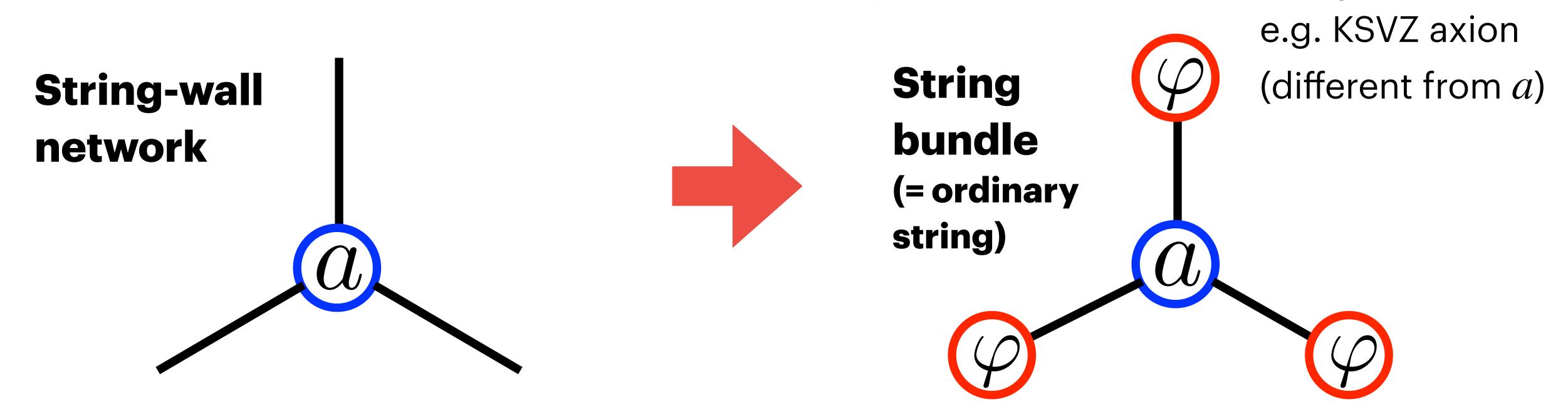


FT and Yin 2012.11576, Lee, Murai, FT and Yin 2507.07075,

$$\mathcal{L} = -N_{\text{DW}} \frac{g_s^2}{32\pi^2} \frac{a}{v_a} G\tilde{G} \rightarrow \mathcal{L} = -\frac{g_s^2}{32\pi^2} \left(N_{\text{DW}} \frac{a}{v_a} + \frac{\varphi}{v_{\varphi}} \right) G\tilde{G}$$

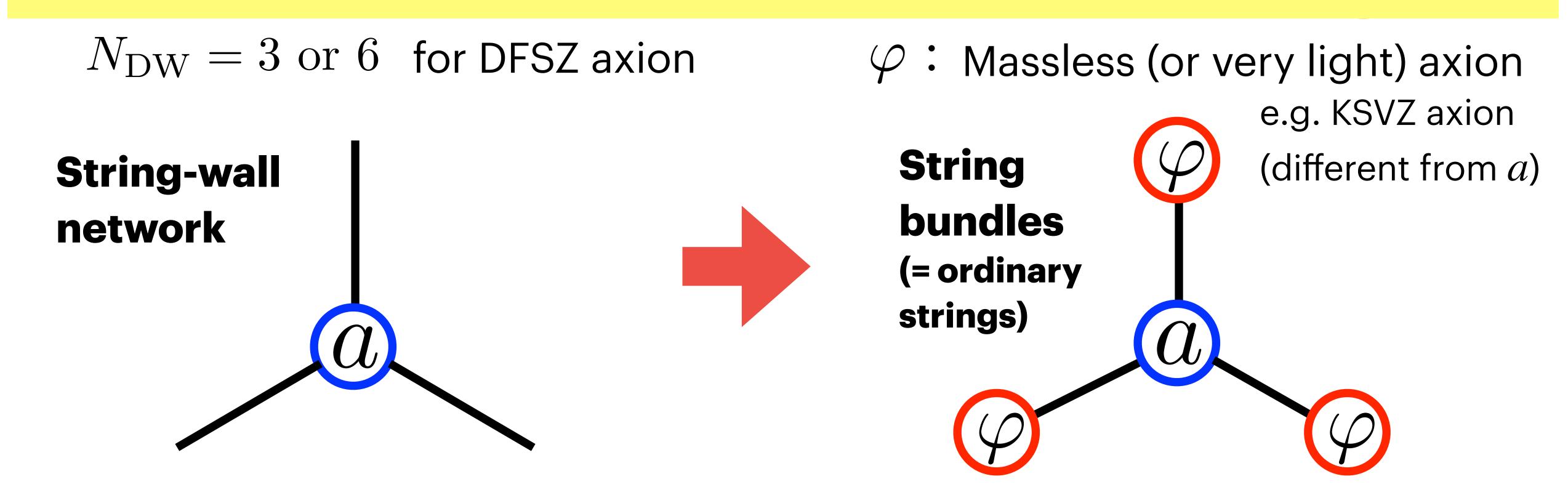
 $N_{
m DW}=3~{
m or}~6~{
m for}~{
m DFSZ}$ axion

