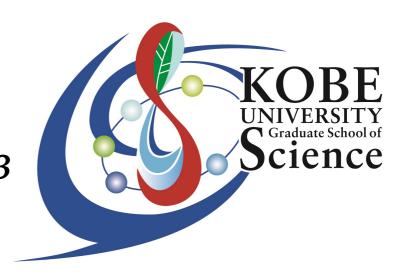
A positive-definite formulation of tunneling & Curvature perturbation from first-order phase transitions

Ryusuke Jinno (Kobe Univ.)
Focus workshop@IBS, 2025/11/23

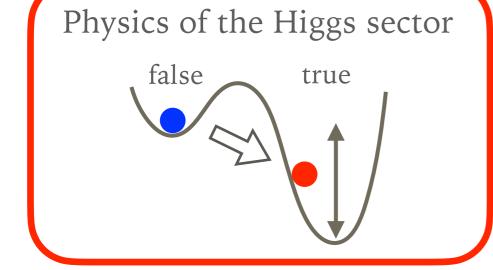


collaborators

Gabriele Franciolini, Yann Gouttenoire
Gilly Ellor, Soubhik Kumar, Robert McGehee, Yuhsin Tsai
Jose Ramon Espinosa, Thomas Konstandin, Shogo Matake, Taiga Miyachi

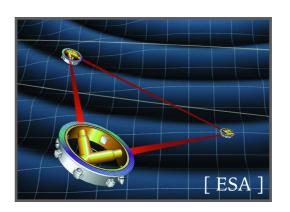
FIRST-ORDER PHASE TRANSITIONS IN THE EARLY UNIVERSE

microphysics macrophysics Dynamics of bubbles time or scale → (1) nucleation (2) expansion (3) collision & fluid dynamics DM prod.? true false true baryon true true asymmetry



FOPTs in BSM

GWs



OUTLINE

1. A positive definite formulation of tunneling

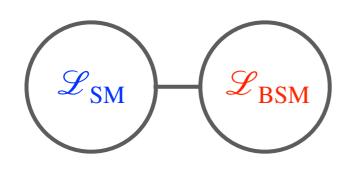
[Espinosa, RJ, Konstandin JCAP 02 (2023) 021, 2209.03293] [+Matake, Miyachi in progress]

- 2. Curvature perturbation from first-order phase transitions
- 2-1) Superhorizon scales [Ellor, RJ, Kumar, McGhee, Tsai PRL 133 (2024) 21, 211003, 2311.16222]
- 2-2) Horizon scales [Franciolini, RJ, Gouttenoire 2503.01962]

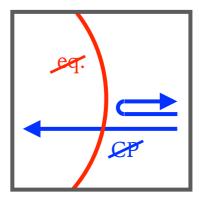
TUNNELING IN QFT

➤ Implications of tunneling in QFT

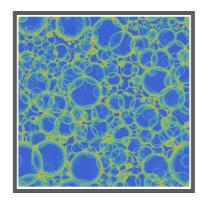
- New physics in the Higgs sector



- EW baryogenesis



- Gravitational wave production



- Nucleation around compact objects

ightharpoonup Tunneling rate Γ is estimated from the Euclidean action $S[\phi]$

$$S[\phi] = \int d^4x \left[\frac{1}{2} (\partial \phi)^2 + V(\phi) \right] \begin{cases} = \int 2\pi^2 r_E^3 dr_E \left[\frac{1}{2} (\partial_{r_E} \phi)^2 + V(\phi) \right] \\ = \int d^4x \left[\frac{1}{2} (\partial_{r_E} \phi)^2 + V(\phi) \right] \end{cases}$$

$$O(3) \text{ inv.} \int dt \int 4\pi r^2 dr \left[\frac{1}{2} (\partial_t \phi)^2 + \frac{1}{2} (\partial_r \phi)^2 + V(\phi) \right]$$

Tunneling rate is estimated as $\Gamma \sim e^{-S[\phi]}$, with "bounce" $\bar{\phi}$ being the solution for the equation of motion

O(4) case:
$$\partial_{r_E}^2 \bar{\phi} + \frac{3}{r_E} \partial_{r_E} \bar{\phi} - \partial_{\bar{\phi}} V(\bar{\phi}) = 0$$

$$r_E = \infty$$

➤ Can we reformulate the bounce?

Step 1: Start from the Euclidean action, and translate $\phi(t, \vec{x})$ into $t(\phi, \vec{x})$

$$S[\phi] = \int \underline{dt} \int d^3x \left[\frac{1}{2} \left(\frac{\partial \phi}{\partial t} \right)^2 + \frac{1}{2} (\nabla \phi)^2 + V \right]$$

$$= \int \underline{d\phi} \int d^3x \left[\frac{1 + (\nabla t)^2}{2\dot{t}} + \dot{t}V \right] =: S[t]$$

dot is ϕ derivative

Why do I do this? Because I feel like doing so

Can we reformulate the bounce?

Step 2: Add $(\nabla t) \cdot \dot{p} - \dot{t} (\nabla \cdot p)$ (just a total derivative) and complete the square

$$S[t] = \int d\phi \int d^3x \left[\frac{1 + (\nabla t)^2}{2\dot{t}} + \underline{(\nabla t) \cdot \dot{p}} + \dot{t}(V - \underline{\nabla \cdot p}) \right]$$
$$= \int d\phi \int d^3x \left[\frac{1 + (\nabla t + \dot{t} \dot{p})^2}{2\dot{t}} + \dot{t} \left(V - \nabla \cdot p - \frac{\dot{p}^2}{2} \right) \right]$$

Why do I do this? Because I feel like doing so

Can we reformulate the bounce?

Step 3: Integrate \dot{t} and ∇t out

$$S[t] = \int d\phi \int d^3x \left[\frac{1 + (\nabla t + i \mathbf{p})^2}{2i} + i \left(V - \nabla \cdot \mathbf{p} - \frac{\dot{\mathbf{p}}^2}{2} \right) \right]$$
$$= \int d\phi \left[d^3x \sqrt{2(V - \nabla \cdot \mathbf{p}) - \dot{\mathbf{p}}^2} =: S[\mathbf{p}] \right]$$

Why do I do this? Because I feel like doing so

Can we reformulate the bounce?

Step 4: If you seriously think about it, a magic factor 2 and a surface term appear

value of
$$\phi$$
 at which $\sqrt{\cdots}$ becomes zero
$$S[p] = \int d^3x \int_{\phi=\phi_{\min}(x)}^{\phi=\phi_{\max}(x)} d\phi \ 2\sqrt{2\left(V-\nabla\cdot p\right)-\dot{p}^2} \ + \ (\text{surface})$$
 relevant only to Fubini-type slowly decaying bounces

- ➤ This action reproduces O(4) Euclidean results
- This action works as a generalization of the "tunneling potential" to non-O(4) cases after the identification $\nabla \cdot \mathbf{p} = V_t(\phi)$ (r-independent)

TUNNELING POTENTIAL

- ➤ Originally derived by J.R.Espinosa for O(4) bounce [Espinosa '18]
- Tunneling potential $V_t(\phi)$ possesses interesting properties suggesting that it is not just a reformulation of the Euclidean method
 - Solution of the eom is a minimum, not a saddle point
 - The action is *obviously positive definite*: $S[V_t] = \int_0^t d\phi \ \frac{54\pi (V-V_t)^2}{(-\dot{V}_t)^3}$
 - Once one takes gravity into account, both CdL and HM actions are obtained in a unified manner (without the annoying boundary term)

$$S[V_t] = \int_0^\infty d\phi \ \frac{6\pi^2 M_P^2 (D + \dot{V}_t)^2}{DV_t^2} \quad \text{with} \quad D = \sqrt{\dot{V}_t^2 + \frac{6(V - V_t)V_t}{M_P^2}}$$

SUMMARY FOR PART 1

Tunneling rate is usually estimated as $\Gamma \sim e^{-S[\phi]}$ with the saddle-point configuration $\bar{\phi}$ of the Euclidean action

ightharpoonup Recently(?) a new formulation with so-called tunneling potential V_t has been proposed for O(4) case

We generalize it to less symmetric cases
 (which might be useful in calculating nucleation around impurities)

