

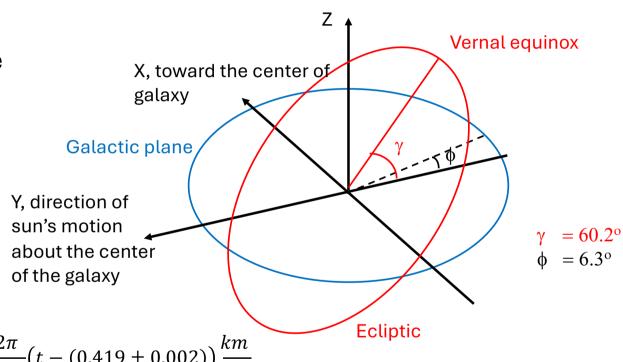
OCTOBER 27_{mon}-30_{ma}, 2025 · IBS HQ, Daejeon, Korea

CENTER FOR UNDERGROUND PHYSICS

Center for Theoretical Physics of the Universe

Dark Matter Axion Group

Search for DM annual modulation with Nal-based detectors


Aldo Ianni

INFN LNGS

Dark World, IBS Science and Culture Center, Daejeon, South Korea, Oct 29th, 2025

DM annual modulation

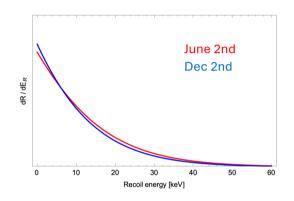
Considering an isotropic DM halo, the **annual modulation** is due to the combination of the earth's motion about the sun and the sun's motion about the center of the galaxy

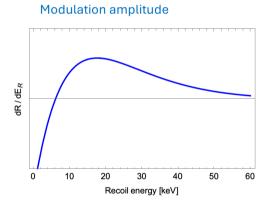
$$\vec{v}_{\chi H} = \vec{v}_{\chi L} + \vec{v}_{\odot} + \vec{v}_{\oplus}(t)$$

$$\vec{v}_{\odot} + \vec{v}_{\oplus}(t) = (227 \pm 20) + (14.43 \pm 0.08) \cos \frac{2\pi}{1yr} (t - (0.419 \pm 0.002)) \frac{km}{s}$$

earth's velocity in the galactic frame

Maximum of velocity expected between June 2nd and 3rd (~152.5 days)


DM interaction rate and annual modulation: an example


$$\frac{dR}{dE} = N_{target} \frac{\rho_{\chi}}{M_{\chi}} \int d^3v \, f(\vec{v}) \, v \, \frac{d\sigma}{dE} (E, v)$$

$$\eta(t) = \frac{v_{\oplus}(t)}{v_0} \simeq 1.03 + 0.066 \cos \omega (t - t_0)$$

$$\frac{dR}{dE}(\eta(t)) = \frac{dR}{dE}(\eta_0) + \frac{\partial}{\partial \eta} \left(\frac{dR}{dE}\right)_{\eta_0} \Delta \eta \cos \omega (t - t_0)$$

in a given energy bin: $S_k(t) = S_{0,k} + S_{m,k} \cos \omega (t-t_0)$

 $S_{m,k}$ depends on particle physics parameters, astrophysical parameters, nuclear physics parameters, detector's parameters.

A second order modulation is present due to diurnal earth's rotation: at LNGS latitude: $S_{m, day} \sim 0.015 S_{m, year}$

Searching for DM through annual modulation

Strength:

- ✓ a model independent approach is very powerful considering the huge parameter space allowed for DM
- √ do not need «large» and «complex» experiments
- ✓ expected single-hit events in a specific energy window

Weakness:

✓ $S_m/(S_0 + B) \sim \%$ so high radio-purity required

Opportunities:

- ✓ exploit North and South hemispheres
- ✓ exploit multi-site detectors
- ✓ Nal-based detectors offer an opportunity

Threats:

- ✓ development of low background detectors
- ✓ need to be very careful with detector stability and monitoring

Nal-based detectors running/proposed to study DM modulation

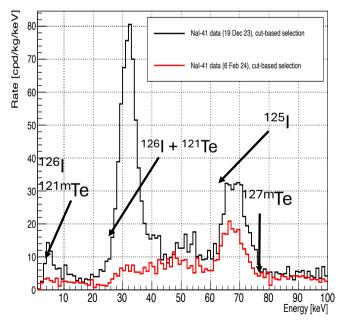
Experiment	Location	Target	Mass [kg]	Status
DAMA/LIBRA	LNGS	NaI(Tl)	250	finished
ANAIS-112	LSC	NaI(Tl)	112.5	running
COSINE-100	Yemilab	NaI(Tl)	106/61.3	upgrading
COSINE-200	Yemilab	NaI(Tl)	~200	in preparation
SABRE North / South	LNGS + SUPL	NaI(Tl)	~50 each	in preparation
COSINUS	LNGS	Nal	~1	in preparation
PICOLON	Kamioka	NaI(Tl)	~50	in preparation

Features of expected DM interactions

In case annual modulation with expected features (period and phase) is observed, the **DM interpretation** of candidate events depends on:

- Astrophysical parameters
- Target material
- Interaction model
- Nuclear physics for NR
- Quenching factor for NR (E_{er} = QF x E_{nr})
 - ✓ for Nal-based detectors could depend on crystals properties (growth, radio-purity, etc)
- Channeling in case of crystals and NR
- •

Determine the DM annual modulation signature

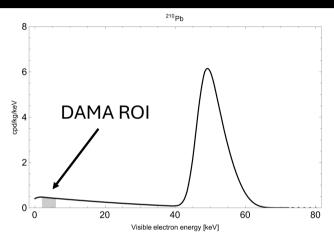

$$R(t) = R_0(t) + A\cos\left(\frac{2\pi}{T}(t-\varphi)\right)$$
 and $R_0(t) \approx C + Be^{-t/\tau} \approx C' - B' \cdot t$