 φ : Massless (or very light) axion

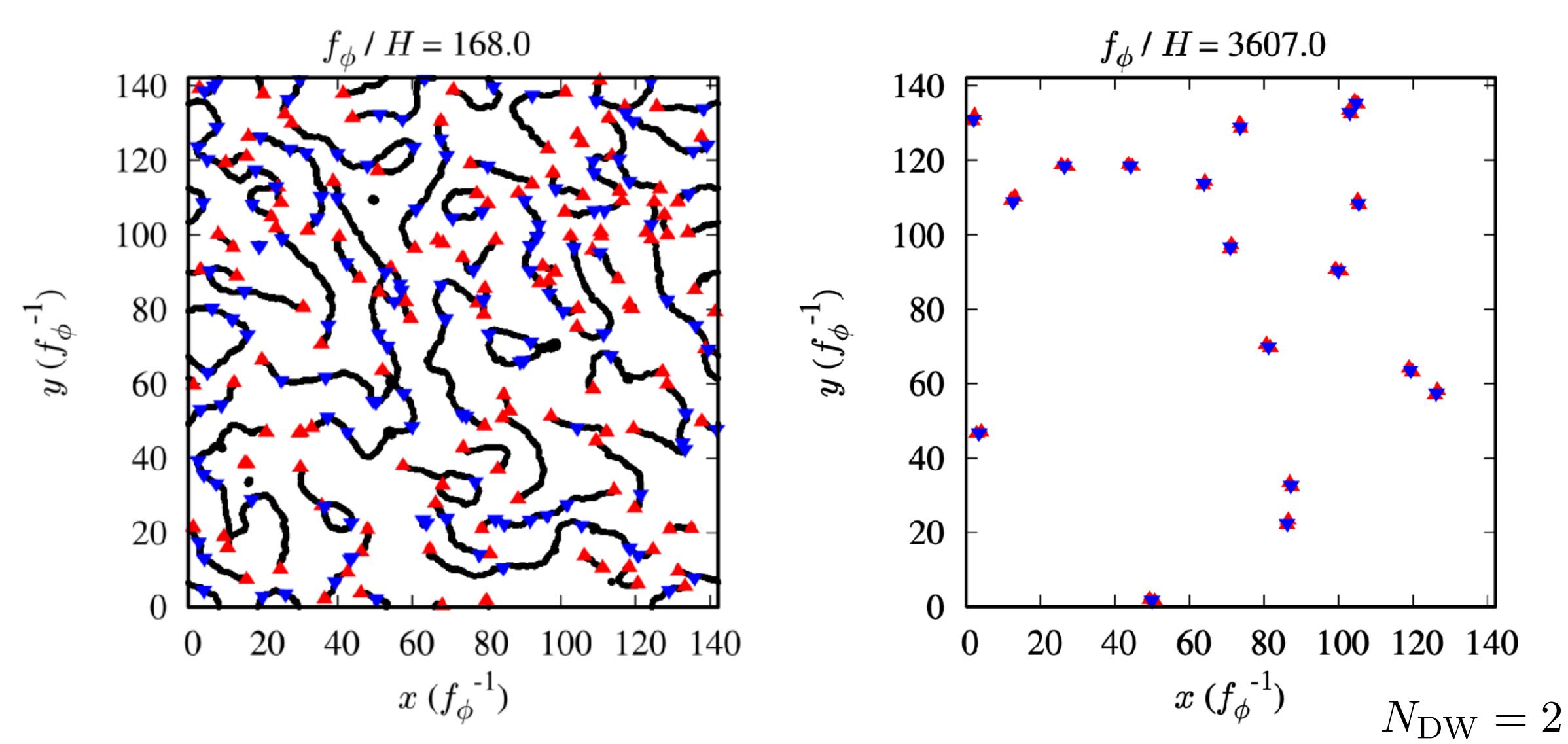