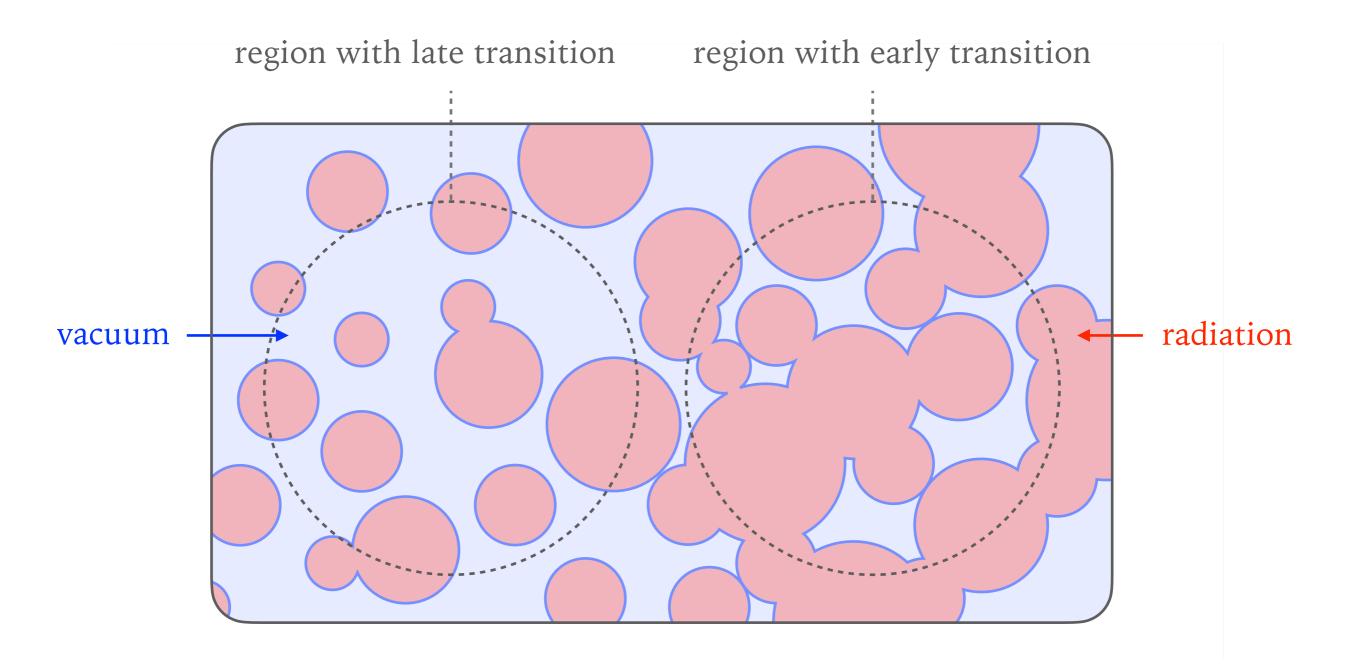
OUTLINE

1. A positive definite formulation of tunneling

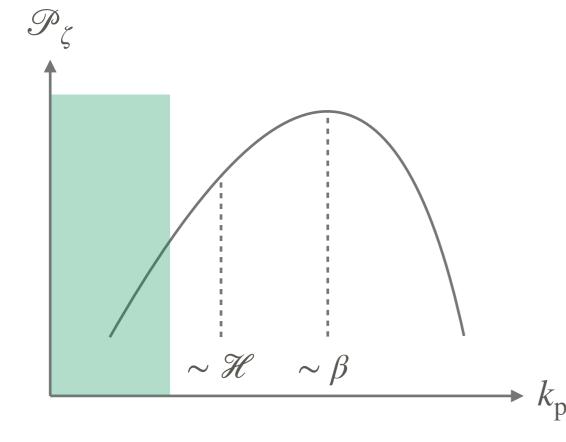
[Espinosa, RJ, Konstandin JCAP 02 (2023) 021, 2209.03293] [+Matake, Miyachi in progress]

- 2. Curvature perturbation from first-order phase transitions
- 2-1) Superhorizon scales [Ellor, RJ, Kumar, McGhee, Tsai PRL 133 (2024) 21, 211003, 2311.16222]
- 2-2) Horizon scales [Franciolini, RJ, Gouttenoire 2503.01962]

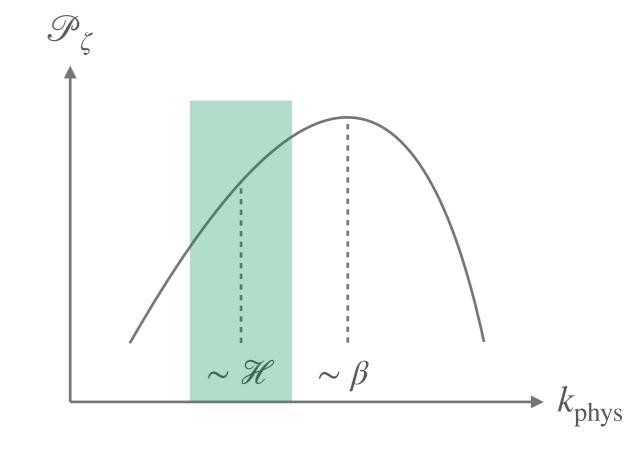
➤ How large can the curvature perturbation be? (→ PBHs? GWs?)



 $\begin{cases} \text{plus, we assume } H \ll \beta \end{cases}$ for technical reasons

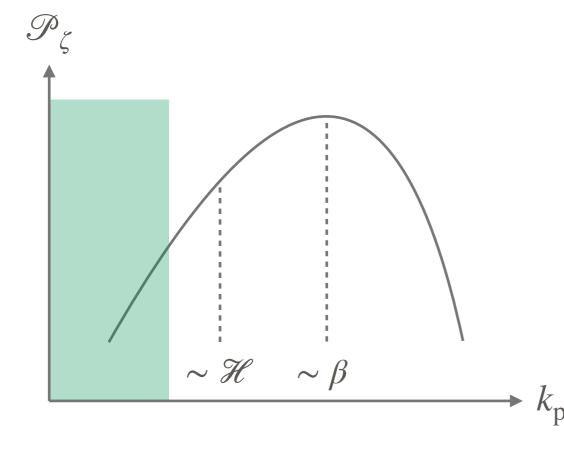


[Ellor, Kumar, McGhee, Tsai PRL 133 (2024) 21, 211003, 2311.16222]

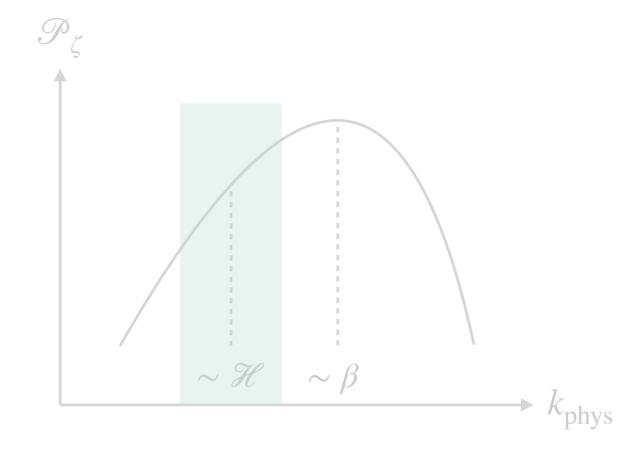


[Franciolini, RJ, Gouttenoire 2503.01962]

for technical reasons



[Ellor, Kumar, McGhee, Tsai PRL 133 (2024) 21, 211003, 2311.16222]



[Franciolini, RJ, Gouttenoire 2503.01962]

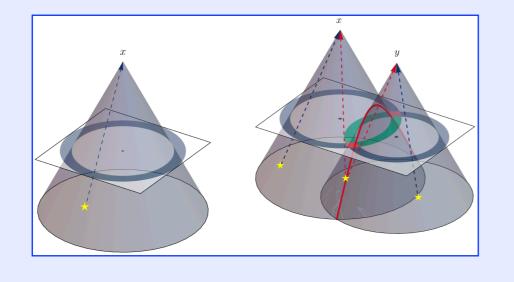
SUMMARY FOR PART 2-1

To estimate superhorizon curvature perturbation in FOPTs, we develop "vacuum-bubble δN -formalism"

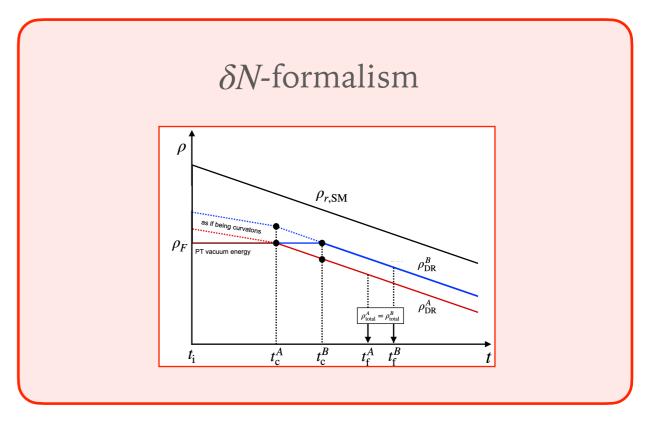
➤ Based on this, we report constraints on late-time FOPTs in a dark sector

VACUUM BUBBLE δN -FORMALISM

Light-cone formalism for vac. bubbles



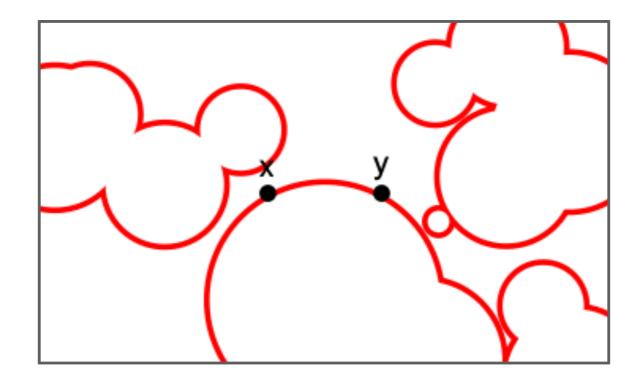
e.g. [RJ, Takimoto '16]



[Starobinsky '85] [Salopek & Bond '90] [Sasaki & Stewart '96] [Sasaki & Tanaka '98] [Wands, Malik, Lyth, Liddle '00] ...