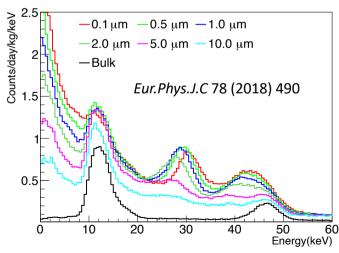
- Residuals (B ≈ 0)
 - \checkmark $R_i = \langle r_{ijk} flat_{jk} \rangle_{jk}$ with R_i the residual rate for single-hit events in the i-th time bin, r_{ijk} the rate in j-th detector, k-th energy bin. $flat_{ik}$ is the average rate of the un-modulated component over the annual period.
 - ✓ It can produce an artificial oscillation pattern (see JHEP 04 (2020) 137).
 - Clear evidence of B~0 should be provided. A slowly time-dependent rate becomes a source of an apparent modulation. With C+Bt apparent oscillation would peak at the beginning of June.
- Analysis of frequency
 - ✓ Unevenly samples time-series studied by Lomb-Scargle periodogram
- Maximum Likelihood fit
 - $L_k = \prod_{i,j} e^{-\mu_{ijk}} \frac{\mu_{ijk}^{N_{ijk}}}{N_{ijk}!}$ with $\mu_{ijk} = \left(b_{jk} + S_{0,k} + S_{m,k} \cos\left(\frac{2\pi}{T}(t_i t_0)\right)\right) \mathsf{M}_{\mathsf{j}} \Delta \mathsf{t}_{\mathsf{j}} \Delta \mathsf{E} \varepsilon_{\mathsf{jk}}$ and $\mathsf{t}_0 = 152.5$ days, T = 1yr
 - Fit parameters: $b_{jk} + S_{0,k}$ and $S_{m,k}$
 - With time-dependent background: $\mu_{ijk} = [R_0 (1 + f e^{-t_i/\tau}) + S_m \cos \left(\frac{2\pi}{T} (t_i t_0)\right)] M_j \Delta t_i \Delta E \varepsilon_{jk}$

Cosmogenic backgrounds for Nal-based detectors

Isotope	T _{1/2}
129	1.57x10 ⁷ yr
³ H	12.3 yr
²² Na	2.6 yr
¹⁰⁹ Cd	1.3 yr
^{121m} Te	164 d
¹¹³ Sn	115 d
^{123m} Te	119 d
^{127m} Te	106 d
125	59 d
^{125m} Te	57 d
¹²¹ Te	19 d

- Cosmogenic activation in the ROI mainly comes from ³H, ¹¹³Sn, ¹⁰⁹Cd, ²²Na
- Used for low energy calibrations:
 - √ 0.87 keV (²²Na), 25.5 keV, 3.5 keV (¹⁰⁹Cd), 30.5 keV (¹²¹Te), 67.8 keV (¹²⁵I)
- Minimum order of 1 yr underground cooling from cosmogenic activity required
- Underground growth desirable



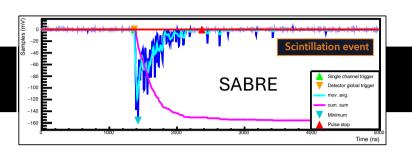

Tritium

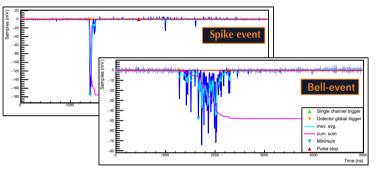
- It is a relevant background source in the low energy ROI [1,6] keV
 - ✓ pure beta emitter with Q_{β} = 18.591 keV and $T_{1/2}$ = 12.312 years
 - ✓ the fraction of the spectrum in the ROI corresponds to ~50 %
 - ✓ its activity in the crystal depends on the exposure on surface
- Estimated production rate at sea level: R_H =87±27 atoms/kg/day
 - ✓ Astropart. Phys. 97, 96 (2018)
- R. Saldhana et al. PRD 107 (2023) 022006 found $R_H = 80 \pm 21$ atoms/kg/day through controlled irradiation of NaI crystals with a neutron beam
- If the exposure history is known:
 - \checkmark $A_{Tritium}(t) = f \cdot R_H \cdot (1 e^{-t_{exposure}/\tau})$ with f a factor to account for the altitude at the production site

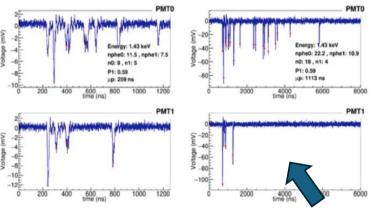
²¹⁰Pb

- It can be an important source of background from the crystal bulk
 - o fraction of spectrum accounts for ~ 3% in ROI
- It can be implanted on the surface from the ²²²Rn decay chain
- It can be present in the reflector around the crystal
- The contribution to the background in the ROI depends on the depth distribution on the crystal surface or on the reflector
 - a dedicated study is reported in Astrop. Phys. 126 (2021)
 102518
 - \sim The energy spectrum depends on the depth profile ranging \sim 0.1-1.5 μm which can show features due to 210 Pb producing conversion e⁻ at 30.2 keV or Auger e⁻ at \sim 12 keV

Rejection of background & noise events


A **DM** signal corresponds to **single-hit events**: only one detector at a time affected by a DM event.

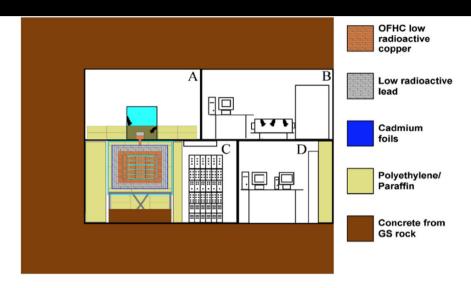

In NaI(Tl) below a few keV scintillation noise events are dominating the energy spectrum


 PMT-induced events that mimic scintillation signals + internal abnormal events

Required PSD tools in event selection procedure

- Scintillation events have a characteristic time of order 250 ns.
- Mean time is used to distinghuish β -like vs α -like events
- Asymmetry in the energy partition between PMTs
- BDT tools are exploited to remove low energy noise events
- A likelihood score method developed by COSINE-100 to compare PMT waveforms for signal and noise events using calibration data
 - ✓ coupled with BDT this method achieves 80% selection efficiency in 1-1.5 keV energy bin