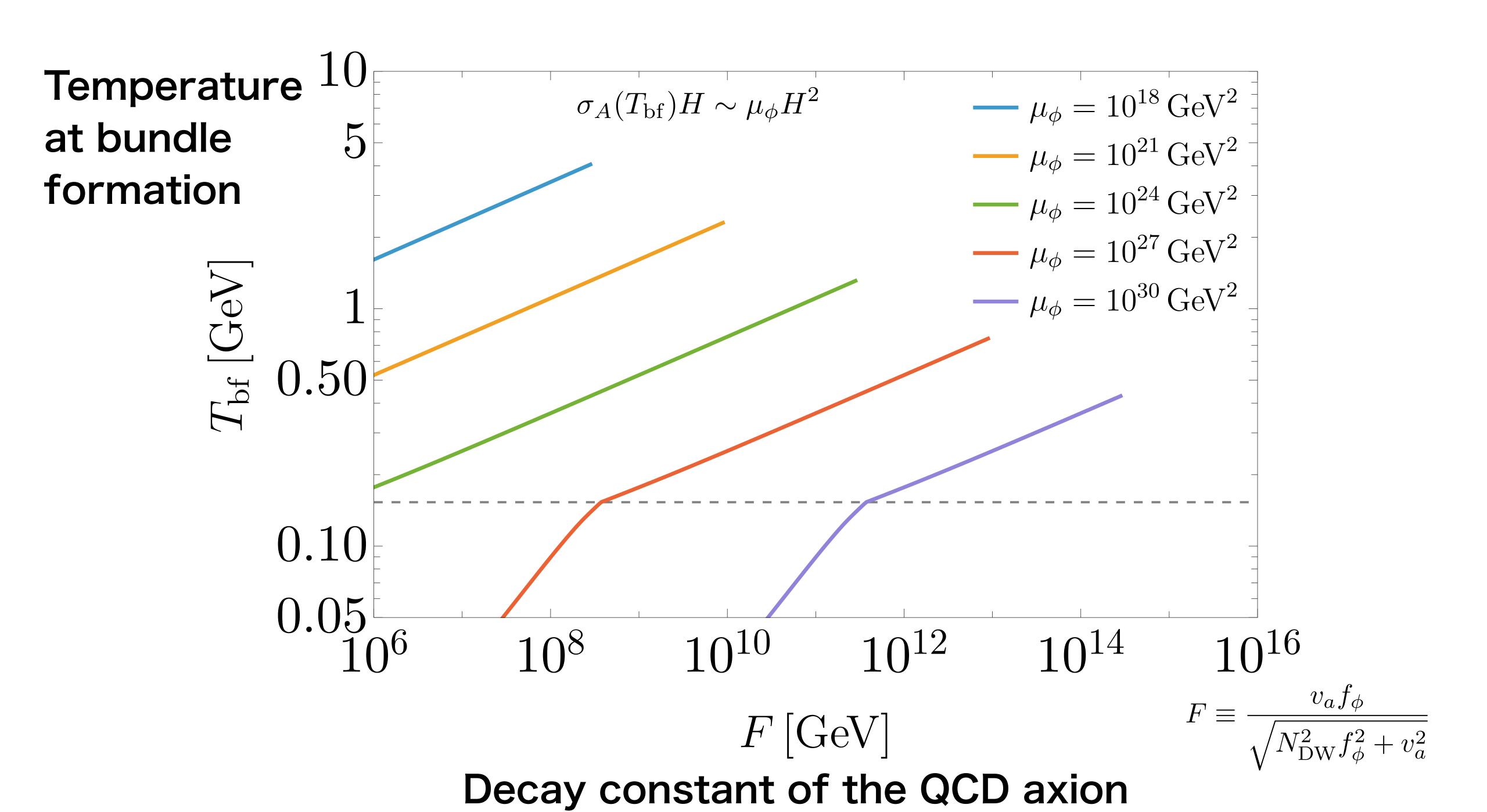
FT and Yin 2012.11576, Lee, Murai, FT and Yin 2507.07075,

