Speaker
Dr
Brandon White
(Los Alamos National Laboratory)
Description
Neutrino-less double beta (0νββ) decay experiments probe for such rare events that the suppression and understanding of backgrounds are major experimental concerns. Cosmogenic induced isotopes have the potential to be a major background for such experiments. For the MAJORANA DEMONSTRATOR Experiment 76Ge isotope is used as both detector and source. The isotopes 68Ge and 60Co are cosmogenically produced when the Germanium materials are near Earth's surface. The decay of these isotopes can mimic events in the 0νββ region of interest. For this reason, the enriched materials were minimized and closely monitored for surface exposure time during detector production. Cosmogenic induced backgrounds, primarily tritium, also have a major impact for any low energy campaign for the MAJORANA DEMONSTRATOR. In this talk I will present the estimation of cosmogenic backgrounds for the enriched 76Ge detectors and the extraction of the low energy events from our early data sets.
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.
Primary author
Dr
Brandon White
(Los Alamos National Laboratory)