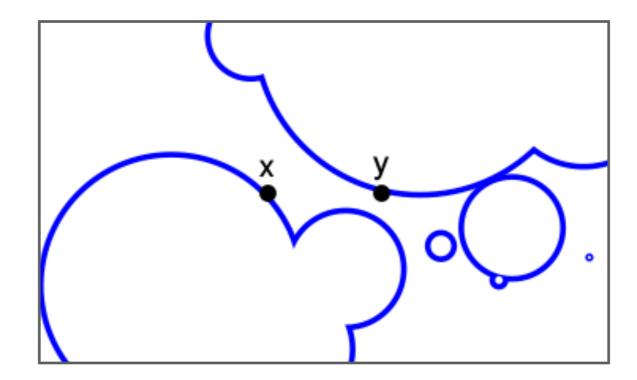
vacuum bubble δN -formalism

- ➤ A formalism to calculate multi(mostly two)-point functions of quantities determined by the spacetime distribution of vacuum bubbles
- ► Intuitively: Fix $(t_x, \vec{x}), (t_y, \vec{y})$ and sum up all possible configurations



► In the following we assume $\beta \gg H$ and $\Gamma(t) = \Gamma_* e^{\beta(t-t_*)}$

- ➤ A formalism to calculate multi(mostly two)-point functions of quantities determined by the spacetime distribution of vacuum bubbles
- ➤ Intuitively: Fix $(t_x, \vec{x}), (t_y, \vec{y})$ and sum up all possible configurations



► In the following we assume $\beta \gg H$ and $\Gamma(t) = \Gamma_* e^{\beta(t-t_*)}$

15 / 38

To estimate curvature perturbation, we need $\langle \delta t_c(\vec{x}) \delta t_c(\vec{y}) \rangle$

 $t_c(\vec{x})$: transition time for each spatial point \vec{x}

$$\delta t_c(\vec{x}) = t_c(\vec{x}) - \langle t_c \rangle$$
: difference of $t_c(\vec{x})$ from average

 $\langle \cdots \rangle$: average over infinitely many realizations of bubble configurations

 $\blacktriangleright \langle \delta t_c(\vec{x}) \delta t_c(\vec{y}) \rangle$ can be decomposed as

$$\left\langle \delta t_{c}(\vec{x}) \delta t_{c}(\vec{y}) \right\rangle = \int dt_{x} \int dt_{y} \begin{pmatrix} \text{prob. for} \\ t_{x} < t_{c}(\vec{x}) < t_{x} + dt_{x} \\ t_{y} < t_{c}(\vec{y}) < t_{y} + dt_{y} \end{pmatrix} \times \left(t_{x} - \left\langle t_{c} \right\rangle \right) \left(t_{y} - \left\langle t_{c} \right\rangle \right)$$

To estimate curvature perturbation, we need $\langle \delta t_c(\vec{x}) \delta t_c(\vec{y}) \rangle$

 $t_c(\vec{x})$: transition time for each spatial point \vec{x}

$$\delta t_c(\vec{x}) = t_c(\vec{x}) - \langle t_c \rangle$$
: difference of $t_c(\vec{x})$ from average

 $\langle \cdots \rangle$: average over infinitely many realizations of bubble configurations

 $\blacktriangleright \langle \delta t_c(\vec{x}) \delta t_c(\vec{y}) \rangle$ can be decomposed as

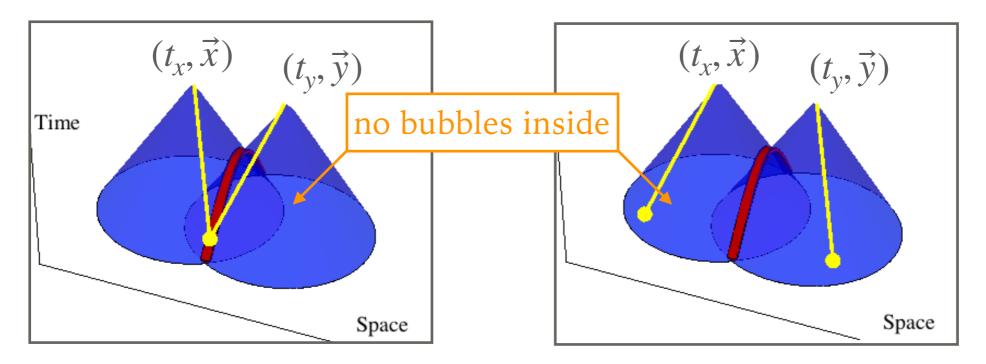
$$\left\langle \delta t_c(\vec{x}) \delta t_c(\vec{y}) \right\rangle = \int dt_x \int dt_y \begin{pmatrix} \text{prob. for} \\ t_x < t_c(\vec{x}) < t_x + dt_x \\ t_y < t_c(\vec{y}) < t_y + dt_y \end{pmatrix} \times \left(t_x - \left\langle t_c \right\rangle \right) \left(t_y - \left\langle t_c \right\rangle \right)$$

Probability part can be decomposed into two factors

1) Survival probability P_{surv} : no bubble must nucleate inside the blue past cones (otherwise such bubbles hit \vec{x} or \vec{y} before the evaluation time t_x or t_y)

case 1 (single-bubble)

case 2 (double-bubble)

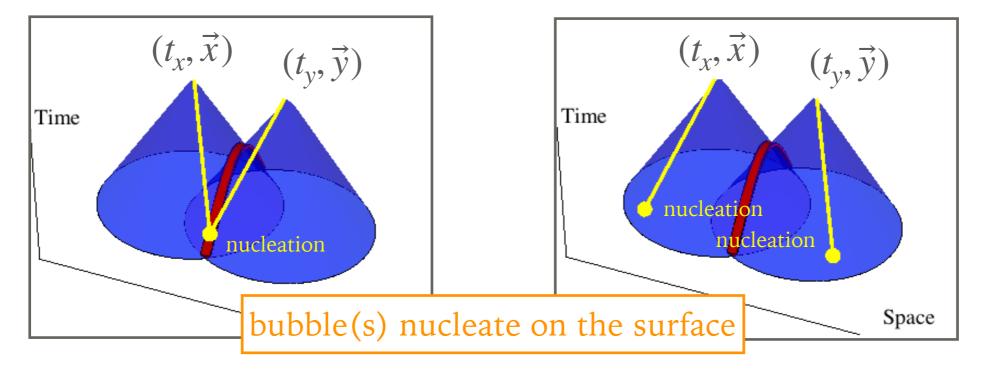


> Probability part can be decomposed into two factors

2) Nucleation probability $P_{\rm nuc}$: bubble(s) must nucleate at the right time and position on the surface of the past cones

case 1 (single-bubble)

case 2 (double-bubble)



► Now calculation of $\langle \delta t_c(\vec{x}) \delta t_c(\vec{y}) \rangle$ is straightforward

$$\left\langle \delta t_c(\vec{x}) \delta t_c(\vec{y}) \right\rangle = \left\langle \delta t_c(\vec{x}) \delta t_c(\vec{y}) \right\rangle^{(s)} + \left\langle \delta t_c(\vec{x}) \delta t_c(\vec{y}) \right\rangle^{(d)}$$

$$\langle \delta t_{c}(\vec{x}) \delta t_{c}(\vec{y}) \rangle^{(s)} = \int_{-r}^{r} dt_{x,y} \, \frac{2\pi e^{-r/2}}{r \, \mathcal{I}(x,y)} \left(\frac{r^{2}}{4} + r + 2 - \frac{t_{x,y}^{2}}{4} \right) \left[\left(\ln \left(\frac{\mathcal{I}(x,y)}{8\pi} \right) \right)^{2} - \frac{t_{x,y}^{2}}{4} + \frac{\pi^{2}}{6} \right]$$

$$\langle \delta t_{c}(\vec{x}) \delta t_{c}(\vec{y}) \rangle^{(d)} = \int_{-r}^{r} dt_{x,y} \, \frac{16\pi^{2}}{\mathcal{I}^{2}(x,y)}$$