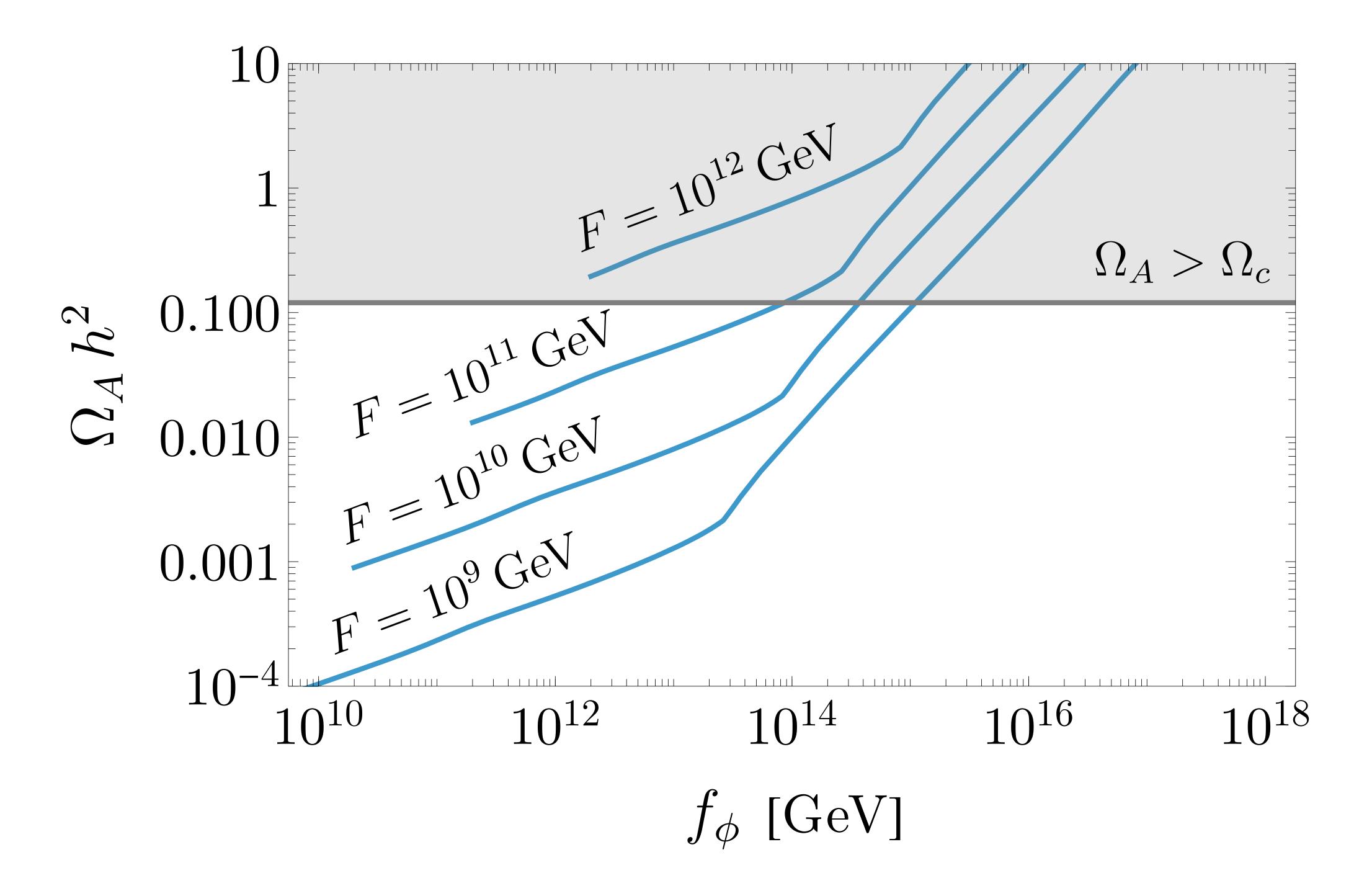
Adding another light axion can solve the DW problem by converting the string-wall network into string bundes.