Example of anomalous scintillation event from ANAIS-112


DAMA/LIBRA Phase I and Phase II

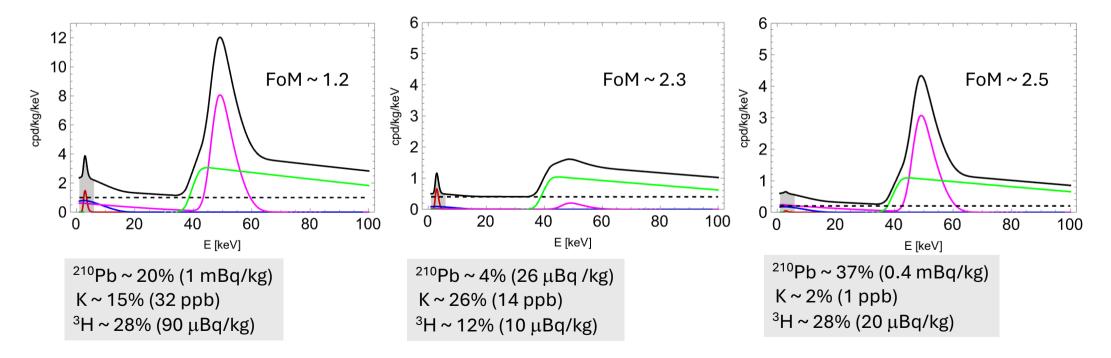
DAMA/LIBRA Phase I

- ✓ From 2003 to 2010
- √ 7 annual cycles and 1.04 ton x yr
- ✓ Rate in ROI [2,6]keV ~ 1 dru

DAMA/LIBRA Phase II

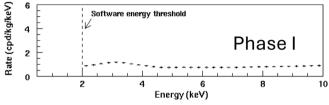
- From 2011 2024
- First release in 2018 with 7 annual cycles and 1.13 ton x yr
- Replaced PMTs (higher QE, lower radioactivity and noise) and improved LY from ~6.8 to 8 ph.e/KeV and σ /E by ~10%
- Rate in ROI [1,6]keV ~ 0.7 dru
- In 2021 hardware upgrade to lower threshold at 0.75 keV

Accumulated ~ 3 ton x yr 20 yr underground


Expected spectrum and sensitivity in DAMA-like detectors

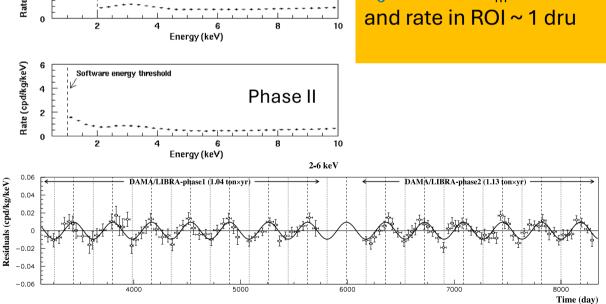
For an *ideal* detector main background contributions in ROI expected from: ²¹⁰Pb, ³H, ⁴⁰K, ⁸⁷Rb, ²³⁸U, ²³²Th

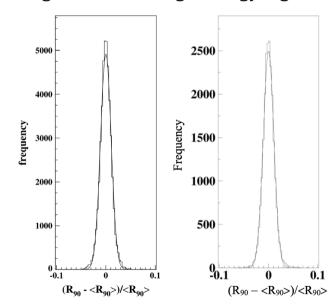
$$\mathsf{FoM} = \frac{S_m}{\sqrt{2}} \sqrt{\frac{M t}{S_0 + B}}$$


Different background contributions can produce similar overall statistical effect

assume an exposure of 1000 kg x yr and $S_m = 0.01 dru$

DAMA/LIBRA Phase I and Phase II

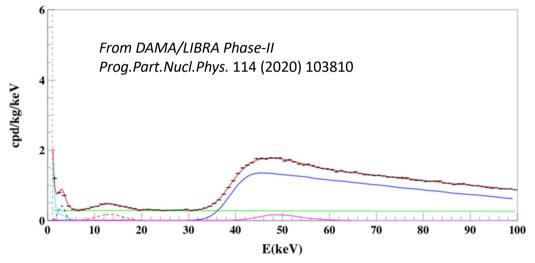

Distribution of single-hit events



Phase I + Phase II

 $n_{\rm c} \sim 15$ with $S_{\rm m} \sim 0.01$ dru

Integral rate above 90 keV for phase I and phase II to exclude a modulation of the background in the high energy region



Nucl. Phys. Atom. Energy 22 (2021) 4, 329-342 All statistics: $S_m = 0.00996 \pm 0.00074 \, dru \, [2,6] \, keV \, T \, and \, t_0 \, fixed$ $S_m = 0.01048 \pm 0.00090 \text{ dru } [1,6]\text{keV} \text{ T and } t_0 \text{ fixed}$

DAMA/LIBRA analysis strategy

- 1. Data collected for each annual cycle starts before the expected DM signal minimum (~ December 2nd)
- 2. Data collected ends after the expected DM signal maximum (~ June 2nd)
- 3. A constant background from the average of the annual cycle is evaluated
- 4. Calibration and stability monitoring
 - Sources: ⁵⁵Fe(5.9 keV), ¹⁰⁹Cd(22 keV, 88 keV), ²⁴¹Am(59.5 keV), ²¹⁰Pb(46.5 keV)
- Any long-lived background is expected to decrease during the annual cycle producing an underestimation of the DM signal.
- No evidence of significant time dependence shown by DAMA/LIBRA
- Last three years of DAMA/LIBRA phase-2 analysed without interruption: no change wrt previous results
- Still to be published data with lower threshold w/o interruption

DAMA/LIBRA crystals radio-purity

Powder after purification:

²³⁸U: 20 ppt ²³²Th: 20 ppt

^{nat}K: < 0.1 ppm

Tll after purification:

²³⁸U: 800 ppt ²³²Th: 120 ppt ^{nat}K: < 0.06 ppm

0.1% used in crystals

^{nat}K: 14.2 ppb (40 K: ~430 μBq/kg) ~ 20%

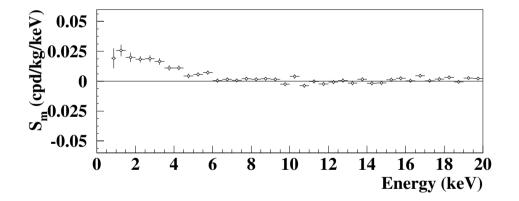
 210 Pb: 26±3 μBq/kg ~ 13%

 129 I: 947±20 µBq/kg

²¹⁰Pb from PTFE/Cu housing: 1.20 cpd/kg

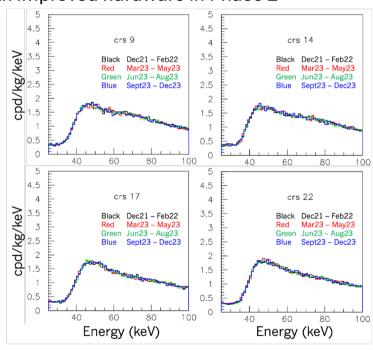
³H: < 90 μBq/kg (95% CL; measured during 1st year of Phase-I) < 15%

²³²Th: 2-30 μBq/kg (0.5-7.5 ppt) from α decays (²²⁴Ra, ²²⁰Rn, ²¹⁶Po) and assuming secular equilibrium.