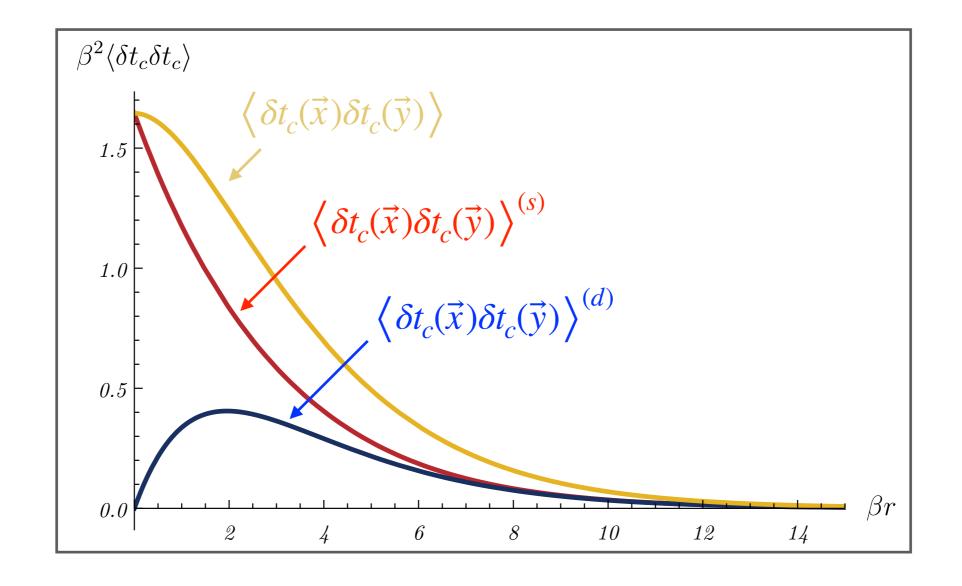
$$\times \left[4 - \frac{e^{-t_{x,y}/2 - r/2}}{2r} (r + t_{x,y} + 4)(r - t_{x,y}) - \frac{e^{t_{x,y}/2 - r/2}}{2r} (r - t_{x,y} + 4)(r + t_{x,y}) \right.$$

$$+ \frac{e^{-r}}{16r^{2}} ((r + 4)^{2} - t_{x,y}^{2})(r^{2} - t_{x,y}^{2}) \left[\left(\ln \left(\frac{\mathcal{I}(x,y)}{8\pi} \right) - 1 \right)^{2} - \frac{t_{x,y}^{2}}{4} + \frac{\pi^{2}}{6} - 1 \right].$$

$$\left(\beta = 1 \text{ unit, } r \equiv |\vec{x} - \vec{y}|, \ t_{x,y} = t_{x} - t_{y}, \ \mathcal{I}(x,y) = 8\pi \left[e^{t_{x,y}/2} + e^{-t_{x,y}/2} + \frac{t_{x,y}^{2} - (r^{2} + 4r)}{4r} e^{-r/2} \right] \right)$$

► Now calculation of $\langle \delta t_c(\vec{x}) \delta t_c(\vec{y}) \rangle$ is straightforward

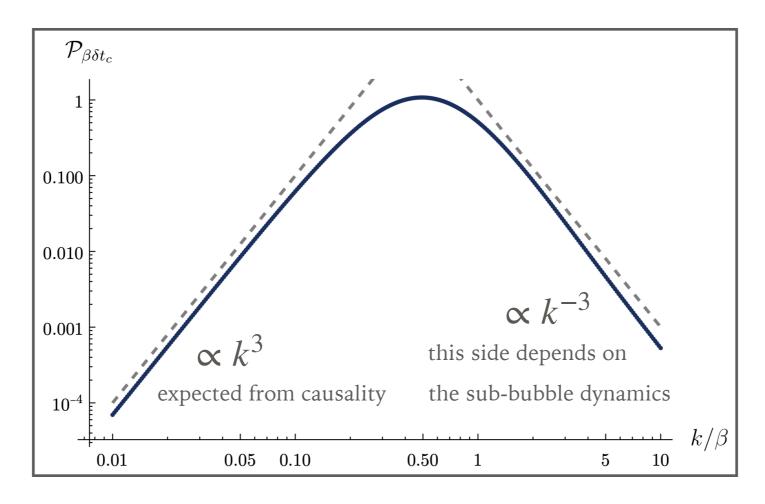
$$\left\langle \delta t_c(\vec{x}) \delta t_c(\vec{y}) \right\rangle = \left\langle \delta t_c(\vec{x}) \delta t_c(\vec{y}) \right\rangle^{(s)} + \left\langle \delta t_c(\vec{x}) \delta t_c(\vec{y}) \right\rangle^{(d)}$$



► Now calculation of $\langle \delta t_c(\vec{x}) \delta t_c(\vec{y}) \rangle$ is straightforward

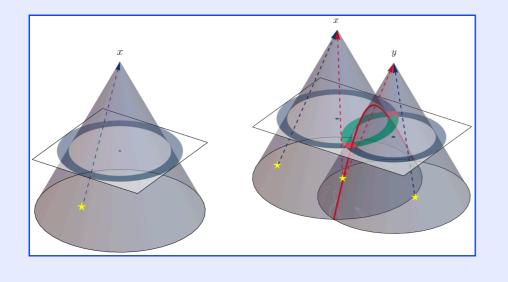
$$\left\langle \delta t_c(\vec{x}) \delta t_c(\vec{y}) \right\rangle = \left\langle \delta t_c(\vec{x}) \delta t_c(\vec{y}) \right\rangle^{(s)} + \left\langle \delta t_c(\vec{x}) \delta t_c(\vec{y}) \right\rangle^{(d)}$$

which can be translated into $\mathcal{P}_{\beta\delta t_c}(k) = \int d^3r \, e^{i\vec{k}\cdot\vec{r}} \beta^2 \, \left\langle \, \delta t_c(\vec{x}) \delta t_c(\vec{y}) \, \right\rangle$

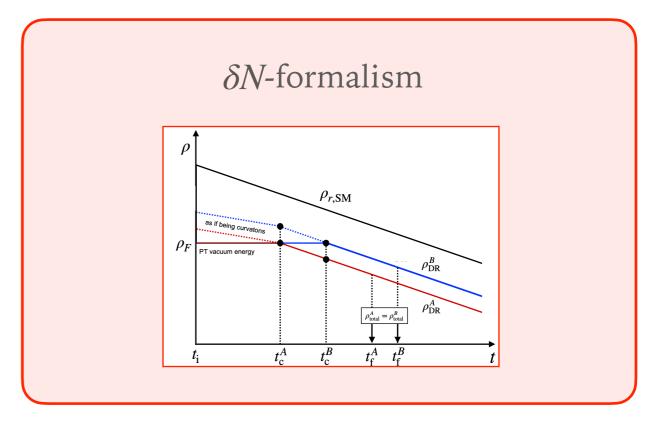


VACUUM BUBBLE δN -FORMALISM

Light-cone formalism for vac. bubbles



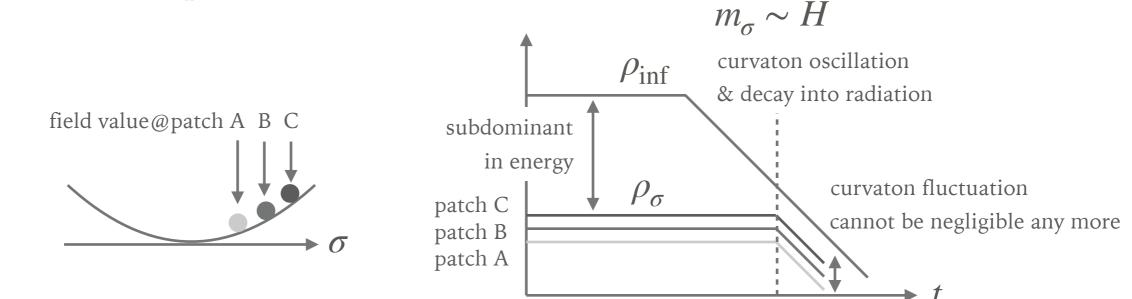
e.g. [RJ, Takimoto '16]



