20–22 Dec 2021
Yangpyeong The Bloomvista
Asia/Seoul timezone

Large clique subdivisions in graphs without small dense subgraphs

21 Dec 2021, 17:35
25m
Yangpyeong The Bloomvista

Yangpyeong The Bloomvista

경기도 양평군 강하면 강남로 316
Contributed talk Session

Speaker

Seonghyuk Im (KAIST)

Description

What is the largest number $f(d)$ where every graph with average degree at least $d$ contains a subdivision of $K_{f(d)}$? Mader asked this question in 1967 and $f(d) = \Theta(\sqrt{d})$ was proved by Bollob\'as and Thomason and independently by Koml\'os and Szemer\'edi. This is best possible by considering a disjoint union of $K_{d,d}$. However, this example contains a much smaller subgraph with the almost same average degree, for example, one copy of $K_{d,d}$.

In 2017, Liu and Montgomery proposed the study on the parameter $c_{\varepsilon}(G)$ which is the order of the smallest subgraph of $G$ with average degree at least $\varepsilon d(G)$. In fact, they conjectured that for small enough $\varepsilon>0$, every graph $G$ of average degree $d$ contains a clique subdivision of size $\Omega(\min\{d, \sqrt{\frac{c_{\varepsilon}(G)}{\log c_{\varepsilon}(G)}}\})$. We prove that this conjecture holds up to a multiplicative $\min\{(\log\log d)^6,(\log \log c_{\varepsilon}(G))^6\}$-term.

As a corollary, for every graph $F$, we determine the minimum size of the largest clique subdivision in $F$-free graphs with average degree $d$ up to multiplicative polylog$(d)$-term.

This is joint work with Jaehoon Kim, Youngjin Kim, and Hong Liu.

Primary authors

Hong Liu (University of Warwick) Jaehoon Kim (KAIST) Seonghyuk Im (KAIST) Younjin Kim (Institute of Mathematical Science, Ewha Womans University)

Presentation materials

There are no materials yet.