3–7 Oct 2022
Science Culture Center, IBS
Asia/Seoul timezone

Applying Heavy-Ion Storage Rings for Precision Experiments at the Intersection of Atomic, Nuclear and Astro-Physics

5 Oct 2022, 11:40
20m
S236 (Science Culture Center, IBS)

S236

Science Culture Center, IBS

55 EXPO-ro, Yuseong-gu, Daejeon
Oral Session Session 10

Speaker

Yury Litvinov (GSI Helmholtz Center)

Description

The storage of freshly produced radioactive particles in a storage ring is a straightforward way to achieve the most efficient use of such rare species as it allows for using the same rare ion multiple times. Employing storage rings for precision physics experiments with highly-charged ions (HCI) at the intersection of atomic, nuclear, plasma and astrophysics is a rapidly developing field of research.
There ae presently three accelerator laboratories, GSI Helmholtz Center Germany (GSI), Institute of Modern Physics in China (IMP), and Nishina Research Center in Japan (RIKEN) operating heavy-ion storage rings coupled to radioactive-ion production facilities. The experimental storage ring ESR at GSI, the experimental cooler-storage ring CSRe at IMP, and the Rare RI ring R3 at RIKEN offer beams at energies of several hundred A MeV. The ESR is capable to slow down ion beams to as low as 4 A MeV (beta=0.1). Beam manipulations like deceleration, bunching, accumulation, and especially the efficient beam cooling as well as the sophisticated experimental equipment make rings versatile instruments. The number of physics cases is enormous. The focus here will be on the most recent highlight results achieved within FAIR-Phase 0 research program at the ESR.
First, the measurement of the bound-state beta decay of fully-ionized 205Tl was proposed about 35 years ago and was finally accomplished in 2020. Here, the ESR is presently the only instrument enabling precision studies of decays of HCIs. Such decays reflect atom-nucleus interactions and are relevant for atomic physics and nuclear structure as well as for nucleosynthesis in stellar objects.
Second, the efficient deceleration of beams to low energies enabled studies of proton-induced reactions in the vicinity of the Gamow window of the p-process nucleosynthesis. Proton capture reaction on short-lived 118Te was attempted in 2020 in the ESR. Here, the well-known atomic charge exchange cross-sections are used to constrain poorly known nuclear reaction rates.
The performed experiments will be put in the context of the present research programs at GSI/FAIR and in a broader, worldwide context, where, thanks to fascinating results obtained at the presently operating storage rings, a number of new exciting projects is planned. Experimental opportunities are being now dramatically enhanced through construction of dedicated low-energy storage rings, which enable stored and cooled secondary HCIs in previously inaccessible low-energy range. The first such facility, CRYRING, has just been utilized for precision experiments at GSI with decelerated beams of HCIs transferred from the ESR.
Thanks to the fascinating results obtained at the ESR, the CSRe and the R3 as well as to versatile experimental opportunities, there is now an increased attention to the research with ion-storage rings worldwide. Dedicated ring facilities are proposed for ISOLDE at CERN, TRIUMF, LANL, and JINR.

Primary author

Yury Litvinov (GSI Helmholtz Center)

Presentation materials