[Starobinsky '85] [Salopek & Bond '90] [Sasaki & Stewart '96] [Sasaki & Tanaka '98] [Wands, Malik, Lyth, Liddle '00] ...

vacuum bubble δN -formalism

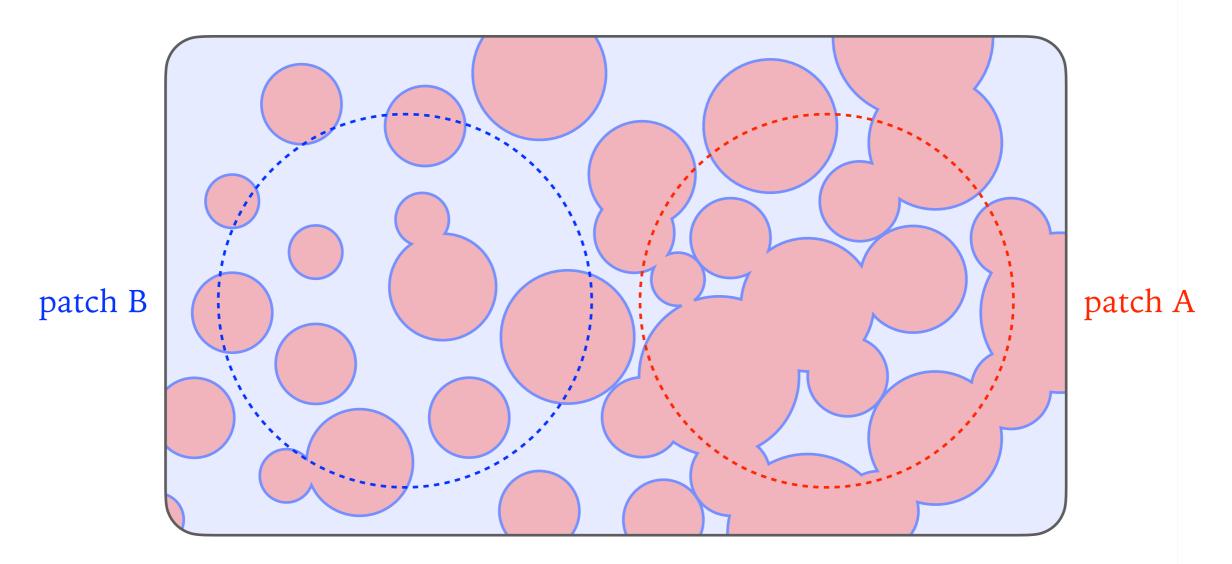
- ➤ Formalism to calculate curvature perturbation on superhorizon scales
- Often used to estimate curvature perturbation from curvatons
 <u>Curvaton?</u>
 - ① A hypothetical scalar field subdominant during inflation
 - 2 Though subdominant in energy, it generates a dominant fraction of the curvature perturbation we observe



23 / 38

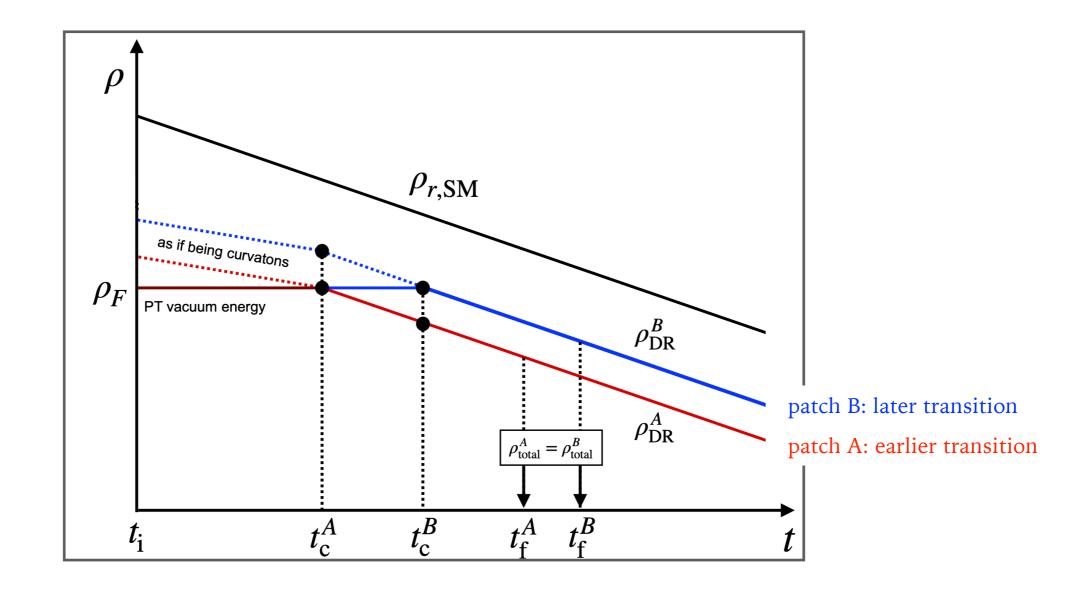
➤ The probabilistic completion of the transition by vacuum bubbles

looks like a curvaton

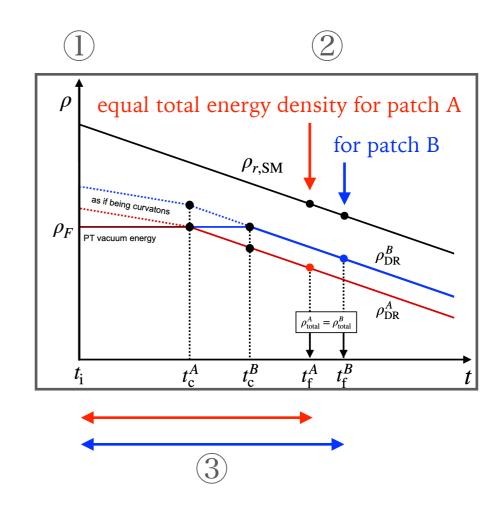


➤ We assume a transition in the dark sector (producing dark radiation)

➤ The probabilistic completion of the transition by vacuum bubbles looks like a curvaton



- ightharpoonup Prescription of the δN -formalism
 - ① Start from the spatially flat hypersurface
 - ② Evaluate the *e*-folding *N* at the equal energy density hypersurface
 - ③ Fluctuation δN in this *e*-folding N is the curvature perturbation ζ



 \blacktriangleright After all, we get the relation between ζ and δt_c

$$\zeta \simeq \frac{f_{\rm DR}}{2} \frac{\delta t_c}{\left< t_c \right>} \ \left(+ \zeta_{\rm inf} \right) = f_{\rm DR} H_* \delta t_c \ \left(+ \zeta_{\rm inf} \right)_{\rm inflationary} \zeta \ {\rm is \ an \ independent \ source}$$

 $f_{\rm DR}\ll 1$: average fraction of dark radiation after the completion of the transition

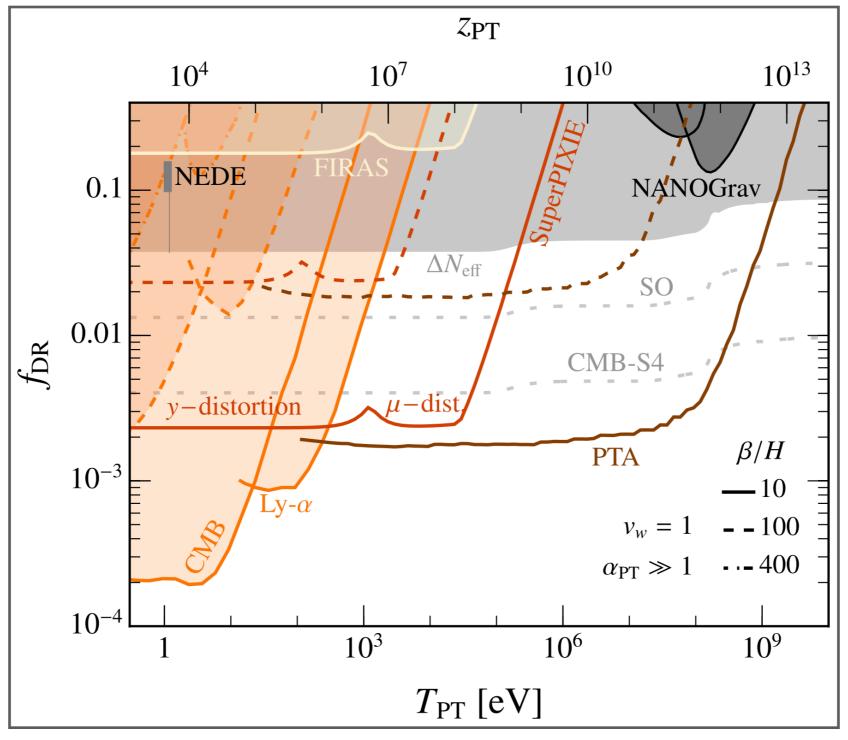
COMBINING THE TWO

From the light-cone formalism, we get $\mathcal{P}_{\beta\delta t_c} =$

From the δN -formalism, we get $\mathscr{P}_{\zeta} \simeq f_{\mathrm{DR}}^2 \mathscr{P}_{H_* \delta t_c} = \left(\frac{H_*}{\beta}\right)^2 f_{\mathrm{DR}}^2 \mathscr{P}_{\beta \delta t_c}$ power spectrum of $\langle H_* \delta t_c(x) H_* \delta t_c(y) \rangle$ power spectrum of $\langle \beta \delta t_c(x) \beta \delta t_c(y) \rangle$

