The usefulness of the two-step scheme with a $^{132}$Sn beam was investigated [1], which was proposed for efficient production of medium-heavy very-neutron-rich radioactive isotopes (RI) [2] as an alternative method to the direct production by means of in-flight fission of a $^{238}$U beam (one-step scheme). The system of the two-step scheme consists of an isotope-separation online (ISOL)...
The LISE$^{++}$ software for fragment separator simulations has undergone a major update. The package, widely used at rare isotope beam facilities, can be used to predict intensities and purities of rare isotope beams and for planning and running of experiments using in-flight separators. It is especially useful for radioactive beam production as its results can be quickly compared to on-line...
The FRagment Separator FRS at GSI features three branches for experiments with in-flight separated beams, the symmetric branch, the storage-ring branch connected to the Experimental Storage Ring and CRYRING complex (ESR/CRYRING), and the target hall branch to various caves, where experimental setups for Reaction experiments with Relativistic Radioactive Beams (R3B) and for Biomedical...
The in-flight fragment (IF) separator of RAON, the main device for producing rare isotope (RI) beams for nuclear science research and applications, is under development. For the purpose of using not only in-flight fission of uranium beams but also projectile fragmentation reactions, the IF separator of RAON is designed to have angular acceptance and momentum resolution of ±40 mrad and ±3%,...