²³⁸U: 8.6-124 μBq/kg (0.7-10 ppt) from α activity assuming secular equilibrium and ²³²Th content. $C_{\text{LI+Th}}(\text{ppt}) = 0.093 \, \text{N}_{\alpha}/\text{M}(\text{kg})\text{T}(\text{day})$

Observations show that ^{238}U chain is not in out of equilibrium.

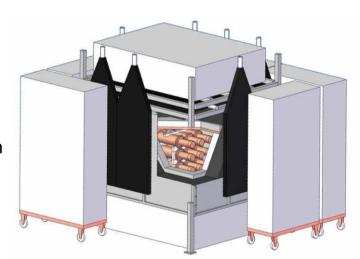
Sharp increase below 3 keV can be used to set a limit on S_0


DAMA/LIBRA final data

 S_m for full statistics of 2.86 ton x year. Data below 2 keV from Phase 2 only

EPJ Web Conf. 319 (2025) 10001

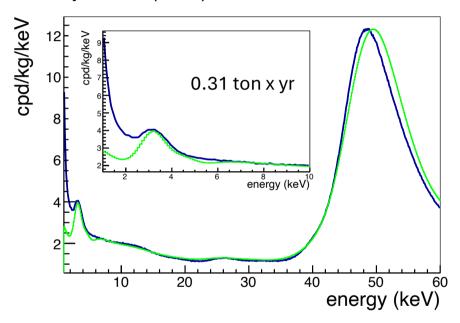
Stability of count rate and energy scale in 4 detectors with improved hardware in Phase 2



Rate in ROI [2,6] keV ~ 1 dru

ANAIS-112

- In operation since Aug. 2017 at LSC, Spain. Expected to end in 2025
- 9 crystals 12.5 kg each maufactured by Alpha Spectra Inc. (CO, USA)
 - + 1 blank module
- Passive shielding with archeologival Pb (10 cm), low-activity Pb (20 cm), and neutron moderator (40 cm)
- Rn box (0.6 Bq/m³) and muon veto with plastic scintillator
 - ✓ Events with less than one second from a muon are rejected
- Crystals received between 2012-2017
 - ✓ A significant improvement has been observed in radio-purity between first and last crystal due to improvements suggested by the collaboration to the producer
 - ✓ **Different powder and protocols** used for the 9 detectors.


 210 Pb reduction x4 from first to last detector.
- Periodic calibrations with 109 Cd (88, 22,11.6 keV) and 40 K(3.2 keV), 22 Na (0.9 keV)
- Average light yield ~ 14.5 phe/keV
- Effective total exposure: 0.625.75 ton x yr (6 years)

Accumulated ~ 0.625 ton x yr 6 yr

ANAIS-112 crystals radio-purity

J. of Phys. 2156 (2022) 012175

Blank module in operation since 2nd year to help understading unexplained events below 2 keV

BDT algorithm enhance noise reduction

Background in ROI dominated by:

²¹⁰Pb: 32.5% ($T_{1/2}$ = 22.2 yr) on average 0.8 mBq/kg

³H: 26.5% ($T_{1/2}$ = 12.3 yr)

K: 12% on average 30 ppb

²²Na: 2% ($T_{1/2}$ = 2.6 yr)

²¹⁰Po build-up indicates that: a) ²¹⁰Pb contamination occurs at the end of growth; b) ²¹⁰Po and not ²¹⁰Pb is removed during growth

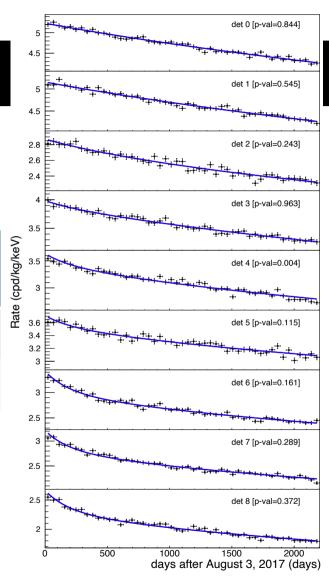
Rate in ROI [2,6] keV ~ 3.2 dru

ANAIS-112: analysis strategy

$$\chi^2 = \sum_{i,d} \left(\frac{n_{i,d} - \mu_{i,d}}{\sigma_{i,d}} \right)^2$$

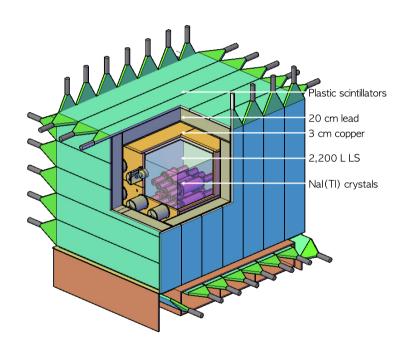
- χ^2 fit including time dependent background model from MC simulations, mainly ²¹⁰Pb(T_{1/2}=22.3y), ³H (T_{1/2}=12.3y), ²²Na (T_{1/2}=2.6y)
 - ✓ different background models show a variation on S_m of order 10^{-3} dru

$$\mu_{i,d} = \left[\mathbf{R_{0,d}} \left((1 - \mathbf{f_d}) \phi_{flat}(t_i) + \mathbf{f_d} \phi_{bkg,d}^{MC}(t_i) \right) + \mathbf{S_m} \cos \left(\frac{2\pi}{T} (t_i - t_0) \right) \right] M_d \Delta t_i \Delta E \quad \textbf{19 free parameters}$$


 $\phi_{bkg,d}^{MC}$ pdf from MC model and ϕ_{flat} constant pdf that accounts the the noise not described by MC + S₀ S_m = 0 for null hypothesis T and t₀ fixed