➤ Using the \mathcal{P}_{ζ} obtained as an input for Boltzmann solvers (like CLASS), we can derive constraints on late-time transitions in the dark sector

CONSTRAINTS ON LATE-TIME TRANSITIONS IN A DARK SECTOR



[Elor, RJ, Kumar, McGehee, Tsai '24]

SUMMARY FOR PART 2-1

To estimate superhorizon curvature perturbation in FOPTs, we develop "vacuum-bubble δN -formalism"

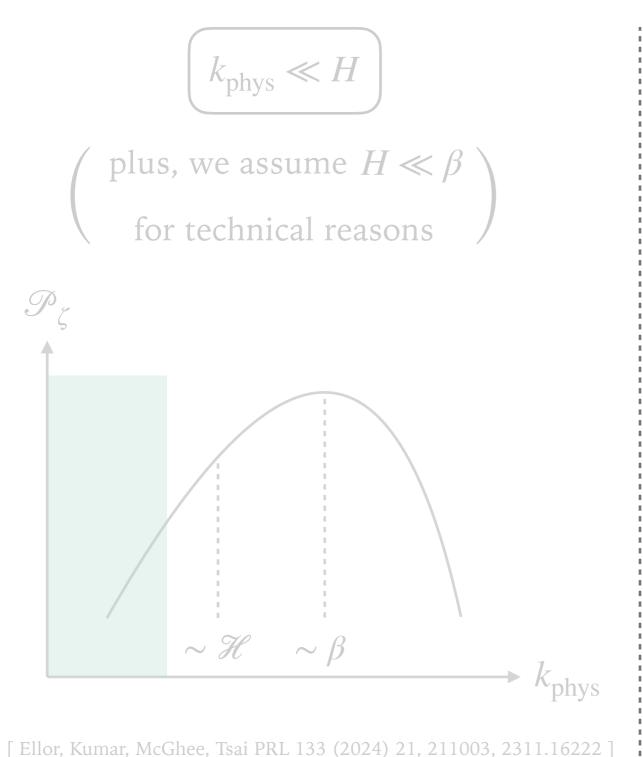
➤ Based on this, we report constraints on late-time FOPTs in a dark sector

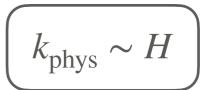
OUTLINE

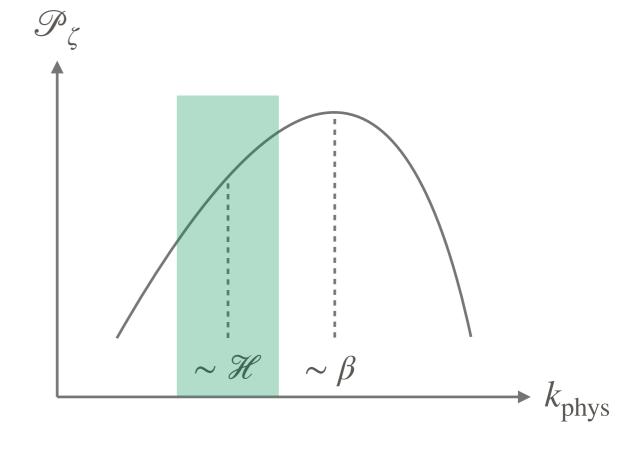
1. A positive definite formulation of tunneling

[Espinosa, RJ, Konstandin JCAP 02 (2023) 021, 2209.03293] [+Matake, Miyachi in progress]

- 2. Curvature perturbation from first-order phase transitions
- 2-1) Superhorizon scales [Ellor, RJ, Kumar, McGhee, Tsai PRL 133 (2024) 21, 211003, 2311.16222]
- 2-2) Horizon scales [Franciolini, RJ, Gouttenoire 2503.01962]



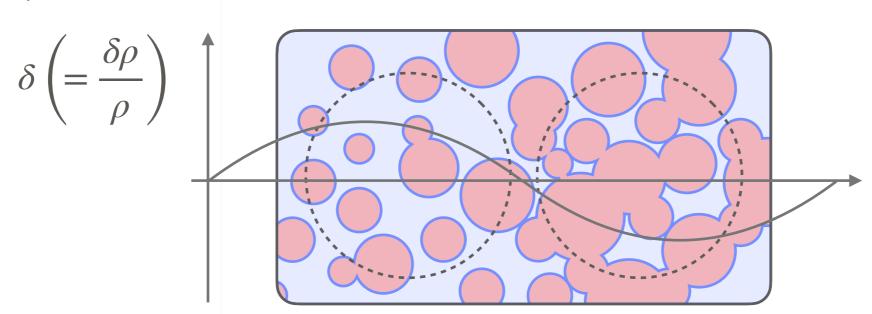




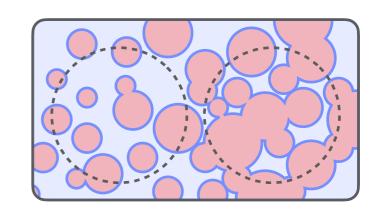
[Franciolini, RJ, Gouttenoire 2503.01962]

► Can PBHs form from curvature perturbation generated by small β/H (but still \gtrsim a few) FOPTs?

<u>Intuitively</u>



➤ With a careful treatment of gauges (in cosmological perturbations), we answered to this question in the negative

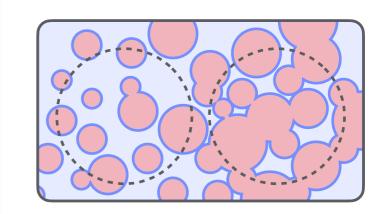


- ➤ Setup & findings of [Lewicki, Troczek, Vaskonen '24]
 - ① Background
 - Radiation & vacuum energy $\bar{\rho}_r' + 4\mathcal{H}\bar{\rho}_r = -\bar{\rho}_V'$
 - Initially the universe is vacuum energy dominated $\bar{\rho}_V(t=-\infty)=\Delta V$, and then radiation takes over
 - Vacuum energy decays with the exponential nucleation of bubbles

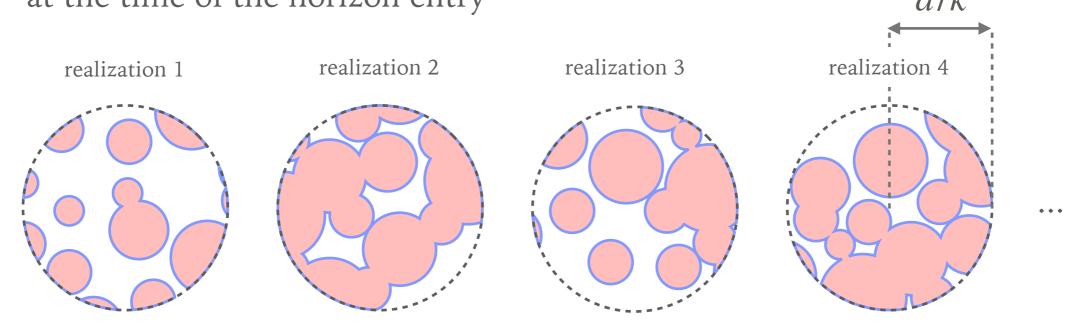
$$\Gamma(t) = H_*^4 e^{\beta(t-t_*)}$$

meaning that $\bar{\rho}_V$ decreases with the average false vacuum fraction $\bar{F}(t)$ as

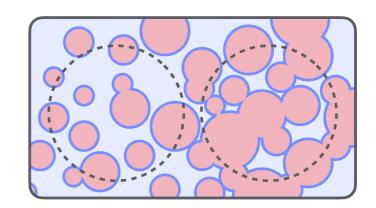
$$\bar{\rho}_V = \bar{F}(t) \times \Delta V \qquad \bar{F}(t) = \exp\left[-\frac{4\pi}{3} \int_{-\infty}^t dt_n \, \Gamma(t_n) \, a(t_n)^3 \left(\int_{t_n}^t \frac{d\tilde{t}}{a(\tilde{t})}\right)^3\right]$$



