25–30 May 2025
Daejeon Convention Center (DCC)
Asia/Seoul timezone

Laser spectroscopy of Al and Ni as probes of the transitional regions of deformation at N = 20 and N = 40

29 May 2025, 11:55
15m
Room 9: 1F #106 (DCC)

Room 9: 1F #106

DCC

Contributed Oral Presentation Nuclear Structure Parallel Session

Speaker

Jordan Reilly (CERN)

Description

The neutron-rich regions of $N~=~20$ and $N~=~40$ provide excellent testing grounds to investigate the evolution of nuclear structure and the rapid onset of deformation in radioactive isotopes lying close to shell closures and sub-shell closures. In these regions, effects such as islands of inversion (IoI), the onset of deformation and the collapse of the conventional shell model can be investigated using laser spectroscopy.

The Al isotopic chain forms the northern border of the $N~=~20$ island of inversion, presenting an ideal candidate to probe the transition from spherical Si [1] into deformed Mg [2], whereby $^{32}$Mg is considered the heart of the IoI. Before this work, charge-radii measurements in this region were limited up to $N~=~20$ for Mg [2] and Na [3], and $N~=~19$ for Al [4]. The CRIS collaboration recently measured $^{26-34}$Al using laser spectroscopy, crossing the $N~=~20$ shell closure.

The neutron-rich chain of Ni is of particular interest, with a magic proton number ($Z~=~28$) and spanning across two main shell closures ($N~=~28,~50$) and one sub-shell closure ($N~=~40$). However, the neutron-rich region of Ni marks a challenging area experimentally, due to the refractive nature of Ni and the large contamination in this region (Ga), resulting in the current laser spectroscopy studies being limited up to $^{70}$Ni (excluding $^{69}$Ni). However, this region, yet to be explored thoroughly with laser spectroscopy, marks an area of high interest. Measurements of the $E(2^{+})$ in Ni [5] indicate the re-emergence of the $N~=~40$ shell closure, which appears to collapse in neighbouring elements (Z < 28) such as Cr [6], forming the $N~=~40$ IoI. Furthermore, the enhancement of collectivity between $N~=~40-50$ induced by the weakening of the $Z~=~28$ shell closure [7] is not indicative of a semi-magic nucleus. The PI-LIST collaboration is actively working on the measurement of the neutron-rich chain of Ni using in-source laser spectroscopy, extending measurements into this mid-shell region between $N~=~40-50$.

In the first half of this talk, a brief overview of the CRIS technique will be presented along with recent measurements of the change in mean-square charge-radii of $^{33, 34}$Al, crossing $N~=~20$. In the second half, the PI-LIST technique will be introduced, followed with a presentation of the recent measurements on neutron-rich Ni, extending the measurements of the nuclear spin, charge-radii and electromagnetic moments into the $N~=~40-50$ mid-shell region. All result will be discussed in relation to the region and neighbouring isotopic chains.

[1] R. W. Ibbotson et al., Quadrupole Collectivity in 32,34,36,38Si and the N = 20 Shell Closure, Phys. Rev. Lett. 80 (1998) 2081-2084

[2] D. Yordanov et al., Nuclear charge radii of $^{21-32}$Mg, Phys. Rev. Lett 108 (2012), 042504

[3] G. Huber et al., Spins, magnetic moments, and isotope shifts of $^{21-31}$Na by high resolution laser spectroscopy of the atomic D1 line, Phys. Rev. C 18 (1978), 2342-2354

[4] H. Heylen et al., High-resolution laser spectroscopy of $^{27-32}$Al, Phys. Rev. C 103 (2021), 014318

[5] R. Taniuchi et al., $^{78}$Ni revealed as a doubly magic stronghold against nuclear deformation. Nature, 569 (7754):53 - 58, 5 2019.