ANAIS-112: results

Total exposure: 0.625 ton x yr


	ROI	p-value	S _m ANAIS [cpd/ton/keV]	S _m DAMA [cpd/ton/keV]	$\frac{S_m^{DAMA} - S_m^{ANAIS}}{\sqrt{\sigma_{DAMA}^2 + \sigma_{ANAIS}^2}}$
modulation hypothesis	1-6	0.156	-0.4±2.5	10.5±1.1	4.0
modulation hypothesis	2-6	0.596	1.1±2.5	10.2±1.2	3.4

Systematics: toy MC simulations of experiments equivalent to 6 years of ANAIS data w/ and w/o annual modulation as from DAMA/LIBRA confirm results

COSINE-100

- In operation 2016-2023 at Yangyang, South Korea
- 8 crystals (4x2 array) with total mass of 106 kg maufactured by Alpha Spectra Inc. (CO, USA)
 - ✓ **different mass** from 8.3 to 18.3 kg
 - √ 4 different powder grades udes for growth
 - o C1, C5, and C8 are excluded due to low LY and high noise
 - √ total effective mass is 61.3 kg
- Active shielding with 2,200 L of LAB LS in an acrylic box viewed by 8 5-inch PMTs
- Additional passive shielding with Cu (3 cm) and Pb (20 cm)
- Muon veto with plastic scintillators (3 cm)
 - ✓ events within 30 ms from a tagged muon are removed
- Set-up inside an environmentally controlled room and supplied with Rn-free air during installation
 - \checkmark energy scale stability monitored through the 46.5 keV γ from internal ²¹⁰Pb decay and tested with 3.2 keV X-ray from ⁴⁰K
- BTD analysis to remove PMT noise
- Average light yield ~ 12.4 phe/keV (14.8 in selected sub-set)

Accumulated ~ 0.4 ton x yr 6.4 yr

COSINE-100 crystals radio-purity and annual modulation search

Phys.Rev.D 106 (2022) 5, 052005 With fixed phase: $S_m = 0.0067 \pm 0.0042$

Rate in ROI [1,6] keV ~ 3 dru With 2022 exposure (0.173 ton x yr) n_{σ} ~ 2.3 With 10 yr exposure n_{σ} ~ 4

COSINE has successfully developed

- detailed background model
- detailed background studies including surface ²¹⁰Pb
- exploited BDT for noise rejection

Time-dependent background model includes: ³H, ²²Na, ¹⁰⁹Cd, ²¹⁰Pb in the bulk, ²¹⁰Pb on surface, ¹¹³Sn, ^{121m}Te, ^{127m}Te, plus a constant term

Time-dependent background model in ROI:

²¹⁰Pb: 40.9% ($T_{1/2}$ = 22.2 yr) on average 0.8 mBq/kg

 3 H: 51.5% ($T_{1/2}$ = 12.3 yr)

flat: 5% includes ${}^{40}K + {}^{238}U + {}^{232}Th + {}^{87}Rb$

²²Na+¹⁰⁹Cd+¹¹³Sn+¹²⁷Te+^{121m}Te+¹²¹Te: 2.6%

8 exponentially decaying components with fixed

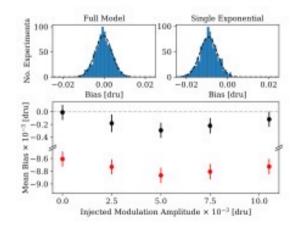
initial activity

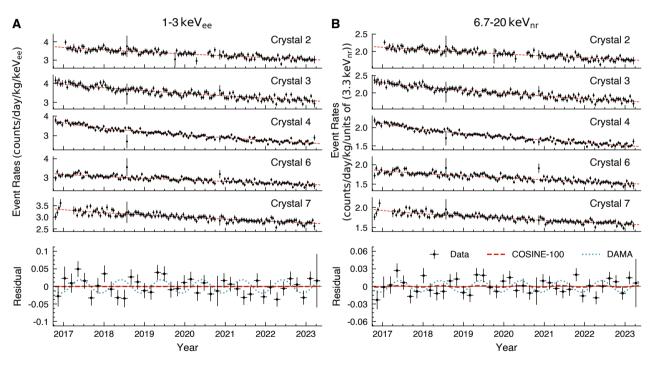
For each detector:

$$R^i(t|S_m, \alpha^i, \beta^i_k) = \alpha^i + \sum_{k=1}^{N_{bkgd}} \beta^i_k e^{-\lambda_k t} + S_m cos(\omega(t-t_0))$$

$$L\left(\overrightarrow{x} \mid S_m, \overrightarrow{\alpha}, \overrightarrow{\beta}\right) = \prod_{i}^{N_{det}} \prod_{j}^{N_{bin}^i} exp \left[-\frac{1}{2} \left(\frac{x_{ij} - \mu_{ij}}{\sigma_{ij}} \right)^2 \right]$$

COSINE-100: results


Exposure: 6.4 yr x 61.3 kg


Red dashed line: fixed-phase best-fit

Residuals: fitted background subtracted

Background model critical:

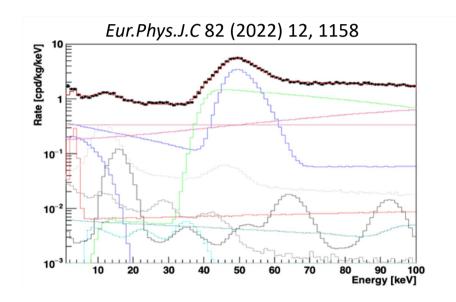
as show in *Phys.Rev.D* 106 (2022) 5, 052005 it can introduce a bias on $S_{\rm m}$

Sci.Adv. 11 (2025) 36

Rate in ROI [2,6] keV ~ 3 dru

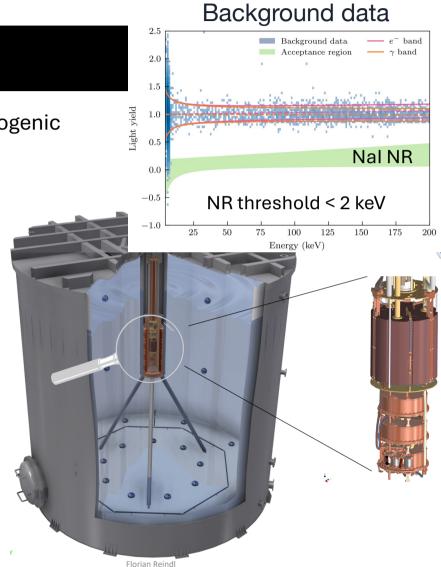
COSINE-100: results

ROI [keV]	S _m COSINE-100 from ER fixed- phase [cpd/ton/yr]	S _m COSINE-100 from NR fixed- phase [cpd/ton/yr]	S _m DAMA/LIBRA [cpd/ton/yr]	$\frac{S_m^{DAMA} - S_m^{COSINE}}{\sqrt{\sigma_{DAMA}^2 + \sigma_{COSINE}^2}}$
1-3	0.4±5		-	-
1-6	1.7±2.9		10.5±1.1	2.8
2-6	5.3±3.1		10.2±1.2	1.5
6.7-20		1.3±2.7	10.2±1.2	3.0