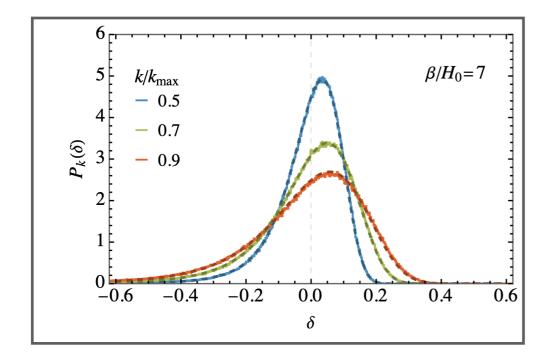
- Setup & findings of [Lewicki, Troczek, Vaskonen '24]
 - 2 Perturbation
 - Stochastic process of bubble nucleation induces density fluctuations
 - For a fixed comoving wavenumber k, consider a sphere of comoving radius 1/k, and numerically calculate the PDF of the density contrast of this region at the time of the horizon entry a/k

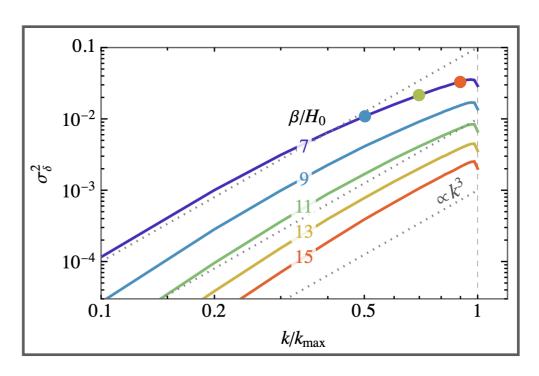


These pictures are just for illustration: they develop a much more efficient algorithm than naively generating bubbles

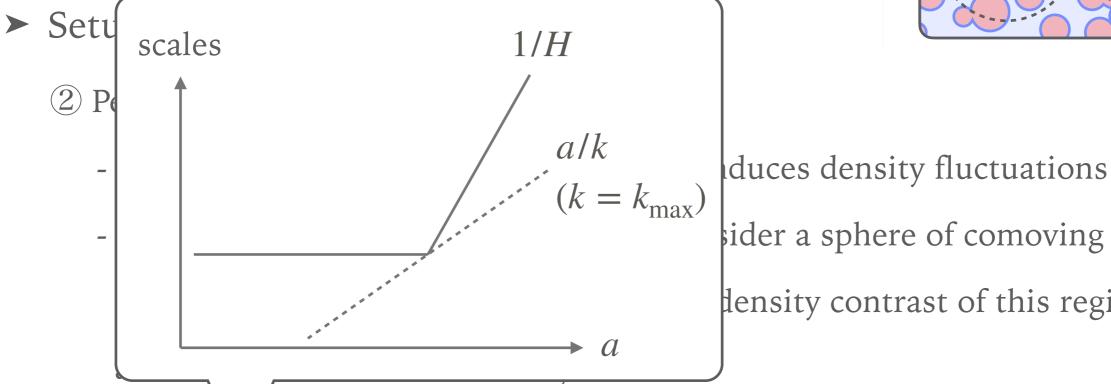


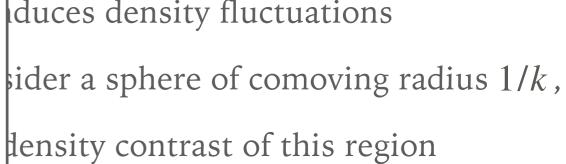
- ➤ Setup & findings of [Lewicki, Troczek, Vaskonen '24]
 - 2 Perturbation
 - Stochastic process of bubble nucleation induces density fluctuations
 - For a fixed comoving wavenumber k, consider a sphere of comoving radius 1/k, and numerically calculate the PDF of the density contrast of this region at the time of the horizon entry

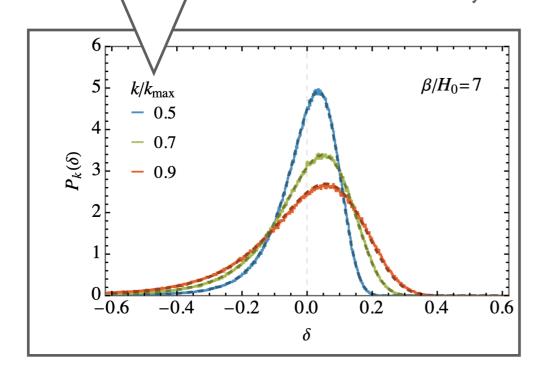


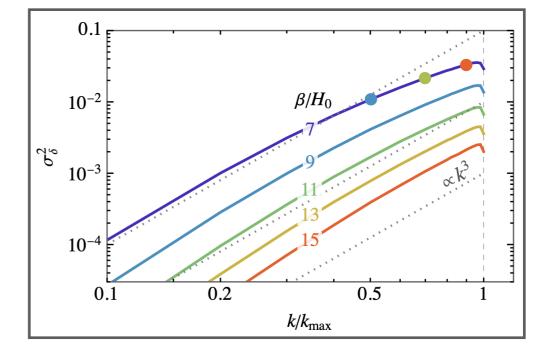


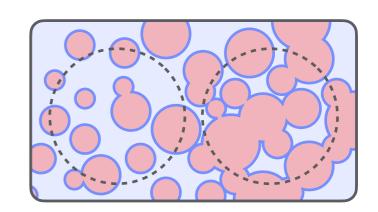




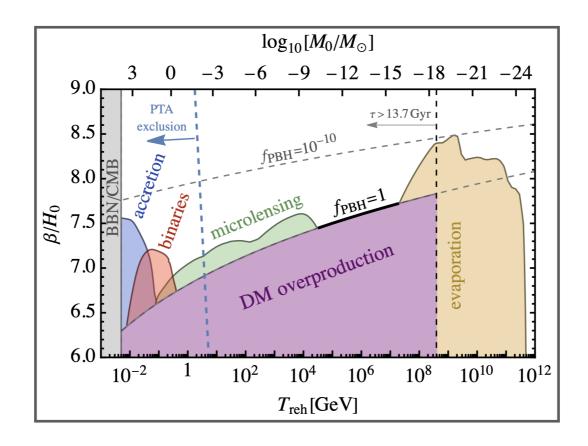








- Setup & findings of [Lewicki, Troczek, Vaskonen '24]
 - 2 Perturbation
 - For $\beta/H_*\lesssim 7$ the variance of the density contrast is so large that the density contrast δ exceeds the threshold for PBH formation $\delta_c=0.55$ frequently enough to explain the whole DM by PBHs



GAUGE ISSUES?

- \triangleright δ is the density contrast, but in which gauge?
- Nound Definition of Suppose the density contrast in the flat gauge $\delta^{(F)}$, since in the algorithm of [Lewicki, Troczek, Vaskonen '24] the density contrast is computed in a *flat* FLRW universe
- ► On the other hand, the threshold $\delta_c \sim 0.5$ is estimated in the comoving gauge
- ➤ How would the conclusion change if we use the gauge consistently?

CONSISTENT TREATMENT OF THE GAUGE

➤ Perturbation equations we solve

encodes the false-vacuum fraction

$$\delta_{k}^{(F)'} + 3\mathcal{H}(c_{s}^{2} - w)\delta_{k}^{(F)} = (1 + w)\mathcal{V}_{k} - 3\mathcal{H}\underline{\delta_{p,\mathrm{nad},k}}$$

$$\Phi_{k}'' + 3(1 + c_{s}^{2})\mathcal{H}\Phi_{k}' + \left[3(c_{s}^{2} - w)\mathcal{H}^{2} + c_{s}^{2}k^{2}\right]\Phi_{k} = \frac{3}{2}\mathcal{H}\underline{\delta_{p,\mathrm{nad},k}}$$

$$\mathcal{V}_{k} = -\frac{2}{3(1 + w)}\frac{\Phi_{k}' + \mathcal{H}\Phi_{k}}{\mathcal{H}}$$

- Equation of state $w = \bar{p}/\bar{\rho}$ & sound speed $c_s^2 = \bar{p}'/\bar{\rho}'$
- Gauge-invariant Newtonian potential Φ & scalar velocity ${\mathcal V}$
- Gauge-invariant non-adiabatic pressure $\delta_{p,\mathrm{nad}} = \frac{\delta p_{\mathrm{nad}}}{\bar{\rho}}, \ \delta p_{\mathrm{nad}} = \delta p^{(F)} c_s^2 \delta \rho^{(F)}$ In the present case $\delta p_{\mathrm{nad}} = \frac{1 3c_s^2}{3} \bar{\rho} \delta^{(F)} + \frac{4}{3} \Delta V \underline{\delta F^{(F)}}$ fluctuation in the false-vacuum fraction