Lee, Murai, FT and Yin 2507.07075,



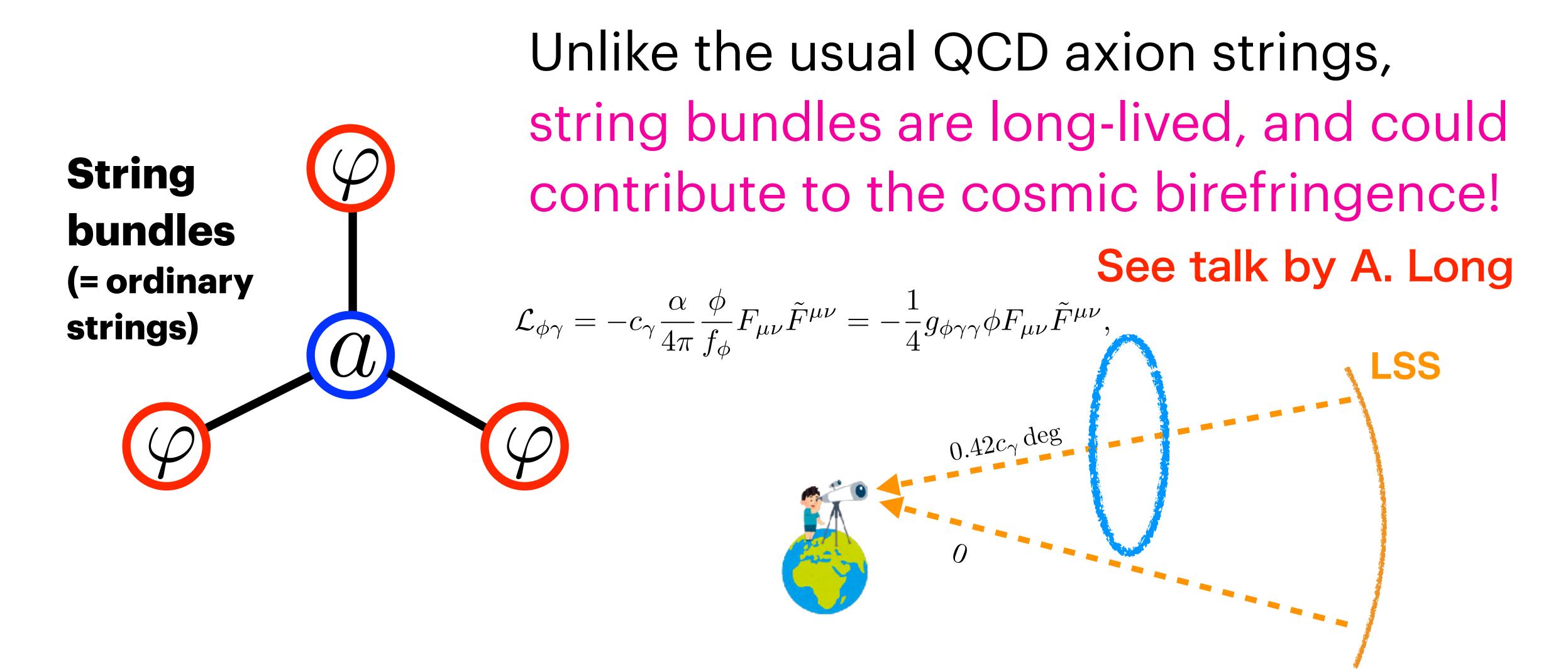




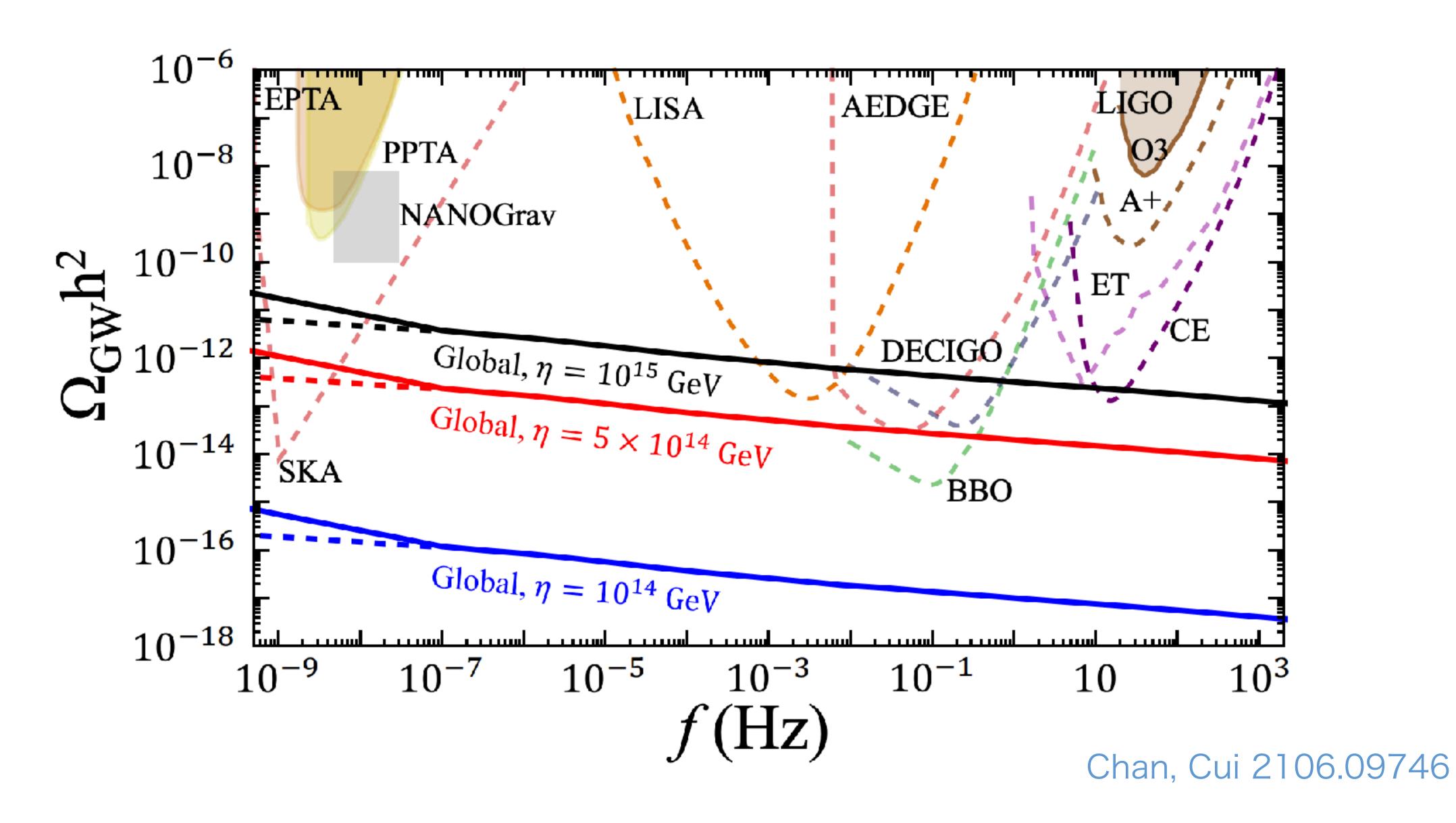
Implications for cosmic birefringence

Lee, Murai, FT and Yin 2507.07075, FT and Yin 2012.11576

See e.g. Jain, Hagimoto, Long, Amin, 2208.08391



Implications for Gravitational Waves



Summary

- The origin and breaking of U(1) PQ are unknown.
- A minimal extension from one to two PQ scalars often leads to stable DWs with large tension.
- Their decay can produce GWs and QCD axion DM even for small f_a .
- Adding another light axion can solve the QCD axion DW problem, leading to stable string bundles.