SABRE

STRATEGY:

- Development of ultra-high purity Nal(Tl) crystals (goal ~ 0.1 x DAMA/LIBRA)
 - High purity Nal powder + zone refining
 - Clean crystal growth method (Bridgman)
- Low energy threshold
 - High QE PMTs directly coupled to the crystal


- Passive shielding + active veto
- Two "almost" identical detectors in Northern (LNGS) and Southern hemispheres (SUPL)
 - seasonal backgrounds have opposite phase in Northern and Southern hemispheres
 - o dark matter signal has same phase

Rate in ROI [2,6] keV ~ 1 dru

COSINUS

- Exploit a novel technique for Nal-based detectors: Nal as cryogenic detector
 - ✓ particle identification on event-by-event basis
 - o ratio of light to phonon signal
 - ✓ energy measurement (heat channel)
 - o low threshold
 - √ high discrimination for NR signals
- Nal undoped crystals made by SICCAS
 - √ 30 g x8 (30-100 g x24) for Phase I (II)
 - ✓ K: 6-22 ppb
- External Water Tank as active muon veto
 - ✓ < 1 neutron background for 1000 kg x day
 </p>
- Staged approach
 - ✓ 2025 start data taking: only NR rate
 - √ 2025-2026 Run1:100 kg x day
 - √ >2026 Run2: 1000 kg x day

Making a high radio-purity detector is crucial

Strategy:

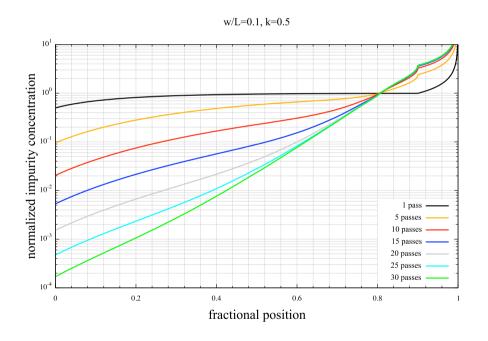
- Need better crystal radio-purity
 - ✓ underground growth would be desirable
- Need high purity powder to get started: powder purification
 - ✓ COSINE and PICOLON have developed in-house purification methods
 - ✓ SABRE exploits in addition zone refining
- Need a crystal growth which is not introducing contaminations
- Need a «good» design to reduce external background

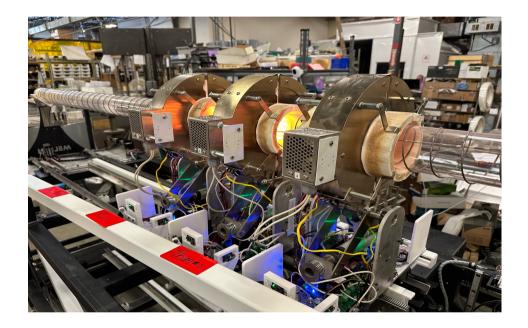
Make a high radio-purity detector: Nal powder

Strategy:

- 1. Powder purification adopted by COSINE/PICOLON to produce high purity powder
 - Recrystallization of NaI powder from water shown by COSINE to be very effective on Crystal grade commerical product
 - Decontamination factors: 39 K ~ 8; 138 Ba ~ 12; 208 Pb ~ 4; 65 Cu ~ 12 [J. Rad Nucl. Chem. (2018) 317:1329-1332]
 - COSINE purification facility [DOI 10.3389/fphys.2023.1142849]

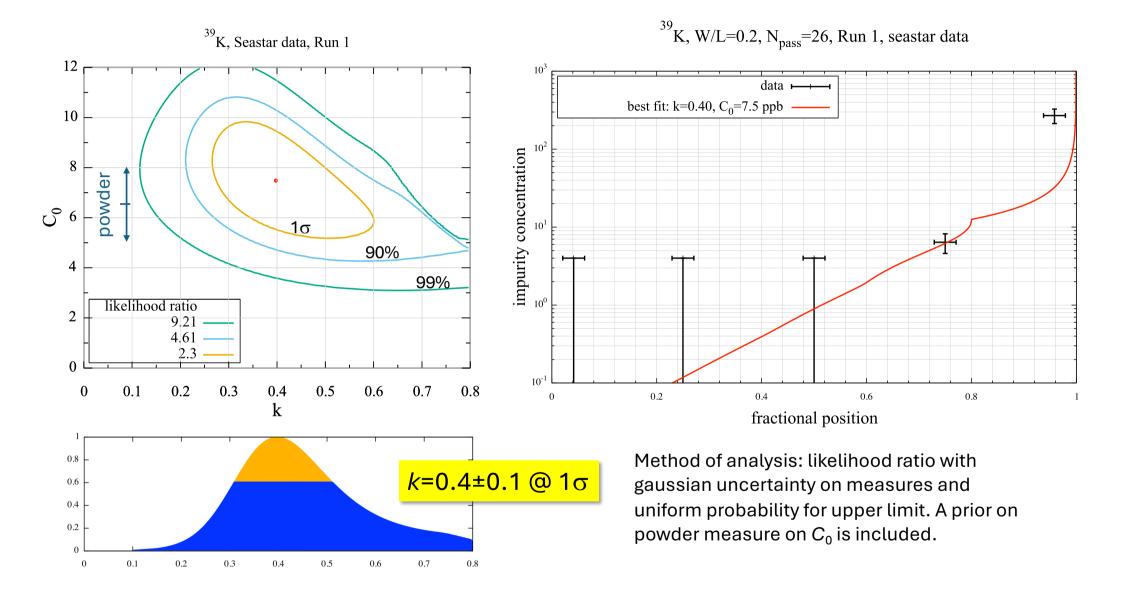
	K [ppb]	Fe [ppb]	Sr [ppb]	Ba [ppb]	Pb [ppb]	Th [ppt]	U [ppt]
Raw	250	33	19	3	40	<6	<6
Purified	11	<10	0.3	0.9	0.5	<6	<6