We use the (very efficient) code developed in [Lewicki, Troczek, Vaskonen '24] to calculate the distribution of the fluctuation $\delta F^{(F)}$

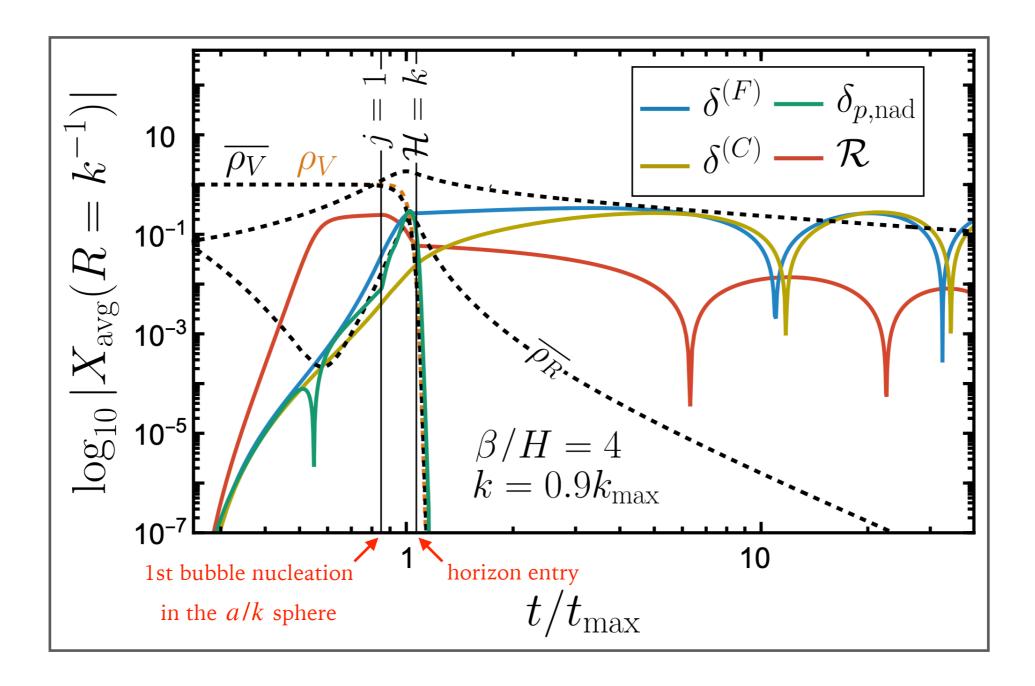
➤ The only difference is we identify it as the quantity in the flat gauge

ightharpoonup Once the perturbation equations are solved, we also estimate $\delta_k^{(C)}$ with

$$\delta_k^{(C)} = \delta_k^{(F)} + (5 + 3w)\Phi_k + \frac{2\Phi_k'}{\mathcal{H}}$$

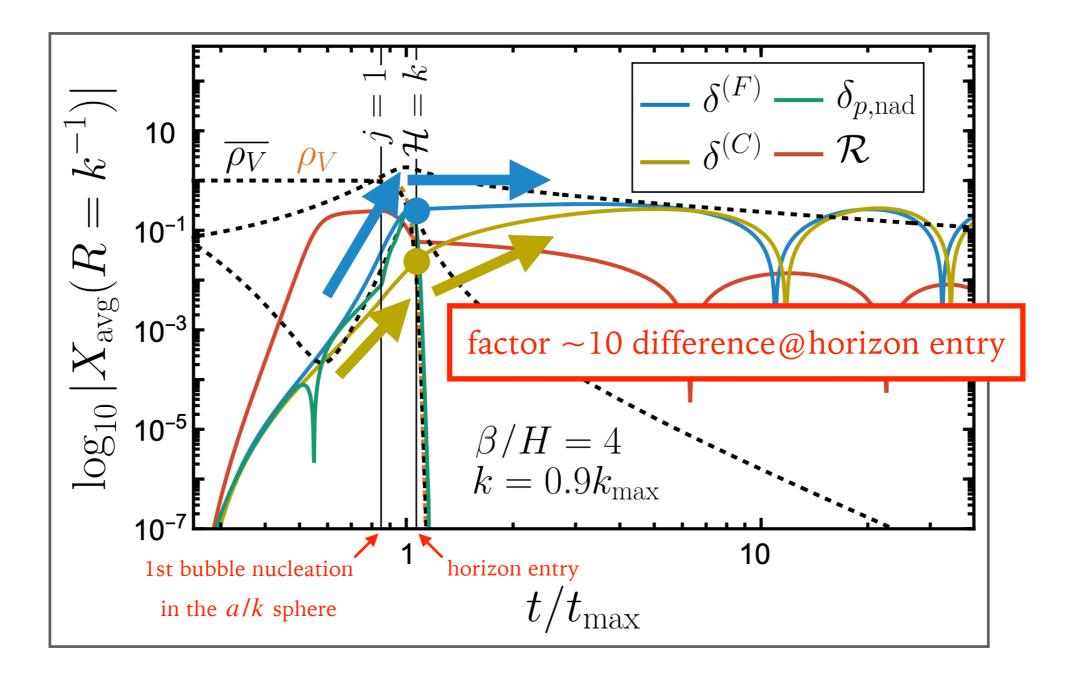
TYPICAL TIME EVOLUTION

ightharpoonup Point: difference between $\delta_k^{(F)}$ and $\delta_k^{(C)}$ around the horizon entry

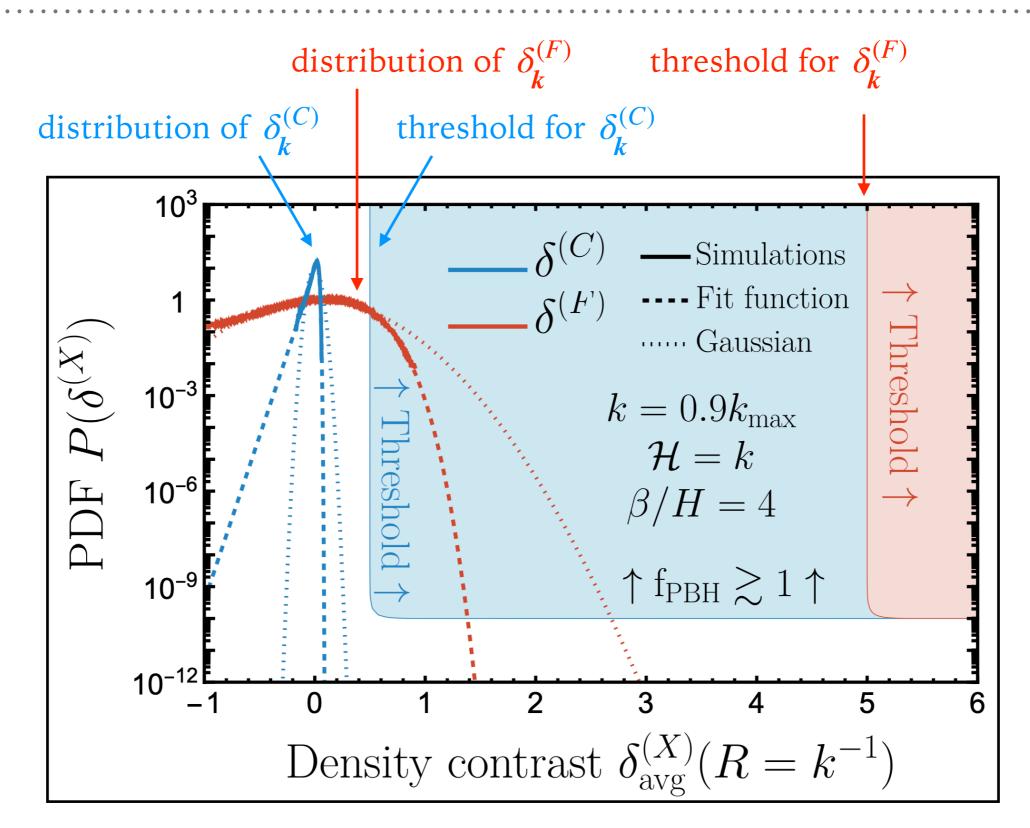


TYPICAL TIME EVOLUTION

ightharpoonup Point: difference between $\delta_k^{(F)}$ and $\delta_k^{(C)}$ around the horizon entry



IMPLICATION TO PBH FORMATION



SUMMARY FOR PART 2-2

► After carefully treating the gauge, PBH formation in supercooled FOPTs with $\beta/H \sim 7$ seems difficult

Still missing some aspects?