[6] L Lalanne et al., $^{61}$Cr as a Doorway to the N = 40 Island of Inversion. arXiv:2409.07324, 2024

[7] T. Marchi et al., Quadrupole transition strength in the $^{74}$Ni nucleus and core polarization effects in the neutron-rich Ni isotopes. Phys. Rev. Lett., 113:182501, Oct 2014

Primary authors

Jordan Reilly (CERN) Michail Athanasakis-Kaklamanakis (CERN) Ágota Koszorús (KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium)

Co-authors

Dr A. I. Sison (Grupo de Física Nuclear & IPARCOS, Universidad Complutense de Madrid, Madrid, Spain) Abigail McGlone (School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom) Dr Adam Vernon (Massachusetts Institute of Technology, Cambridge, MA 02139, USA) Ms Anais Dorne (KU Leuven, Instituut voor Kern-en Stralingsfysica, B-3001 Leuven, Belgium) Andrei Andreyev (University of York, UK) Anjali Ajayakumar (GANIL/CNRS) Bram van den Borne (KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium) Bruno Olaizola (IEM - CSIC) Dr Christoph Schweiger (Max-Planck-Institut fĂźr Kernphysik, 69117 Heidelberg, Germany) Cyril Bernerd (CERN) Dag Hanstorp (Department of Physics, University of Gothenburg, SE-412 96 Gothenburg, Sweden) Mr Daniel Lange (Max-Planck-Institut fĂźr Kernphysik, 69117 Heidelberg, Germany) Mr David McElroy (School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom) Georgi Georgiev (IJCLab, Orsay, France) Gerda Neyens (KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium) Jake Johnson (KU Leuven) James Cubiss (School of Physics, Engineering and Technology, University of York, Heslington, York, YO10 5DD, UK) Jessica Warbinek (Experimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland) Dr Jonas Karthein (Massachusetts Institute of Technology, Cambridge, MA 02139, USA) Josh Wilson (School of Physics, Engineering and Technology, University of York, Heslington, York, YO10 5DD, UK) Julius Wessolek (School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom) Dr K. Solak (Faculty of Physics, University of Warsaw, PL 00-681 Warsaw, Poland) K. Stoychev (University of Guelph) Kara Lynch (School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom) Katerina Chrysalidis (CERN) Kieran Flanagan (School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom) Louis Lalanne (IPHC, Universit ́e de Strasbourg, Strasbourg F-67037, France) Luis Mario Fraile (Universidad Complutense de Madrid) Lukas Nies (CERN) Dr M Araszkiewicz (Faculty of Physics, University of Warsaw, PL 00-681 Warsaw, Poland) Dr M. Karny (Faculty of Physics, University of Warsaw, PL 00-681 Warsaw, Poland) M. Młynarczyk (Faculty of Physics, University of Warsaw, PL 00-681 Warsaw, Poland) Maria J G. Borge (Instituto de Estructura de la Materia, CSIC, Madrid, Spain) Dr Mark Bissell (CERN) Dr Matt Duggan (8School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom) Mia Au (CERN) Miranda Nichols (University of Gothenburg) Mr P. F Giesel (Institut für Physik, Universität Greifswald, D-17487 Greifswald, Germany) Dr P. Garczynski (Faculty of Physics, University of Warsaw, PL 00-681 Warsaw, Poland) Dr P. Wakuluk (Faculty of Physics, University of Warsaw, PL 00-681 Warsaw, Poland) Dr R. Grywacz (Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA) Dr R. Kuczma (Faculty of Physics, University of Warsaw, PL 00-681 Warsaw, Poland) Reinhard Heinke (CERN) Ronald Garcia Ruiz (Massachusetts Institute of Technology, Cambridge, MA 02139, USA) Ruben de Groote (KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium) Ryo Taniuchi (University of York) Dr S. Zajda (Faculty of Physics, University of Warsaw, PL 00-681 Warsaw, Poland) Sebastian Rothe (CERN) Dr Shane Wilkins (Massachusetts Institute of Technology, Cambridge, MA 02139, USA) Sonja Kujanpää (University of Jyväskylä) Thomas Cocolios (KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium) Dr Xaofei Yang (School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China)

Presentation materials