- 2. Use of Astro Grade powder and zone refining adopted by SABRE
 - Astro Grade purity similar to COSINE purified powder
 - Zone refining removes significantly different impurities components


Make a high radio-purity detector: Nal powder

	DAMA/LIBR A Saint- Gobain (DAMA-Nal)	COSINE- 100/ ANAIS-112 Alpha- Spectra	SABRE from Merck Astro Grade	COSINE-200 from Merck Optipure Purified (initial)
²³⁸ U	0.02 ppb (0.56±0.04)		<0.07 ppb	< 6 ppt
²³² Th	0.02 ppb (0.21±0.01)		<0.08 ppb	< 6 ppt
^{nat} K	<0.1 ppm (<4.8)	16-50 ppb	~3-10 ppb	~6 ppb (~250 ppb)
⁸⁵ Rb			< 0.4 ppb	
²⁰⁸ Pb			~1 ppb	~0.5 ppb (~20 ppb)

Zone refining purification of NaI powder in SABRE


To achieve a lower background crystals will be grown from zone refined powder

Measurements show strong segragation for screened elements such as K, Rb, Cs, Ba

Expected background in the ROI [1,6] keV of order 0.5 dru

Zone refining of NaI distribution coefficients: results

		¹³⁸ Ba	⁴⁴ Ca	⁴⁴ K	²⁴ Mg	²⁰⁸ Pb	⁸⁸ Sr
With prior on	k	0.34±0.15	1.36±0.05	0.4±0.1	0.89±0.07	1.16±0.03	-
powder	C _o (ppb)	0.21	68.7	7.5	2.6	1.9	-
W/o prior on	k	-	1.36±0.05	-	0.82±0.07	1.16±0.03	1.42±0.03
powder	C _o (ppb)	-	68.7	-	3.3	2.0	135
	C ₀ Powder	0.18±0.04	<100	6.5±1.6	2.1±0.5	1.6±0.3	1.2 ±0.3

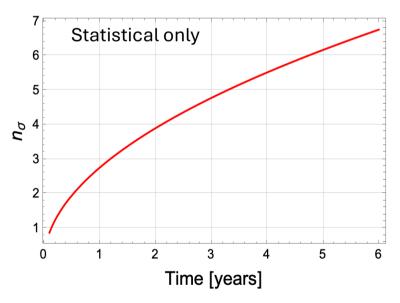
PICOLON

Intense effort to remove radioactive impurities from NaI powder by multiple recrystallization and cation exchange resin.

	Ingot#71 (2018)	Ingot#73 (2018)	Ingot#85 (2020)	Ingot#94 (2021)	Goal
Crystal size	3" φ ×3"	3" 	3" φ ×3"	3" φ ×3"	5"φ×5"
⁴⁰ Κ (μBq/kg)	<600 (< 20ppb)	<900 (<29.8ppb)	<600	<480 (<15.9ppb)	<600 (<20ppb)
²³² Th (µBq/kg)	1.7 ± 0.2	1.8 ± 0.2	1.2 ± 1.4	4.6 ± 1.2 (~1ppt)	<4 (<1ppt)
²³⁸ U (μBq/kg)	9.7 ± 0.8	9.4 ± 0.8	13±4	7.9 ± 4.4 (0.6ppt)	<10 (<1ppt)
²¹⁰ Pb (µBq/kg)	1500	1300	<5.7	19±6	<30
Method	Recryst. × 2	Recryst. × 3	Recryst. × 2 Resin	Recryst. × 2 Resin	-

K.Fushimi et al., PTEP 2021 043F01 arXiv:2112.10116 (TAUP2021 Proc.) arXiv:2509.22021v1 (2025)

Make a high radio-purity detector: crystal radio-purity


	DAMA/LIBRA	COSINE-100	ANAIS-112	SABRE	COSINUS
²³⁸ U	0.3-2 ppt	< 0.12 ppt	0.2-0.8 ppt	0.2-0.6 ppt	<1ppb
²³² Th	0.5-7.5 ppt	0.4-2.4 ppt	0.1-1 ppt	0.3-0.4 ppt	< 1ppb
nat K	≲ 20 ppb	17-82 ppb	17-43 ppb	2-8 ppb	6-22 ppb
²¹⁰ Pb	5-30 μBq/kg	0.7-3 mBq/kg	0.7-3.2 mBq/kg	0.5-0.8 mBq/kg	
²¹⁰ Pb reflector	~ 5 μBq/cm² (spectral fit)	0.8-1.6 μBq/cm ² (from ²¹⁰ Po)	~ 3 mBq/detector for D3 and D4	~ 1 μBq/cm² (spectral fit)	
³ H	< 90 μBq/kg	100-250 μBq/kg	90-200 μBq/kg	24±2 μBq/kg	
⁸⁷ Rb	< 0.3 mBq/kg	-	-	< 0.4 mBq/kg	
²² Na	< 15 μBq/kg	0.4-0.8 mBq/kg	0.5-2 mBq/kg	-	
Rate in ROI [1,6]keV	~ 0.7 dru	~ 3 dru	~ 3.5 dru	~1 dru	

Near future perspectives

	SABRE after ZR 5 kg expectation	COSINE-200 from Nal-37 0.71 kg Front.in Phys. 11 (2023) 1142765	COSINE-200 from NaI-35 0.61 kg Front.in Phys. 11 (2023) 1142765	PICOLON Prog. Theor. Exp. Phys. 2021, 043F01
²³⁸ U	< 0.1 ppt	1.0±0.6 ppt	0.9±0.3 ppt	< 2 ppt
²³² Th	< 0.1 ppt	0.2±0.3 ppt	1.7±0.5 ppt	< 6 ppt
^{nat} K	< 1 ppb	8.3±4.6 ppb	< 42 ppb	< 20 ppb
²¹⁰ Pb	~0.5 mBq/kg	0.38±0.10 mBq/kg	0.01 ±0.02 mBq/kg	< 6 μBq/kg
²¹⁰ Pb reflector	~ 1 μBq/cm² (spectral fit)			
³ H	∼4 µBq/kg	~4 μBq/kg		∼4 µBq/kg
⁸⁷ Rb	< 0.4 mBq/kg			
²² Na	-			
Rate in ROI [1,6] keV	~ 0.5 dru	~ 0.5 dru		~ 0.5 dru

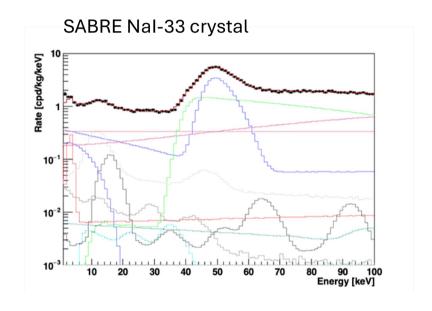
Assuming:

- **50 kg** target mass
- modulation amplitude of 0.01 dru
- rate in ROI dominated by internal radioactivity

DAMA/LIBRA facility at present

- All DAMA/LIBRA crystals kept under nitrogen purging in the original set-up at LNGS
- LNGS management is encouraging an international group to make use of the DAMA/LIBRA facility

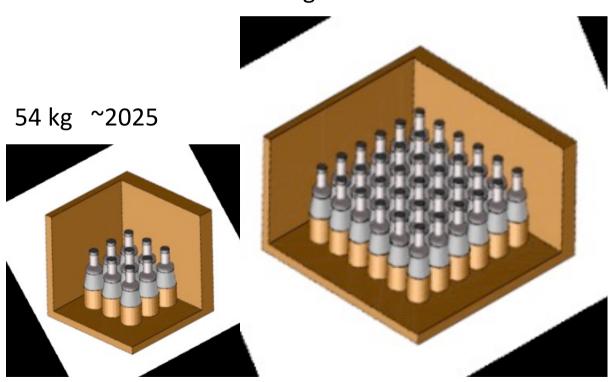
Take away

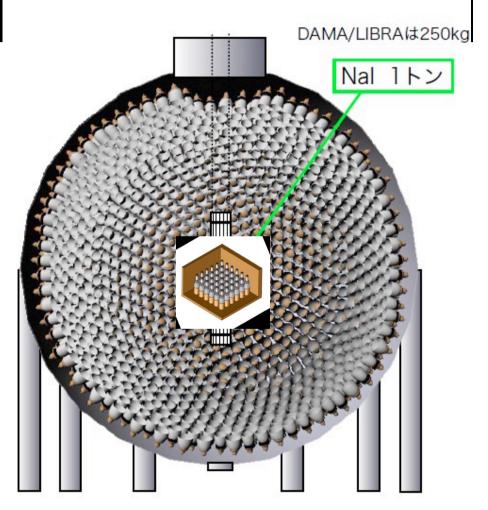

- DAMA/LIBRA: stopped in 2024
 - ✓ Outstanding crystal development achieved, still unmatched
 - ✓ A crucial anomaly in DM direct detection standing still
- ANAIS-112 and COSINE-100
 - ✓ Achieved outstanding noise events rejection in the ROI
 - ✓ Time-dependent background MC simulations: more details on systematics
 - ✓ Strong tests of DAMA/LIBRA
- Improve crystal radio-purity
 - ✓ Crucial efforts ongoing within SABRE, COSINE, and PICOLON
 - ✓ SABRE North expected to deliver first crystal early next year
- Possible re-use of DAMA/LIBRA crystals

Thank you for your attention!

SABRE crystal radio-purity

Eur.Phys.J.C 82 (2022) 12, 1158

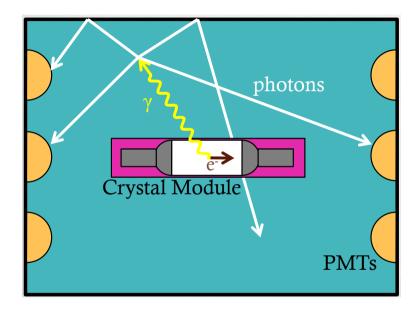

Source	Rate in ROI [1,6]keV in cpd/kg/keV	Fit results
⁴⁰ K	0.125	0.16±0.01 mBq/kg
²¹⁰ Pb bulk	0.333	0.49±0.05 mBq/kg
²¹⁰ Pb reflector	0.054	11±1 mBq/kg _{PTFE}
bulk		
²¹⁰ Pb reflector	0.023	<0.6 mBq/m ²
surface		
³ H	0.198	24±2 μBq/kg
129	0.0003	1.03±0.05 mBq/kg
²³⁸ U	0.006	5.9±0.6 μBq/kg
²³² Th	0.0003	1.6±0.3 μBq/kg
PMT	0.003	1.9±0.4 mBq/PMT
External	0.185	0.89±0.05
Other β's	0.333	297±15
TOTAL	1.26±0.27	


PICOLON long-term plan

PICOLON has a staged program

250 kg ~2030

KamLAND-PICO: 1ton


Exploiting an Active Veto

A **liquid scintillator based active veto** has been exploited by COSINE and SABRE to improve background rejection in the ROI. Internal low-energy single-hit events accompanied by a high-energy emission can be efficiently suppressed.

Frank Calaprice proposed the use of an active veto in 2009 in the framework of SABRE (Sodium iodide with Active Background Rejection Experiment)

With an active veto:

- single-hit events are events with only one crystal triggered with no measurable energy in the LS
- multi-hit events are events with more than one crystal triggered or with at least one crystal and a measurable energy deposition in the LS.

- COSINE-100 makes use of 2,200 L of LAB +% of PPO + trace of bis-MSB
 - ✓ PPO is purified by water extraction
 - ✓ 20 keV LS threshold with 200 ns coincidence is required between LS and crystal signals
 - ✓ Veto efficiency requiring sing-hit events without LS signal is ~ 80%
- SABRE PoP makes use of 1,970 L of PC (distilled from Borexino) + 2.86 g/L of PPO
 - ✓ PPO is purified by water extraction
 - **√** ~84%
 - ✓ Proved feasibility to observeK at the level of ppb contamination in crystals

QF measurement in ANAIS-112

In case annual modulation with expected features (period and phase) is observed DM interpretation of candidate events depends on:

- Two methods:
 - ✓ with a monochromatic neutron source at TUNL
 - smaller QF than in DAMA/LIBRA (0.2 and 0.06 for Na and I)
 - ✓ with a ²⁵²Cf source at LSC
 - ✓ MC dependet
 - ✓ compatible with lower QF than in DAMA/LIBRA
 - ✓ more compostible with QF energy dependent

DAMA/LIBRA [2,6]keV --> ANAIS-112 [1.3,4]keV